12
VII Mechanical Wave

7). mechanical waves (finished)

Embed Size (px)

Citation preview

Page 1: 7). mechanical waves (finished)

VII Mechanical Wave

Page 2: 7). mechanical waves (finished)

Mechanical Wave Classification of waves (i). Medium ;Mechanical and Electromagnetic waves (ii). Direction of particles of medium ;Transverse and Longitudinal waves (iii). Motion of wave ;Stationary and progressive waves In elastic mediums, Tensile Stress, 𝑺𝒏

𝑆𝑛 =𝐹

π΄π‘›π‘œπ‘Ÿπ‘šπ‘Žπ‘™π‘ƒπ‘Ž

***Similar to pressure ***π΄π‘›π‘œπ‘Ÿπ‘šπ‘Žπ‘™ is the perpendicular area to the force. Tensile Strain, πœ±π’•

Φ𝑑 =βˆ†πΏ

𝐿0

Young’s Modulus, 𝒀

π‘Œ =𝑆𝑛

Ξ¦π‘‘π‘ƒπ‘Ž

***It is vary from one material to another. Same material has the same π‘Œ.

Shear Stress, 𝑺𝒕

𝑆𝑑 =𝐹

π΄π‘‘π‘Žπ‘›π‘”π‘’π‘›π‘‘π‘ƒπ‘Ž

Shear Strain, πœ±π’”

Φ𝑠 =βˆ†π‘₯

𝐿0

Shear Modulus, 𝑹

𝑅 =𝑆𝑑

Ξ¦π‘ π‘ƒπ‘Ž

Pressure in fluid

𝐹 βˆ’πΉ

𝐿0 βˆ†πΏ

𝐴

𝐹

βˆ’πΉ

𝐿0

βˆ†π‘₯ 𝐴

𝐹

π‘‰π‘–π‘›π‘–π‘‘π‘–π‘Žπ‘™

π‘‰π‘“π‘–π‘›π‘Žπ‘™

Page 3: 7). mechanical waves (finished)

Hydrostatic pressure, 𝑷

𝑃 =𝐹

π΄π‘ƒπ‘Ž

***equivalent to stress Volume Strain, πœ±π’”

Φ𝑉 =𝑉𝑓 βˆ’ 𝑉𝑖

𝑉𝑖=

βˆ†π‘‰

𝑉𝑖

Bulk Modulus, 𝑩

𝐡 = βˆ’βˆ†π‘ƒ

Ξ¦π‘‰π‘ƒπ‘Ž

***πΆπ‘œπ‘šπ‘π‘Ÿπ‘’π‘ π‘ π‘–π‘π‘–π‘™π‘–π‘‘π‘¦ =1

𝐡

Stress-Strain Curve Strain can reflect the force applied 𝐴 β†’ 𝐡; linear variation, elastic behavior ***The gradient = Young’s Modulus 𝐢 β†’ 𝐷; Plastic behavior 𝐡 = π‘ƒπ‘Ÿπ‘œπ‘π‘œπ‘Ÿπ‘‘π‘–π‘œπ‘›π‘Žπ‘™ π‘™π‘–π‘šπ‘–π‘‘ 𝐢 = πΈπ‘™π‘Žπ‘ π‘‘π‘–π‘ π‘™π‘–π‘šπ‘–π‘‘ 𝐷 = πΉπ‘Ÿπ‘Žπ‘π‘‘π‘’π‘Ÿπ‘’ π‘π‘œπ‘–π‘›π‘‘

π‘†π‘‘π‘Ÿπ‘’π‘ π‘ 

π‘†π‘‘π‘Ÿπ‘Žπ‘–π‘› 𝐴

𝐡

𝐢 𝐷

Equation of mechanical waves

𝑦 = 𝑓 π‘₯ = π‘₯2 For moving wave,

𝑦 = 𝑓 π‘₯ Β± 𝑠 = 𝑓 π‘₯ Β± 𝑣𝑑 However, the shape of wave is Sinusoidal or Simple harmonic wave, and not parabola

