80
IB DIPLOMA PROGRAMME THE IB LEARNER PROFILE: - Inquires : They develop their natural curiosity. They acquire the skills necessary to conduct inquiry and research and show independece in learning.They actively enjoy learning and this love of learning will be sustained troughout their lives. - Knowledgeable : They explore concepts, ideas and issues that have local and global significance. In so doing, they acquire in depth knowledge and develop understanding across a broad and balanced range dsciplines. - Thinkers : They excercise initiative in applying thinking skills critically and creatively to recognize and approach complex problems, and make reasoned,ethical decisions.

5. Ecology and evolution

Embed Size (px)

DESCRIPTION

Todo el topic 5. Diapositivas de Miss Clarita

Citation preview

Page 1: 5. Ecology and evolution

IB DIPLOMA PROGRAMMETHE IB LEARNER PROFILE:-Inquires: They develop their natural curiosity. They acquire the skills necessary to conduct inquiry and research and show independece in learning.They actively enjoy learning and this love of learning will be sustained troughout their lives.-Knowledgeable: They explore concepts, ideas and issues that have local and global significance. In so doing, they acquire in depth knowledge and develop understanding across a broad and balanced range dsciplines.-Thinkers: They excercise initiative in applying thinking skills critically and creatively to recognize and approach complex problems, and make reasoned,ethical decisions.

Page 2: 5. Ecology and evolution

THE IB LEARNER PROFILE:

Communicators: They understand and express ideas and information confidently and creatively in more than one language and in a variety of modes of communication. They work effectively and willingly in collaboration with others

-Principled: They act with integrity and honesty, with a strong sense of fairness, justice, and respect for the dignity of the individual, groups, and communities.They take responsibility for their own actions and the consequences that accompany them.

-Open minded: They understand and appreciate their own cultures and personal histories, and are open to the perspectives, values, and traditions of other individuals and communities. They are accustomed to seeking and evaluating a range of points of view, and are wiling to grow from the experience.

-Caring: They show empathy, compassion, and respect towards the needs and feelings of others. They have a personal commitment to service, and act to make positive difference to the lives of others and to the environment.

Page 3: 5. Ecology and evolution

THE IB LEARNER PROFILE:

- Risk takers: They approach unfamiliar situations and uncertainty with courage and forethought, and have the independence of spirit to explore new roles, ideas, and strategies. They are brave and articulate in defending their beliefs.

- Balanced: They understand the importance of intellectual, physical, and emotional balance to achieve personal well-being for themselves and others.

- Reflective: They give thoughtful consideration to their own learning and experience. They are able to assess and understand their strenghts and limitations in order to support their learning and personal development.

Page 4: 5. Ecology and evolution

TOPIC 2: ECOLOGY AND EVOLUTION

2.1.- ECOLOGY: COMMUNITIES AND

ECOSYSTEMS

Page 5: 5. Ecology and evolution

2.1.- COMMUNITIES AND ECOSYSTEMS

WORD DEFINITION

Habitat: The environment in which a species normally lives, or the location of a living organism.

Species: A group of organisms that can be interbreed and produce fertile offspring.

Population: A groups of organisms of the same species who live in the same area at the same time.

Community: A group of populations living and interacting with each other in an area.

Ecosystem: A community and its abiotic environment.

Ecology: The study of relationships between living organisms and between organisms and their environment.

Page 6: 5. Ecology and evolution

ECOLOGY:• Living organisms do not live in isolation. If we study

organisms in their natural habitat, we invariably find that they live with other members of their species and with populations of other species, in what ecologists refer to as a community.

• Living organisms depend on their environment, whether it consists of air, water, soil or rock. There are many types of relationships between organisms and their environment.

• The community of organisms in an area and their non-living environment can be considered to be a single higly complex interacting system, known as ecosystem

Page 7: 5. Ecology and evolution

2.1.1.- Food SourcesWORD DEFINITION

Autotroph: An organism that synthesizes its organic molecules from simple inorganic substances

Heterotroph: An organisms that obtains organic molecules from other organisms

Consumer: An organism that ingests organic matter that is living or recently killed

Detritivore An organism that ingests non-living organic matter

Saprotroph: An organism that lives on or in non-living organic matter, secreting digestive enzymes into it and absorbing the products of digestion

Page 8: 5. Ecology and evolution

2.1.1.- Food SourcesAll organisms need a supply of organic molecules, such as glucose and aminoacids.

