27
Measuring Turbulence in TW Hya Richard Teague, max planck institute for astronomy Stephane Guilloteau, Dima Semenov, Thomas Henning, Anne Dutrey, Vincent piétu Til birnstiel, Edwige Chapillon, David Hollenbach, uma gorti

Turbulence in TW Hya

Embed Size (px)

Citation preview

Page 1: Turbulence in TW Hya

Measuring Turbulence in TW HyaRichard Teague, max planck institute for astronomy Stephane Guilloteau, Dima Semenov, Thomas Henning, Anne Dutrey, Vincent piétu

Til birnstiel, Edwige Chapillon, David Hollenbach, uma gorti

Page 2: Turbulence in TW Hya

Can we measure turbulence in protoplanetary disks?

Richard Teague, MPIA

Page 3: Turbulence in TW Hya

Can we measure turbulence in protoplanetary disks?

Yes! We can fit models to

the observations.

Dartois et al. (2003), Piétu et al. (2007), Hughes et al. (2011) Guilloteau et al. (2012), Rosenfeld et al. (2012), Flaherty et al. (2015)

Page 4: Turbulence in TW Hya

ALMA Consortium

Unfortunately, disks are not azimuthally symmetric nor smoothly varying along the radius.

Richard Teague, MPIA

Page 5: Turbulence in TW Hya

Can we measure turbulence in protoplanetary disks

in a model independent way?

Richard Teague, MPIA

Page 6: Turbulence in TW Hya

Can we measure turbulence in protoplanetary disks

in a model independent way?

Sort of.

Richard Teague, MPIA

Page 7: Turbulence in TW Hya

To measure the turbulent broadening:

Richard Teague, MPIA

Page 8: Turbulence in TW Hya

• Disk: TW Hya

• Molecules: CO, CN and CS

Nearby and nearly face-on.

Range of locations in the disk and molecular masses.

• Product: SpectraBoth radial profiles and de-projected maps.

Picture credit: NRAO

Page 9: Turbulence in TW Hya

Try two ‘direct’ approaches.

1. Temperature is known.

2. Co-Spatial molecular tracers.

Where we can derive Tex from the spectra.

Exploit different molecular masses to derive Tkin.

Richard Teague, MPIA

Page 10: Turbulence in TW Hya

�1.0 �0.5 0.0 0.5 1.0

Velocity (km s�1)

0.0

0.2

0.4

0.6

0.8

1.0

Nor

mal

ized

Flu

x

CO

�3 �2 �1 0 1 2 3

Velocity (km s�1)

CN

�1.0 �0.5 0.0 0.5 1.0

Velocity (km s�1)

CS

CO CN CS

All molecules yield line centres and widths .

CO and CN yield while CS yields .

Extract physical parameters from spectra.

Richard Teague, MPIAMethods 1 & 2. Direct methods.

Page 11: Turbulence in TW Hya

�1.0 �0.5 0.0 0.5 1.0

Velocity (km s�1)

0.0

0.2

0.4

0.6

0.8

1.0

Norm

alize

dFlu

x

�1.0 �0.5 0.0 0.5 1.0

Velocity (km s�1)

0.0

0.2

0.4

0.6

0.8

1.0

Norm

alize

dFlu

x�1.0 �0.5 0.0 0.5 1.0

Velocity (km s�1)

0.0

0.2

0.4

0.6

0.8

1.0

Nor

mal

ized

Flu

x

Gaussian Optically thin wings

Temperature from a single emission line.

Richard Teague, MPIAMethods 1 & 2. Direct methods.

Page 12: Turbulence in TW Hya

40 60 80 100 120 140 160 180 200

Distance (au)

0

5

10

15

20

25

30

�vK

ep

(ms�

1)

6.0

7.0

8.0

Beam

Account for beam smearing.

Richard Teague, MPIAMethods 1 & 2. Direct methods.

Page 13: Turbulence in TW Hya

Gorti et al. (2011)

0 20 40 60 80 100 120 140

Radius (au)

0

50

100

150

Hei

ght

(au)

0 2 4 6 8 10

log10 n(H2) (cm�3)

Assume local thermal equilibrium.

Method 1. Temperature is known. Richard Teague, MPIA

Page 14: Turbulence in TW Hya

�4 �2 0 2 4

O↵set (arcsec)

�4

�2

0

2

4

O↵se

t(a

rcse

c)

�4 �2 0 2 4

O↵set (arcsec)

0

10

20

30

40

50

Tem

peratu

re(K

)

Fully recover the kinetic temperature.

CO CN

Method 1. Temperature is known. Richard Teague, MPIA

Page 15: Turbulence in TW Hya

40 60 80 100 120 140 160 180

Radius (au)

0

20

40

60

Tkin

(K)

Tmaxkin

Tkin

Supra-thermal excitation of CN?

Method 1. Temperature is known. Richard Teague, MPIA

Also see poster of Ryan Loomis.

Page 16: Turbulence in TW Hya

�4 �2 0 2 4

O↵set (arcsec)

�4

�2

0

2

4

O↵se

t(a

rcse

c)

�4 �2 0 2 4

O↵set (arcsec)

0

30

60

90

120

150

Velocity

Disp

ersion(m

s �1)

CO CN

Turbulent broadening.