∴ 𝑦 = 𝑓 π‘₯ = 𝐴 𝑠𝑖𝑛 π‘˜π‘₯ For moving wave,

𝑦 = 𝑓 π‘₯ = 𝐴 𝑠𝑖𝑛 π‘˜(π‘₯ Β± 𝑣𝑑) For wave moving to the right,

𝑦 = 𝑓 π‘₯ = 𝐴 𝑠𝑖𝑛 π‘˜(π‘₯ βˆ’ 𝑣𝑑) For wave moving to the left,

𝑦 = 𝑓 π‘₯ = 𝐴 sin π‘˜(π‘₯ + 𝑣𝑑)

𝑦 = π‘‘π‘–π‘ π‘π‘™π‘Žπ‘π‘’π‘šπ‘’π‘›π‘‘ π‘œπ‘“ π‘Ž π‘π‘Žπ‘Ÿπ‘‘π‘–π‘π‘™π‘’π‘  𝐴 = π‘Žπ‘šπ‘π‘™π‘–π‘‘π‘’π‘‘π‘’

π‘˜ = π‘Žπ‘›π‘”π‘’π‘™π‘Žπ‘Ÿ π‘€π‘Žπ‘£π‘’ π‘›π‘’π‘šπ‘π‘’π‘Ÿ

Ξ» = π‘€π‘Žπ‘£π‘’π‘™π‘’π‘›π‘”β„Žπ‘‘

𝑓 π‘₯ = π‘₯2

𝑓 π‘₯ = (π‘₯ βˆ’ 𝑣𝑑)2 𝑓 π‘₯ = (π‘₯ + 𝑣𝑑)2

π‘₯

𝑦

𝑦(π‘₯, 𝑑) = 𝐴 𝑠𝑖𝑛 π‘˜(π‘₯ Β± 𝑣𝑑)

π‘˜ =2πœ‹

Ξ»=

πœ”

𝑣

Page 4: 7). mechanical waves (finished)

𝑦(π‘₯, 𝑑) = 𝐴 𝑠𝑖𝑛 π‘˜(π‘₯ Β± 𝑣𝑑) Suppose the wave moves to the right. At 𝑑 = 0, 𝑑0 The position of a particle is π‘₯0

∴ 𝑦(π‘₯0, 𝑑0) = 𝐴 𝑠𝑖𝑛 π‘˜(π‘₯0 βˆ’ 𝑣𝑑0) The other position of the adjacent particle that is in phase is π‘₯0 + Ξ» ∴ 𝑦 π‘₯0 + πœ†, 𝑑0 = 𝐴 𝑠𝑖𝑛 π‘˜ π‘₯0 + πœ† βˆ’ 𝑣𝑑0 However, the points which are in phase have the same displacement (𝑦)

∴ 𝑦 π‘₯0, 𝑑0 = 𝑦 π‘₯0 + Ξ», 𝑑0

𝐴 𝑠𝑖𝑛 π‘˜(π‘₯0 βˆ’ 𝑣𝑑0) = 𝐴 𝑠𝑖𝑛 π‘˜ π‘₯0 + πœ† βˆ’ 𝑣𝑑0 𝑠𝑖𝑛(π‘˜π‘₯0 βˆ’ π‘˜π‘£π‘‘0) = 𝑠𝑖𝑛 π‘˜π‘₯0 + π’Œπ€ βˆ’ π‘˜π‘£π‘‘0

∴ π‘˜πœ† = 0 π‘œπ‘Ÿ π‘˜πœ† = 2πœ‹

Since, πœ† =𝑣

𝑓

π‘˜π‘£ = 2πœ‹π‘“ = πœ” Summary

𝑦(π‘₯, 𝑑) = 𝐴 𝑠𝑖𝑛 π‘˜(π‘₯ Β± 𝑣𝑑)

π‘˜ =2πœ‹

Ξ»=

πœ”

𝑣

𝑣 =𝑓

Ξ»

πœ” = 2π‘“πœ‹ =2πœ‹

𝑇

π‘˜ =πœ”

𝑣

In reality, at 𝑑0, 𝑦 may not equation to 0 Thus, the general equation is,

𝑦(π‘₯, 𝑑) = 𝐴 𝑠𝑖𝑛(π‘˜π‘₯ Β± πœ”π‘‘ + πœ™) πœ™ 𝑖𝑠 π‘Ž π‘β„Žπ‘Žπ‘ π‘’ π‘ β„Žπ‘–π‘“π‘‘