They are needed for growth and reproduction. Methods of obtaining organic molecules:1.- Some organisms make their own organic molecules from carbon dioxide and other

simple inorganic substances: Autotroph organisms (self feeding)2.- Some organisms obtain their organic molecules from other organisms and of

digesting it so that it can be absorbed: 2.1.: By ingesting organisms and digesting them inside the gut, these organisms are

called consumers 2.2.: By ingesting dead organic matter derived from living organisms and by

digesting it inside the gut, these organisms are called detritivores 2.3.: By secreting digestive enzymes into dead organic matter derived from living

organisms and by absorbing the products of externl digestion, these organisms are called saprotrophs

Page 9: 5. Ecology and evolution

2.1.2.- Food chains• A food chain is a sequence of organisms, each of which feeds on the

previous one.• There are usually between 2 and 5 organisms in a food chain• Producers are autotrophic. They are usually photosynthetic organisms,

such as terrestrial green plants and phytoplankton. As theydo not obtain food from other organisms, producers are always the first organisms in a food chain.

• The subsequent organisms are consumers. Primary consumers feed on producers, secondary consumers feed on primary consumers, tertiary consumers feed on secondary consumers and so on.

• Consumers obtain energy from the organic matter of the organisms on which they feed. The arrows in a food chain therefore indicate the diretion of energy flow

Page 10: 5. Ecology and evolution
Page 11: 5. Ecology and evolution
Page 12: 5. Ecology and evolution

2.1.3.- Trophic levels

• The categories of organism, producer, primary consumer, secondary consumer and so on, are called TROPHIC LEVELS.

• The word trophic means “nourishment” in old Greek.• Trophic levels: - Producer - Primary consumer - Secondary consumer - Terciary consumer …..

Page 13: 5. Ecology and evolution

Trophic levels- FOOD WEBS

Page 14: 5. Ecology and evolution

2.1.3.- Food webs

• Trophic relationships within ecological communities tend to be complex and web-like. This is because most species fed on by more than one species and most consumers feed on more than one species.

• When a food web is constructed, organisms at the same trophic level are often shown at the same level in a web. This isn’t always possible, as some organisms feed at more that one trophic level.

Page 15: 5. Ecology and evolution

Food webs

Page 16: 5. Ecology and evolution

Alaska’s Food web

Page 17: 5. Ecology and evolution

2.1.4.- Energy flow in food chains• For most biological communities, the initial source of energy

is LIGHT captured by plants undergoing photosynthesis.• Plants convert light into chemical energy.• A portion of this energy is used by the plant in cellular

respiration and is ultimately released as waste heat to the environment.

• Energy stored in plant tissues is passed to the next trophic level, if plant matter is eaten by primary consumers.

• Also a portion of the plant’s material may become detritus, in which case stored energy can be passed on to Saprotrophs or Detrivores.

Page 18: 5. Ecology and evolution

• The energy stored in plant matter eaten by primary consumers can be used directly as a source of energy for cellular respiration. This energy can also be released as waste heat, from the primary consumers.

• The alternative is that organic matter containing stored energy in the primary consumer can be eaten by a secondary consumer.

• In addition, undigested plant matter released as feces by the primary consumer contains available energy for saprotrophs and detrivores to use.

Page 19: 5. Ecology and evolution

• Energy is passed from consumer to consumer in a food chain, but with every transformation energy is lost from the community in heat generated by respiration.

• One of the laws of physics states that energy transformations are never 100% efficient. Further, when an animal eats, a portion of its food is never absorebed and is egested as feces.

• Some material such as bones or air, may not be eaten. That energy can be used by decomposers.

Page 20: 5. Ecology and evolution

2.1.5.- Pyramids of energy

• The amount of energy converted to new biomass during a given time period by each trophic level, in an ecological community, can be represented by a pyramid of energy.

Page 21: 5. Ecology and evolution

• The width of the bars is proportinal to the energy in that trophic level.