Method 1. Temperature is known. Richard Teague, MPIA

Page 17: Turbulence in TW Hya

Assume CN and CS are co-spatial.

Method 2. Co-spatial molecular tracers.

Where molecule B is the heavier of the two.

Richard Teague, MPIA

Page 18: Turbulence in TW Hya

Assume CN and CS are co-spatial.

Method 2. Co-spatial molecular tracers.

Where molecule B is the heavier of the two.

Richard Teague, MPIA

Page 19: Turbulence in TW Hya

40 60 80 100 120 140 160 180

Radius (au)

0

20

40

60

80

100

Tkin

(K)

Tmaxkin

Tkin

60 80 100 120 140 160 180

Radius (au)

0

30

60

90

120

150

vtu

rb(m

s �1)

vturb

Derive Tkin and vturb directly.

Method 2. Co-spatial molecular tracers.

Failed co-spatial assumption.

Richard Teague, MPIA

Page 20: Turbulence in TW Hya

40 60 80 100 120 140 160 180 200

Radius (au)

0.4

0.6

0.8

1.0

1.2p

µ·�

V(k

ms�

1)

CN

CS

Mass scaled linewidths.

Failed co-spatial assumption.

Method 2. Co-spatial molecular tracers. Richard Teague, MPIA

Page 21: Turbulence in TW Hya

Comparison of ‘Direct Methods’

Methods 1 & 2. Direct methods.

40 60 80 100 120 140 160 180

Radius (au)

0

50

100

150

200

v turb

(ms�

1)

CO

CN

CS

60 80 100 120 140 160 180

Radius (au)

0.0

0.2

0.4

0.6

0.8

1.0

vtu

rb(c

s )

CO

CN

CS

Sound speed.Absolute value.

Richard Teague, MPIA

Page 22: Turbulence in TW Hya

How far can we go?

0.00 0.05 0.10 0.15 0.20

�Tkin / Tkin

0.00

0.05

0.10

0.15

0.20

v turb

/c s

3 �5 �10�

0.0

0.2

0.4

0.6

0.8

1.0

�vtu

rb/v

turb

ALMA will achieve a flux calibration of ~3%.Minimum of vturb / cs ~0.13

Method 1. If absolute values are required. Richard Teague, MPIA

Page 23: Turbulence in TW Hya

0.00 0.01 0.02 0.03 0.04 0.05

��V / �V

0.00

0.05

0.10

0.15

0.20

v turb

/c s

3�

5�

10�

0.0

0.2

0.4

0.6

0.8

1.0

�vtu

rb/v

turb

0.00 0.01 0.02 0.03 0.04 0.05

��V / �V

0.00

0.05

0.10

0.15

0.20

v turb

/c s 5

10�

0.0

0.1

0.2

0.3

0.4

0.5

�Tkin

/T

kin

0.00 0.01 0.02 0.03 0.04 0.05

��V / �V

0.00

0.05

0.10

0.15

0.20

v turb

/c s 5

10�

0.0

0.1

0.2

0.3

0.4

0.5

�Tkin

/T

kin

Better precision but not as accurate?

Method 2. Co-spatial molecular tracers.

Kinetic temperature.Turbulent broadening.

Typical accuracy of ~0.4% on linewidths with ALMA. Minimum of vturb / cs ~0.08

Richard Teague, MPIA

Page 24: Turbulence in TW Hya

ConclusionsWe observed turbulent widths of 50 - 150 ms-1 in TW Hya.

Consistent with predictions from disks pervaded by the MRI.Flux calibration sets an absolute limit on what we can detect.

What do we need?What molecules are co-spatial?

Well constrained thermal structure.

Richard Teague, MPIA

Page 25: Turbulence in TW Hya

ConclusionsWe observed turbulent widths of 50 - 150 ms-1 in TW Hya.

Consistent with predictions from disks pervaded by the MRI.Flux calibration sets an absolute limit on what we can detect.

What do we need?What molecules are co-spatial?

Well constrained thermal structure.

Richard Teague, MPIA

“The truth springs from an argument amongst friends.” DAVID HUME

Page 26: Turbulence in TW Hya

Richard Teague, MPIA

40 60 80 100 120 140 160 180 200

Distance (au)

0

20

40

60

80

100

Tem

per

atu

re(K

)

CO (2 � 1)Tmax

kin

Tkin

Fit

60 80 100 120 140 160 180 200

Distance (au)

CN (2 � 1)Tmax

kin

Tkin

Fit

60 80 100 120 140 160 180 200

Distance (au)

CS (5 � 4)Tmax

kin

Tkin

Fit

Derived temperature profiles.

Page 27: Turbulence in TW Hya

Richard Teague, MPIA

Comparison with Hughes et al. (2011)

40 60 80 100 120 140 160 180 200

Radius (au)

0

20

40

60

80

Tem

per

ature

(K)

Hughes et al. (2011) : CO (3�2)

This work: CO (2�1)

Hughes et al. (2011)

Global Fit

Direct Method