***All angles are in radian.

π·π‘–π‘ π‘π‘™π‘Žπ‘π‘’π‘šπ‘’π‘›π‘‘ = 𝑦(π‘₯, 𝑑)

π‘‰π‘’π‘™π‘œπ‘π‘–π‘‘π‘¦

π΄π‘π‘π‘’π‘™π‘’π‘Ÿπ‘Žπ‘‘π‘–π‘œπ‘› Wave equation

πœ•2𝑦

πœ•π‘₯2= βˆ’π‘˜2 𝐴 𝑠𝑖𝑛 π‘˜π‘₯ βˆ’ πœ”π‘‘ = βˆ’π‘˜2𝑦

πœ•2𝑦

πœ•π‘‘2= βˆ’πœ”2 𝐴 𝑠𝑖𝑛 π‘˜π‘₯ βˆ’ πœ”π‘‘ = βˆ’πœ”2𝑦

∴

πœ•2π‘¦πœ•π‘₯2

πœ•2π‘¦πœ•π‘‘2

=πœ”2

π‘˜2= 𝑣2

βˆ΄πœ•2𝑦

πœ•π‘₯2=

1

𝑣2

πœ•2𝑦

πœ•π‘‘2

***Motion equation which can be arranged in this form is a sinusoidal wave.

𝑦(π‘₯, 𝑑) = 𝐴 𝑠𝑖𝑛(π‘˜π‘₯ Β± πœ”π‘‘)

𝑒(π‘₯0, 𝑑0) =πœ•π‘¦

πœ•π‘‘ π‘₯=π‘₯0,𝑑=𝑑0

π‘Ž π‘₯0, 𝑑0 =πœ•π‘’

πœ•π‘‘ π‘₯=π‘₯0,𝑑=𝑑0

=πœ•2𝑦

πœ•π‘‘2 π‘₯=π‘₯0,𝑑=𝑑0

Page 5: 7). mechanical waves (finished)

Interference Constructive interference Destructive inference

Standing Wave Suppose there are 2 identical waves , one moves to the left and the other move to the right, combine together. Wave1;

𝑦1(π‘₯, 𝑑) = 𝐴 𝑠𝑖𝑛(π‘˜π‘₯ + πœ”π‘‘) Wave2;

𝑦2(π‘₯, 𝑑) = 𝐴 𝑠𝑖𝑛(π‘˜π‘₯ βˆ’ πœ”π‘‘)

∴ 𝑦 = 𝑦1 + 𝑦1 = 𝐴 𝑠𝑖𝑛(π‘˜π‘₯ + πœ”π‘‘) + 𝐴 𝑠𝑖𝑛(π‘˜π‘₯ βˆ’ πœ”π‘‘)

= 2𝐴 𝑠𝑖𝑛 π‘˜π‘₯ π‘π‘œπ‘  πœ”π‘‘ Thus, the new amplitude is 2𝐴 𝑠𝑖𝑛 π‘˜π‘₯. When 𝑠𝑖𝑛 π‘˜π‘₯ = Β±1, Anti-node When 𝑠𝑖𝑛 π‘˜π‘₯ = 0, Node When 𝑠𝑖𝑛 π‘˜π‘₯ = Β±1, Anti-node

π΅π‘Žπ‘ π‘–π‘ π‘Žπ‘›π‘”π‘™π‘’ =πœ‹

2

∴ π‘˜π‘₯ =πœ‹

2,3πœ‹

2,5πœ‹

2, …

Since π‘˜ =πœ”

𝑣=

2πœ‹π‘“

𝑓λ=

2πœ‹

Ξ»,

2πœ‹

Ξ»π‘₯ =

πœ‹

2,3πœ‹

2,5πœ‹

2, …

π‘₯ =Ξ»

4,3Ξ»

4,5Ξ»

4, …

When 𝑠𝑖𝑛 π‘˜π‘₯ = 0, Node

π΅π‘Žπ‘ π‘–π‘ π‘Žπ‘›π‘”π‘™π‘’ = 0 ∴ π‘˜π‘₯ = 0, πœ‹, 3πœ‹, …

π‘₯ = 0,Ξ»

2, Ξ»,

3Ξ»