• There’s always loss of energy trough the food chain.• To be more accurate, the boxes should be drawn to have

relative widths that match the relative energy content at each trophic level.

• Pyramids of energy show how much energy is lost between trophic levels. Typically only between 5% and 20% of the energy in one trophic level is passed on to the next.

• As a result there is less and less energy available to each succesive trophic level. Eventually there is too little energy to sustain a population, that is why food chains are limited in lenght.

Page 22: 5. Ecology and evolution

TOPIC 2: ECOLOGY AND EVOLUTION

2.2.- ECOLOGY: POPULATIONS

Page 23: 5. Ecology and evolution

2.2. POPULATIONS

• 2.2.1. POPULATION GROWTH:

• Population studies, often focus on variables such as population size, density, growth and the interaction of the population with the biotic and abiotic factors of the habitat it occupies

Page 24: 5. Ecology and evolution

Sigmoid S-Shaped growth curve

Page 25: 5. Ecology and evolution

Sigmoid S-Shaped growth curve

• The figure, shows the population growth of a group of organisms, kept in controlled conditions, including a constant supply of food. The figure illustrates a pattern called the Sigmoid or S-Shaped, growth curve.

• The S-curve is representative of what happens when a population colonizes a new habitat. With limited environmental resistance, a population will growth exponentially. At this stage, birth rate (natality) is higher than death rate (mortality).

Page 26: 5. Ecology and evolution

• As population density increases, various density- dependent factors begin to limit population growth.

• Examples of such limiting factors include: 1.- Competition for resources 2.- toxic products of metabolism 3.- Increase in predation 4.- Increase in the incidence of disease. The initial result is that natality slows in relation

to mortality. This is the transition phase of the curve.

Page 27: 5. Ecology and evolution

• The maximum size of a population that and environment can support is its carrying capacity *

• In the sigmoid growth pattern, when a population reaches its carrying capacity, the population will stop growing and natality and mortality will be equal. This is referred to as the plateau phase on the S-curve.

* The carrying capacity of a biological species in an environment, is the population size of the species that the environment can sustain indefinitely, given the food, habitat, water and other necessities available in the environment.

Page 28: 5. Ecology and evolution

• Some populations can overshoot the carrying capacity of the environment. The result is a “boom-and-bust” pattern.

DATA BASES IN ECOLOGICAL RESEARCH:Advances in technology have meant that the

creation and publication of data is increasingly exceeding the rate at which it can be analysed. Hypothesis testing is increasingly possible by extracting data from a database rather than the researcher directly collectong the data themselves.

Page 29: 5. Ecology and evolution

TOPIC 2: ECOLOGY AND EVOLUTION

2.3.- ECOLOGY: THE CARBON CYCLE

AND GREENHOUSE EFFECT

Page 30: 5. Ecology and evolution

• Unlike energy, which flows through an ecosystem and must be constantly replenished, nutrients are recycled within ecosystems. Nutrients are chemicaql elements such as carbon, nitrogen and phosphorus. The basic pattern of nutrient cycles involves three stages:

1.- There is an inorganic reserve of each element in the ecosystem, for example carbon dioxide in the atmosphere. Autotrophs abosrb the element from this reserve and convert it into organic compounds, for example nitrate is converted into amino acids.

Page 31: 5. Ecology and evolution

2.- Consumers obtain the element in organic form, by feeding on autotrophs or other consumers.For example, elephants obtain amino acids, containing nitrogen, from the plants that they eat.

3.- Dead organic matter, containing the element is released when organisms excrete or egest waste material or they die. The element would remain locked up in the organic matter if it were not for the activity of saprothophs (fungi, bacteria) or detritivores. These organisms therefore, have a crucial role in recycling.

For example: saprotrophs release nitrogen in the form of ammonia, which is converted by bacteria into nitrates.

Page 32: 5. Ecology and evolution

Generalized nutrient cycle

Page 33: 5. Ecology and evolution

2.3.1.- THE CARBON CYCLE

• As life is based on carbon compounds, the carbon cycle is especially important. In marine and aquatic ecosystems, the inorganic reserve of carbon is: dissolved cabron dioxide and hydrogen carbonate, which is absorbed by producers, and by various means is released back into the water.