2, …

𝑦(π‘₯, 𝑑) = 2𝐴 𝑠𝑖𝑛 π‘˜π‘₯ π‘π‘œπ‘  πœ”π‘‘

Anti-node

π‘₯ =𝑛λ

4; 𝑛 = 1, 3, 5,…

Page 6: 7). mechanical waves (finished)

Fixed end Free end

Reflected waves

changedπœ™ by πœ‹

unchanged πœ™

At the boundary

Node Anti-node

Refractive index, 𝑛

low high high low

Speed high low low high

Reflection of wave 1. Reflection from a fixed/hard boundary 2. Reflection from a free/soft boundary

Anti-node

π‘₯ =𝑛λ

4; 𝑛 = 1, 3, 5, …

Node

π‘₯ =𝑛λ

2; 𝑛 = 0, 1, 2,…

π‘Žπ‘› 𝑖𝑛𝑐𝑖𝑑𝑒𝑛𝑑 π‘€π‘Žπ‘£π‘’

π‘Ž π‘Ÿπ‘’π‘‘π‘™π‘’π‘π‘‘π‘’π‘‘ π‘€π‘Žπ‘£π‘’

π‘Žπ‘› 𝑖𝑛𝑐𝑖𝑑𝑒𝑛𝑑 π‘€π‘Žπ‘£π‘’

π‘Ž π‘Ÿπ‘’π‘‘π‘™π‘’π‘π‘‘π‘’π‘‘ π‘€π‘Žπ‘£π‘’

***a reflected wave is identical to the incident wave except moving in an opposite direction, and a phase shift may change. Thus, the interference of incident waves and reflected waves may result in standing waves.

String The fundamental tone

Ξ»1 = 2𝑙

𝑓1 =1

2

𝑣

𝑙

𝑓1 = π‘“π‘’π‘›π‘‘π‘Žπ‘šπ‘’π‘›π‘‘π‘Žπ‘™ π‘“π‘Ÿπ‘’π‘žπ‘’π‘’π‘›π‘π‘¦ ***the fundamental frequency is the minimum frequency required to form standing waves. ***the 1st harmonic Harmonic; how many time is the frequency greater than the fundamental frequency, 𝑓1.

𝑁 𝐴

𝐴 𝐴

𝑁

𝐴 𝑁 𝑁

Ξ»

2

Ξ»

4

𝑁 = π‘›π‘œπ‘‘π‘’

𝐴 = π‘Žπ‘›π‘‘π‘– βˆ’ π‘›π‘œπ‘‘π‘’

𝑁

𝑁

𝑙

Page 7: 7). mechanical waves (finished)

The first overtone

Ξ»2 = 𝑙

𝑓2 =𝑣

𝑙= 2𝑓1

***the 2nd harmonic, 𝑓2

𝑓1= 2.

The second overtone

Ξ»3 =2

3𝑙

𝑓2 =3

2

𝑣

𝑙= 3𝑓1

***the 3rd harmonic, 𝑓2

𝑓1= 3.

***Natural frequencies are any frequencies required to form standing waves.

𝑙

𝑙

𝑣 =𝑇

πœ‡

Velocity of the string

𝑇 = π‘ π‘‘π‘Ÿπ‘–π‘›π‘” π‘‘π‘’π‘›π‘ π‘–π‘œπ‘› 𝑁

πœ‡ = π‘™π‘–π‘›π‘’π‘Žπ‘Ÿ 𝑑𝑒𝑛𝑠𝑖𝑑𝑦 π‘˜π‘”

π‘š

***linear density; a measure of mass per unit of length

Open ended pipe The fundamental tone

Ξ»1 = 2𝑙

𝑓1 =1

2

𝑣

𝑙

𝑓1 = π‘“π‘’π‘›π‘‘π‘Žπ‘šπ‘’π‘›π‘‘π‘Žπ‘™ π‘“π‘Ÿπ‘’π‘žπ‘’π‘’π‘›π‘π‘¦ ***the 1st harmonic

The first overtone

Ξ»2 = 𝑙

𝑓2 =𝑣

𝑙= 2𝑓1

***the 2nd harmonic, 𝑓2

𝑓1= 2.

𝑙

𝑙

Page 8: 7). mechanical waves (finished)

The second overtone

Ξ»3 =2

3𝑙

𝑓2 =3

2

𝑣

𝑙= 3𝑓1

***the 3rd harmonic, 𝑓2

𝑓1= 3.

Close ended pipe The fundamental tone

Ξ»1 = 4𝑙

𝑓1 =1

4

𝑣

𝑙

𝑓1 = π‘“π‘’π‘›π‘‘π‘Žπ‘šπ‘’π‘›π‘‘π‘Žπ‘™ π‘“π‘Ÿπ‘’π‘žπ‘’π‘’π‘›π‘π‘¦ ***the 1st harmonic

The first overtone

Ξ»2 =4

3𝑙

𝑓2 =3

4

𝑣

𝑙= 3𝑓1

***the 3rd harmonic, 𝑓2

𝑓1=3.

The second overtone

Ξ»3 =4

5𝑙

𝑓2 =5

4

𝑣

𝑙= 5𝑓1

***the 5th harmonic, 𝑓2

𝑓1= 5.

***The harmonics of close ended pipe are only odd numbers. Velocity of wave inside the pipe

𝑙

𝑙

𝑙

𝑙

𝑣 =𝐡

𝜌

Page 9: 7). mechanical waves (finished)

Resonance ; the tendency of a system to oscillate at a greater amplitude at some frequencies (natural frequencies) than at others. All system has its own frequency. If a force is applied with the same frequency of the system, the damage is largest as it can reach the maximum amplitude.

Modulation and Beat The interference of 2 waves with the same amplitude and direction, but different π‘˜ and πœ” Wave1;

𝑦1(π‘₯, 𝑑) = 𝐴 𝑠𝑖𝑛(π‘˜1π‘₯ βˆ’ πœ”1𝑑) Wave2;

𝑦2(π‘₯, 𝑑) = 𝐴 𝑠𝑖𝑛(π‘˜2π‘₯ βˆ’ πœ”2𝑑)

𝑦 = 𝑦1 + 𝑦2 𝑦= 2𝐡 π‘π‘œπ‘ (π‘˜π‘šπ‘œπ‘‘π‘₯ βˆ’ πœ”π‘šπ‘œπ‘‘π‘‘) 𝑠𝑖𝑛(π‘˜π‘Žπ‘£π‘₯ βˆ’ πœ”π‘Žπ‘£π‘‘)

When, π‘˜π‘šπ‘œπ‘‘ =π‘˜2βˆ’π‘˜1

2,π‘˜π‘Žπ‘£ =

π‘˜2+π‘˜1

2

And, πœ”π‘šπ‘œπ‘‘ =πœ”2βˆ’πœ”1

2,πœ”π‘Žπ‘£ =

πœ”2+πœ”1

2

π‘“π‘π‘’π‘Žπ‘‘ = 𝑓1 βˆ’ 𝑓2

π‘“π‘šπ‘œπ‘‘ =πœ”π‘šπ‘œπ‘‘

2πœ‹=

1

2𝑓2 βˆ’ 𝑓1

Since, 𝑦= 2𝐡 π‘π‘œπ‘ (π‘˜π‘šπ‘œπ‘‘π‘₯ βˆ’ πœ”π‘šπ‘œπ‘‘π‘‘) 𝑠𝑖𝑛(π‘˜π‘Žπ‘£π‘₯ βˆ’ πœ”π‘Žπ‘£π‘‘)

can be expressed in the form of 𝑦 = 𝐴 𝑠𝑖𝑛 π‘˜π‘₯ βˆ’ πœ”π‘‘

When 𝐴 = 2𝐡 π‘π‘œπ‘ (π‘˜π‘šπ‘œπ‘‘π‘₯ βˆ’ πœ”π‘šπ‘œπ‘‘π‘‘)

∴ We define, π΄π‘šπ‘œπ‘‘ = 2𝐡 π‘π‘œπ‘ (π‘˜π‘šπ‘œπ‘‘π‘₯ βˆ’ πœ”π‘šπ‘œπ‘‘π‘‘)