Page 34: 5. Ecology and evolution
Page 35: 5. Ecology and evolution

2.3.2.- THE GREENHOUSE EFFECT

• In a greenhouse, light enters and warms up the solid surfaces.The glass prevents the heat from escaping and the temperature inside the greenhouse rises. A similar sequence of events happens inside an automobile with its windows closed, when it has been parked in full sunlight. The rise in temperature is known as the greenhouse effect. It also occurs in the Earth’s atmosphere.

Page 36: 5. Ecology and evolution

• Much of the light from the sun has short wavelenghts and high energy, and it passes through the atmosphere, to the Earth’s surface.

• The warm surface of the Earth re-emits energy, but with much longer wavelenghts, and lower energy than the light from the sun.

• Most of this re-emitted energy is infrared radiation. Certain gases in the atmosphere absorb infrared radiation and re-emit it, some towards the Earth.

Page 37: 5. Ecology and evolution

• Certain gases in the atmosphere absorb infrared radiation and re-emit it, some towards the Earth. The effect is GLOBAL WARMING and makes the Earth habitable.

• Without the Greenhouse Effect it is estimated that the mean temperature at the Earth’s surface would be about -18ºC.

• The main gases that contribute to the global warming, known as greenhouse gases, are carbon dioxide, methane and oxides of nitrogen.

Page 38: 5. Ecology and evolution

2.3.3.- The enhanced greenhouse effect

There is a considerable evidence that the Earth is becoming warmer.

Page 39: 5. Ecology and evolution

• An obvious explanation for the global warming is an enhanced greenhouse effect caused by human additions of greenhouse gases to the atmosphere, mostly trough fossil fuel burning.

• Now we know that the atmospheric levels of carbon dioxide have grown since the past century; due to the increase of industralization.

• Carbon dioxide is not the only greenhouse gas and the concentrations of others, including methane and nitrogen oxides, have also been rising as a result of human activities.

Page 40: 5. Ecology and evolution

• ALMOST ALL CLIMATE SCIENTISTS AGREE THAT THESE RISES ARE NOT MERELY CORRELATED WITH GLOBAL WARMING, THEY ARE THE CAUSE OF IT.

Page 41: 5. Ecology and evolution

2.3.4. The precautionary principle

• Governments are responsable for protecting when assessing new techonolgies. This requires a balance between encouraging innovation and minimizing risk. Scientists are often asked to advise governments about risks.

BUT HOW SHOULD GOVERNMENTS ACT WHEN SCIENTISTS OFFER INCOMPLETE INFORMATION OR CONTESTED KNOWLEDGE?

Page 42: 5. Ecology and evolution

• Traditional risk analysis involves assessing the likelihood that new technologies will harm the public. This puts the burden of proof on those who are concerned about the risk. However, damage may already have been done long before evidence harm exists.

• A contrasting approach is the precautionary approach. In the late 1970s, when private landowners in Germany observed that significant tracts of forest were being killed. There was not yet scientific proof that ACID RAIN was the cause, but the government acted to regulate power-plant emissions. more strictly anyway

Page 43: 5. Ecology and evolution

Precautionary principle vs.

Anti-precautionary principle

EXAMPLE:In 1997, The European Union banned the import of products from

cattle that had been treated with bovine somatotropin (BST), a hormone that when given to cattle, increases milk yields by about 10%. The USA inmediately appealed to the World Trade Organization (WTO). They argued that there was no known example of humans being affected by BST. The WTO gave EU a year to privide evidence of harm to humans. If they could not do this, the ban would have be lifted. The WTO was applying what we might call the anti-precautionary principle: it is for society to show that something is dangerous, instead of requiring the perpetrator to show it is safe.

Page 44: 5. Ecology and evolution

Excersice: Thinking about science DRUG TESTING

• The precautionary principle argues that the action to protect must precede certainty of risk. The principle is particularly relevant when the potential consequences of the activity are catastrophic. Some drugs have had catastrophic effects when they were introduced without effective testing.

• In some jurisdictions, a relatively conservative protocol has emerged for approval of drugs so that they become available for later than in other jurisdictions. Patient advocacy groups often exert pressure for the process to be expedited. Tests and trials make drugs less risky, but the risk is never removed entirely. Urging that drugs be made available earlier is equivalent to urging that grater levels of risk be accepted.