***The amplitude of the combined wave is a sinusoidal function also. The average velocity of the combined

wave,π‘£π‘β„Žπ‘Žπ‘ π‘’ = π‘£π‘Žπ‘£ =πœ”π‘Žπ‘£

π‘˜π‘Žπ‘£

π‘¦π‘‘π‘œπ‘‘π‘Žπ‘™propagates with π‘“π‘Žπ‘£, π‘£π‘Žπ‘£ The Envelope propagates with π‘“π‘šπ‘œπ‘‘ , 𝑣𝑔

𝑣𝑔 =πœ”π‘šπ‘œπ‘‘

π‘˜π‘šπ‘œπ‘‘=

πœ”2 βˆ’ πœ”1

π‘˜2 βˆ’ π‘˜1=

π‘‘πœ”

π‘‘π‘˜

π‘£π‘Žπ‘£ =πœ”π‘Žπ‘£

π‘˜π‘Žπ‘£

π‘¦π‘‘π‘œπ‘‘π‘Žπ‘™

πΈπ‘›π‘£π‘’π‘™π‘œπ‘π‘’ (π΄π‘šπ‘œπ‘‘)

𝑣𝑔 =πœ”2 βˆ’ πœ”1

π‘˜2 βˆ’ π‘˜1=

π‘‘πœ”

π‘‘π‘˜

Page 10: 7). mechanical waves (finished)

String

𝑣 = π‘£π‘’π‘™π‘œπ‘ π‘–π‘‘π‘¦ 𝑇 = π‘‘π‘’π‘›π‘ π‘–π‘œπ‘› 𝑁

πœ‡ = π‘™π‘–π‘›π‘’π‘Žπ‘Ÿ 𝑑𝑒𝑛𝑠𝑖𝑑𝑦 π‘˜π‘”

π‘š

The rate of energy transfer, 𝑱

𝒔

πΈπ‘‘π‘œπ‘‘π‘Žπ‘™ = 𝑃𝐸 + 𝐾𝐸

For Kinetic Energy,

𝐾𝐸 =1

2π‘šπ‘’2

𝑑𝐾𝐸 =1

2π‘‘π‘š 𝑒2

Since, 𝑒 =πœ•π‘¦

πœ•π‘‘

𝑒 =πœ•

πœ•π‘‘π΄ 𝑠𝑖𝑛(π‘˜π‘₯ βˆ’ πœ”π‘‘)

𝑒 = π΄πœ•

πœ•π‘‘π‘ π‘–π‘›(π‘˜π‘₯ βˆ’ πœ”π‘‘)

𝑒 = βˆ’πœ”π΄ π‘π‘œπ‘ (π‘˜π‘₯ βˆ’ πœ”π‘‘) And

πœ‡ =π‘‘π‘š

𝑑π‘₯ π‘œπ‘Ÿ π‘‘π‘š = πœ‡π‘‘π‘₯

∴ 𝑑𝐾𝐸 =1

2πœ‡π‘‘π‘₯ βˆ’πœ”π΄ π‘π‘œπ‘ (π‘˜π‘₯ βˆ’ πœ”π‘‘) 2

𝑑𝐾𝐸

𝑑𝑑=

1

2πœ‡

𝑑π‘₯

𝑑𝑑 βˆ’πœ”π΄ π‘π‘œπ‘ (π‘˜π‘₯ βˆ’ πœ”π‘‘) 2

𝑑𝐾𝐸

𝑑𝑑=

1

2πœ‡π‘£πœ”2𝐴2 π‘π‘œπ‘ 2(π‘˜π‘₯ βˆ’ πœ”π‘‘)

𝑑𝐾𝐸

𝑑𝑑=

1

2πœ‡π‘£πœ”2𝐴2 π‘π‘œπ‘ 2(π‘˜π‘₯ βˆ’ πœ”π‘‘)

𝑑𝐾𝐸

π‘‘π‘‘π‘Žπ‘£

=1

2πœ‡π‘£πœ”2𝐴2

1

𝑇 π‘π‘œπ‘ 2(π‘˜π‘₯ βˆ’ πœ”π‘‘)

𝑇

0

𝑑𝑑

𝑑𝐾𝐸

π‘‘π‘‘π‘Žπ‘£

=1

2πœ‡π‘£πœ”2𝐴2

1

2

𝑑𝐾𝐸

π‘‘π‘‘π‘Žπ‘£

=1

4πœ‡π‘£πœ”2𝐴2

From Equipartition Theorem,

𝑑𝐾𝐸

π‘‘π‘‘π‘Žπ‘£

=𝑑𝑃𝐸

π‘‘π‘‘π‘Žπ‘£

βˆ΄π‘‘πΈ

π‘‘π‘‘π‘Žπ‘£

=𝑑𝐾𝐸

π‘‘π‘‘π‘Žπ‘£

+𝑑𝑃𝐸

π‘‘π‘‘π‘Žπ‘£

𝑑𝐸

π‘‘π‘‘π‘Žπ‘£

=1

2πœ‡π‘£πœ”2𝐴2

Wave velocity in a fluid

𝐡 = π΅π‘’π‘™π‘˜ π‘€π‘œπ‘‘π‘’π‘™π‘’π‘  𝜌 = 𝑑𝑒𝑛𝑠𝑖𝑑𝑦 π‘œπ‘“ π‘‘β„Žπ‘’ 𝑓𝑙𝑒𝑖𝑑

𝑣 =𝑇

πœ‡

𝑑𝐸

π‘‘π‘‘π‘Žπ‘£

=1

2πœ‡π‘£πœ”2π΄π‘šπ‘Žπ‘₯

2

𝑣 =𝐡

𝜌

Page 11: 7). mechanical waves (finished)

Longitudinal Waves We have another function to represent longitudinal waves, using Pressure 𝑃 π‘₯, 𝑑 At (a), the air particles are at equilibrium point with the cross-sectional diameter (of the column of the air ) of 𝐷. When the longitudinal wave is produced in (b). Air particles move with different rate, causing the change in pressure.

Since, Bulk Modulus, 𝐡 = βˆ’βˆ†π‘ƒ

Φ𝑉

And Φ𝑉 =βˆ†π‘‰

𝑉𝑖

𝐡 = βˆ’βˆ†π‘ƒ

βˆ†π‘‰/𝑉𝑖

(a).

(b).

𝑦 𝑦 + βˆ†π‘¦

𝐷

βˆ†π‘₯

𝑝0

𝑝0 + 𝑝

𝐡 = βˆ’βˆ†π‘ƒ

βˆ†π‘‰/𝑉𝑖

𝐡 = βˆ’π‘ƒπ‘“ βˆ’ 𝑃𝑖

𝑉𝑓 βˆ’ 𝑉𝑖 /𝑉𝑖

𝐡 = βˆ’π‘0 + 𝑝 βˆ’ 𝑝0

βˆ†π‘₯ + βˆ†π‘¦ 𝐷 βˆ’ βˆ†π‘₯𝐷 /βˆ†π‘₯𝐷

𝐡 = βˆ’π‘

βˆ†π‘¦/βˆ†π‘₯

𝑝 = βˆ’π΅βˆ†π‘¦

βˆ†π‘₯

Since, y π‘₯, 𝑑 = 𝐴 𝑠𝑖𝑛(π‘˜π‘₯ βˆ’ πœ”π‘‘)

∴ 𝑝 = βˆ’π΅πœ• 𝐴 𝑠𝑖𝑛 π‘˜π‘₯ βˆ’ πœ”π‘‘

πœ•π‘₯

𝑝 = βˆ’π΅π΄π‘˜ π‘π‘œπ‘  π‘˜π‘₯ βˆ’ πœ”π‘‘ 𝑝 = βˆ’π‘ƒ π‘π‘œπ‘  π‘˜π‘₯ βˆ’ πœ”π‘‘

We define,

𝑷𝒓𝒆𝒔𝒔𝒖𝒓𝒆 π‘¨π’Žπ’‘π’π’Šπ’•π’–π’…π’†, 𝑃 = π΅π΄π‘˜

Since, 𝑣 =𝐡

𝜌, 𝐡 = πœŒπ‘£2

∴ 𝑃 = πœŒπ‘£2π΄π‘˜

𝑝 = βˆ’π΅πœ•π‘¦

πœ•π‘₯

𝑦(π‘₯, 𝑑) 𝑝 π‘₯, 𝑑 βˆ’π΅

πœ•

πœ•π‘₯

𝑃 = π΅π΄π‘˜ = πœŒπ‘£2π΄π‘˜

Page 12: 7). mechanical waves (finished)

Since, When y π‘₯, 𝑑 = 𝐴 𝑠𝑖𝑛(π‘˜π‘₯ βˆ’ πœ”π‘‘),

𝑝 = βˆ’π‘ƒ π‘π‘œπ‘  π‘˜π‘₯ βˆ’ πœ”π‘‘ We can express,

𝑝 = 𝑃 𝑠𝑖𝑛 π‘˜π‘₯ βˆ’ πœ”π‘‘ βˆ’πœ‹

2

Therefore, the shapes of the 2 graphs are the same.