Page 45: 5. Ecology and evolution

QUESTIONS:

• 1) Can it be argued that there is a scientific standard for acceptable levels of risk?

• 2) If there were a shortage of milk produced globally, would that make the possible risk from BST more acceptable?

• 3) If there are no effective treatments forb a disease, does that make it more acceptable to release a drug for use, before it has been subjected to all normal testing protocols?

Page 46: 5. Ecology and evolution

The precautionary principle applied to the grenhouse effect

• The UN Framework Convention on Climate Change made the case in 1992 that: Parties should take precautionary measures to anticipate, prevent or minimize the causes of climate change and mitigate its adverse affects. Where there are threats of serious or irreversible damage, lack of full scientific certainty should not be used as a reason for postponing such measures.

Page 47: 5. Ecology and evolution

• Given the dependence of current economic systems on fossil fuels, others argue that the data to support the benefit of significant reductions in carbon dioxide emissions is insufficient to justify the economic consequences. It is not certain that adverse effects on the environment would occur if no such action was taken, neither can we be certain that limiting emissions would be sufficient to slow current global warming trends.

• Those who support the precautionary principle argue that there ir enough preliminary evidence of both the likely harm of emissions continuing to increase and the benefits of limiting emissions, to promt action. Most reasonable scientist agree that the impacts of greenhouse gas emissions on climate change are significant and potentially catastrophic.

Page 48: 5. Ecology and evolution

• One politician representing the island state of Vanuata, Ambassador to the UN Robert van Lierop, puts it as follows:

For us, the precautionary principle is much more than a semantic or theoretical excercise. It is and ecological and moral imperative. We do not have the luxury of waiting for conclusive proof, as some have suggested in the past. The proof we fear will kill us.

Page 49: 5. Ecology and evolution

2.4. EVOLUTION

• The word EVOLUTION, has several different meanings.1) Biological meaning: evolution is the process by which

living organisms are formed, by gradual change, from previous organisms.

As currently understood, the process takes many generations and works at the level of a population. Individual organisms cannot evolve because the characteristics that they acquire during their lifetime cannot be inherited by the next generation.

Page 50: 5. Ecology and evolution

Charles Darwin

12 February 1809 – 19 April 1882; was an English naturalist. He established that all species of life have descended over time from common ancestry, and proposed the scientific theory that this branching pattern of evolution resulted from a process that he called natural selection

Page 51: 5. Ecology and evolution

Charles Darwin• Charles Darwin proposed a mechanism for evolution: NATURAL

SELECTION. He probably developed this theory in the late 1830s, but did not publish it for 20 years.

• Historians of science have claimed that the delay was due to Darwin being nervous about hostile reactions, but his letters and other writings do not suggest this.

• The real reasons are probably that he wanted to amass as much evidence for natural selection as he could before publishing, and also that Darwin was very busy with other work!

Page 52: 5. Ecology and evolution

• It was a letter from Alfred Wallace, suggesting a similar theory, that finally stimulated Darwin to make public his ideas.

• Darwin and Wallace presented their papers jointly to a learned society in London in July 1858, and in the following year he published his great work, THE ORIGIN OF SPECIES.

• Much of it, is concerned with evidence for evolution by natural selection: These are the main types of evidence:

1) Breeding of domesticated animals and crop plants2) Fossils3) Homologus structures4) Geographical distribution of animals and plants.

Page 53: 5. Ecology and evolution

Darwin’s caricature from Punch’s Almanack- 1882

Page 54: 5. Ecology and evolution

2.4.1.- Evidence for evolution• 1) DOMESTICATED ANIMALSHumans have deliberatly bred and used particular animal

species for thousands of years. If modern breed of livestock are compared with the wild species that they most resemble, the differences are often huge.

Consider the differences between modern egg-laying hens and the jungle fowl of Southern Asia, or between Belgian Blue cattle and aurochs of Western Asia. There are also many different breeds of sheep, cattle and other domesticated livestock, with much variation between breeds.

Page 55: 5. Ecology and evolution

• It is clear that domesticated breeds have not always existed in their current form. The only credible explanation is that the change has been achieved simply by repeadly selecting for breeding the individuals most suited to human uses. This process is called artificial selection.

• The effectiveness of artificial selection is shown by the considerable changes that have occured in domesticated animals over periods of time that are very short, in comparison to geological time. It shows that selection can cause evolution, but it does not prove that evolution of species has actually occured naturally, or that the mechanism for evolution is natural selecion.

Page 56: 5. Ecology and evolution

2) FOSSIL RECORD:

In the first half of the 19th century, the sequence in which layers or strata of rock were deposited was worked out and the geological eras were named. It became obvious that the fossils found in the various layers were different; there was a sequence of fossils. In the 20th century, reliable methods of radiosotope dating revelaed that ages os the rock strata an of the fossils in them. There has been a huge amount of research into fossils, which is the branch of science called paleontology. It has given us the strong evidence that evolution has occured.

Page 57: 5. Ecology and evolution

Fossil evidence:The sequence in which fossils appear matches

the sequence in which they would be expected to evolve:

- Bacteria and simple algae appearing first- Fungi and worms later- Vertebrates then: fish amphibians

reptiles birds mammals.

Page 58: 5. Ecology and evolution

Fossils and rock layers

Page 59: 5. Ecology and evolution

3) Homologus structures

Page 60: 5. Ecology and evolution

3) Homologus structures

Darwin pointed out in the Origin of the species that some similarities between organisms are superficial.

Similarities like those between the tail fins of whales and fishes are known as analogus structures. When we study them closely we find that these structures are very different. An evolutionary interpretation is that they have had different origins and have become similar because they perform the same or similar function. This is called CONVERGENT EVOLUTION.

Page 61: 5. Ecology and evolution

Homologus structures are the converse of this. They are structures that may look superficially different and perfomr a different function, but they have a “unity type”. These limbs, include the same bones, in the same relative positions, despite on the surface appearing completely different.

The evolutionary explanation is that they have had the same origin, from an ancestor that had a pentadactyl or 5 digit limb, and that they have become different because they perform different functions. This is called adaptive radiation.

Page 62: 5. Ecology and evolution

There are many examples of homologus structures. They do not prove that organisms have evolved or had a common ancestry and do not reveal anything about the mechanism of evolution; But they are difficult to explain without evolution.

Particulary interesting are the structures that serve no function. They are called VESTIGIAL ORGANS, and examples of thme are the beginning of teeth found in embryo baleen whales; despite adults being toothless.

Another example is the appendix in human being.These structures are easily explained by evolution as

structures that have lost their function and so are being gradually lost.

Page 63: 5. Ecology and evolution

NATURAL SELECTION

• Darwin developed his understanding of evolution over many years after returning to Englad from his voyage around the world.

• He probably developed the theory of natural selection in 20 or 30 years.

• Observations and deductions of this theory:

Page 64: 5. Ecology and evolution

Observation Deduction1)Populations tend to reproduce rapidly and if every

individual survived, there would be a geometrical or exponential increase in the population. On the other hand, when natural populations are studied, they tend to remain stable. There are natural checks to increases in population, for example, food supplies for animals. There is a limit to the size of population of a species that the environment can support THERE IR A STRUGGLE FOR EXISTANCE, IN WHICH SOME INDIVIDUALS SURVIVE AND SOME DIE.

Page 65: 5. Ecology and evolution

2) Organisms vary- there are differences between individual organisms even if they are members of the same species. These differences affect how well suited of fiited and organism is to its environment and model of existence. This is called adaptation. Some individuals are better adapted that others because they have the favourable variations. IN STRUGGLE FOR EXISTENCE, THE LESS-WELL ADAPTED INDIVIDUALS WILL TEND TO DIE AND THE BETTER ADAPTED WILL TEND TO SURVIVE. THIS IS NATURAL SELECTION.

Page 66: 5. Ecology and evolution

3) Much of the variation between individuals can be passed on to offspring: it his heritable BECAUSE THE BETTER- ADAPTED INDIVIDUALS SURVVE, THEY CAN REPRODUCE AND PASS ON THEIR CHARACTERISTICS TO THEIR OFFSPRING. THE GREATER SURVIVAL AND REPRODUCTIVE SUCCES OF THESE INDIVIDUALS LEADS TO AND INCREASE IN THE PROPORTION OF INDIVIDUALS IN THE POPULATION THAT HAVE THE FAVOURABLE VARIATIONS.