However, the π‘β„Žπ‘Žπ‘ π‘’ π‘ β„Žπ‘–π‘“π‘‘, πœ™ =πœ‹

2 π‘œπ‘Ÿ 90Β°

The rate of energy transfer or the longitudinal wave

πΈπ‘‘π‘œπ‘‘π‘Žπ‘™ = 𝑃𝐸 + 𝐾𝐸 For Kinetic Energy,

𝐾𝐸 =1

2π‘šπ‘’2

𝑑𝐾𝐸 =1

2π‘‘π‘š 𝑒2

Since, 𝑒 =πœ•π‘¦

πœ•π‘‘

𝑒 =πœ•

πœ•π‘‘π΄ 𝑠𝑖𝑛(π‘˜π‘₯ βˆ’ πœ”π‘‘)

𝑒 = π΄πœ•

πœ•π‘‘π‘ π‘–π‘›(π‘˜π‘₯ βˆ’ πœ”π‘‘)

𝑒 = βˆ’πœ”π΄ π‘π‘œπ‘ (π‘˜π‘₯ βˆ’ πœ”π‘‘) And

𝜌 =π‘‘π‘š

𝑑𝑉 π‘œπ‘Ÿ π‘‘π‘š = 𝜌 𝑑𝑣 = 𝜌 𝐷𝑑π‘₯

; 𝐷 = π‘π‘Ÿπ‘œπ‘ π‘  π‘ π‘’π‘π‘‘π‘–π‘œπ‘›π‘Žπ‘™ π‘Žπ‘Ÿπ‘’π‘Ž

∴ 𝑑𝐾𝐸 =1

2πœŒπ·π‘‘π‘₯ βˆ’πœ”π΄ π‘π‘œπ‘ (π‘˜π‘₯ βˆ’ πœ”π‘‘) 2

𝑑𝐾𝐸

𝑑𝑑=

1

2𝜌𝐷

𝑑π‘₯

𝑑𝑑 βˆ’πœ”π΄ π‘π‘œπ‘ (π‘˜π‘₯ βˆ’ πœ”π‘‘) 2

𝑑𝐾𝐸

𝑑𝑑=

1

2πœŒπ·π‘£πœ”2𝐴2 π‘π‘œπ‘ 2(π‘˜π‘₯ βˆ’ πœ”π‘‘)

𝑑𝐾𝐸

π‘‘π‘‘π‘Žπ‘£

=1

2πœŒπ·π‘£πœ”2𝐴2

1

𝑇 π‘π‘œπ‘ 2(π‘˜π‘₯ βˆ’ πœ”π‘‘)

𝑇

0

𝑑𝑑

𝑑𝐾𝐸

π‘‘π‘‘π‘Žπ‘£

=1

2πœŒπ·π‘£πœ”2𝐴2

1

2

𝑑𝐾𝐸

π‘‘π‘‘π‘Žπ‘£

=1

4πœŒπ·π‘£πœ”2𝐴2

From Equipartition Theorem,

𝑑𝐾𝐸

π‘‘π‘‘π‘Žπ‘£

=𝑑𝑃𝐸

π‘‘π‘‘π‘Žπ‘£

βˆ΄π‘‘πΈ

π‘‘π‘‘π‘Žπ‘£

=𝑑𝐾𝐸

π‘‘π‘‘π‘Žπ‘£

+𝑑𝑃𝐸

π‘‘π‘‘π‘Žπ‘£

𝑑𝐸

π‘‘π‘‘π‘Žπ‘£

=1

2πœŒπ·π‘£πœ”2𝐴2

𝑑𝐸

π‘‘π‘‘π‘Žπ‘£

=1

2πœŒπ·π‘£πœ”2π΄π‘šπ‘Žπ‘₯

2