Page 67: 5. Ecology and evolution

Linked concepts in Darwin’s theory of evolution

1.- Population growth2.- Resource limitation3.- A struggle for existence4.- Variation5.- Adaptation6.- Differential reproduction7.- Natural selection8.- Descent with modification9.- Origin of species10.- Extinction of species.

Page 68: 5. Ecology and evolution

GALAPAGOS FINCHES- Evolution in action

Page 69: 5. Ecology and evolution

• Darwin visited the Galápagos Islands in 1835 and collected specimens of small birds, which were subsequently identified as finches. There are 14 species in all. Darwin observed that the sizes and shapes of the beaks of the finches varied, as did their diet.

• From the overall similarities between birds and their distribution over the Galàpagos islands, Darwin hypothesized that “ one might really fancy that from an original paucity of birds in this archipielago, one species had been taken and modified for different ends”

Page 70: 5. Ecology and evolution

• Characters and diet are closely related and when one changes, the other does also.

• Variation in the shape and size of the beaks is mostly due to genes, though the environment has some effect.

P = G + E The proportion on the variation due to genes is

called the heritability

Page 71: 5. Ecology and evolution

Antibiotic resistance Evolution in action

• After an antibiotic is introduced and used on patients, bacteria showing resistance appear within a few years.

• Resistance to the antibiotic spreads to more and more species of pathogenic bacteria.

• In each species the proportion of infections that are caused by a resistant strain increases

• Strains of bacteri appear that are resistant to more and more different antibiotics; this is called MULTIPLE RESISTANCE.

Page 72: 5. Ecology and evolution

• There has been very widespread use of antibiotics, both for treating diseases and in animal feeds used in farms.

• Bacteria can reproduce very rapidly, with a generation time of less than an hour.

• Populations of bacteria are often huge, increasing the chance of a gene for antibiotic resistance being formed by mutation.

• Bacteria can pass genes on to other bacteria in several ways, including useing plasmids, which allow one species of bacteria to gain antibiotic resistance genes from another species.

Page 73: 5. Ecology and evolution

Antibiotic resistance

Page 74: 5. Ecology and evolution

2.5.- CLASSIFICATION• It is natural for humans to recognize the features of living

organisms and to use these features to put organisms into groups. At a basic level, simple observation shows that there are often many organisms of the same type.

• If we agree on a name for a groups of organisms, we can the talk about them.

• Naming organisms is called NOMENCLATURE.• The idea of a group of organisms of the same type has developed

into the biological concept of the species.• In every language, names have been chosen for species, but

science is an international venture and so names are needed to be understood throughout the world.

Page 75: 5. Ecology and evolution

Biological systemThe system that biologists use is called

BINOMIAL NOMENCLATURE scientific name of 2 words: Linnaea borealis.

1) First name: Genus name Genus is a group of species that share the same characteristics.

2) Second name: Species or specific name

Page 76: 5. Ecology and evolution

Binomial Nomenclature’s Rules:1) The genus name begins with an upper-case (capital)

letter and the species name with a lower-case (small) letter.

2) In typed or printed text, a binomial is shown in italics.3) After a binomial has been used once in a piece of text,

it can be abbreviated to the initial letter of the genus name with the full species name. Ex: L. borealis.

4) The earliest published name for a species, from 1753 onwards, is the correct one.

Page 77: 5. Ecology and evolution

2.5.1.- The hierarchy of taxaTaxon: things that are arranged into a groupTaxa: Plurarl of taxon1) KINGDOM: Animalia2) PHYLUM: Chordata3) CLASS: Mammalia4) ORDER: Carnivora5) FAMILY: Canidae6) GENUS: Canis7) SPECIES: lupus

Canis lupus.

Page 78: 5. Ecology and evolution

Dichotomus keys: How to classify organisms

Page 79: 5. Ecology and evolution

Kingdom: PlantaeCharacteristics:Photosynthetic, Chlorophyll, Cellulose, cell wall, Vacuoles

permanent,Store starch

Page 80: 5. Ecology and evolution