23
New diagnosis method for LIB health conditions using EIS Faculty of Science and Engineering Waseda University Tetsuya Osaka March 10 th , 2015 "Science Symposium Ludwigshafen“ BASF Science Symposium 2015 1 Contents Introduction Design of Equivalent Circuit for Electrochemical Impedance Spectroscopy on LIB Dependence of EIS on Temperature EIS for Degradation Analysis of LIBs Square Current/Potential-EIS Summary 2

Tetsuya Osaka at BASF Science Symposium 2015

  • Upload
    basf

  • View
    505

  • Download
    2

Embed Size (px)

Citation preview

Page 1: Tetsuya Osaka at BASF Science Symposium 2015

New diagnosis method for LIB health conditions using EIS

Faculty of Science and Engineering Waseda University

Tetsuya Osaka

March 10th, 2015"Science Symposium Ludwigshafen“

BASF Science Symposium 2015

1

Contents

• Introduction

• Design of Equivalent Circuit for Electrochemical Impedance Spectroscopy on LIB

• Dependence of EIS on Temperature

• EIS for Degradation Analysis of LIBs

• Square Current/Potential-EIS

• Summary

2

Page 2: Tetsuya Osaka at BASF Science Symposium 2015

IntroductionWhat is

Electrochemical Impedance Spectroscopy (EIS)?

Input signal

-0.005

0

0.005

0.005 0.01 0.015

-Z"

/ Ω

Z’ / Ω

Frequency response

Measure Data processing

EIS can analyze electrochemical devises without destruction of the

devises, because of small-amplitude sinusoidal input. divide complicated process of electrochemical reaction into

elemental processes, because of their characteristic frequency.

EIS method can be powerful for evaluation of Lithium-ion battery (LIB)3

The Electrochemical Society Interface

PENNINGTON CORNER

I

Electrochemistry plays a

A Turning Point for ECS

Journal of The Electrochemical Society

th

Tetsuya OsakaECS President

Recycling plant of battery Maintenance‐free Analysis without destruction

Substation

Smart grid

Substation

Substation

Possibilities of Innovation from Battery Systems

Plug‐in hybrid vehicles (PHEVs) Battery electric vehicles (BEVs) Fuel cell electric vehicles (FCEVs)

Home energy management system (HEMS)

Factory energy management system (FEMS)

Solar power

Wind power

Air plane

PENNINGTON CORNER

I

A Turning Point for ECS

Journal of The Electrochemical Society

4

Page 3: Tetsuya Osaka at BASF Science Symposium 2015

5

Recurrence Movement of LIB Technology to Japan

Example of LIB accidents

【電気自動車】 浙江省杭州市の武林路で2011年4月11日午後3時(日本時間4時)ごろ、電動タクシーが発火・炎上した。乗客はなく、けが人はいなかった。(新華社、鞠煥宗撮影)

2011.4.11,早朝 2011.4.11,早朝

2011.4.11,16時 2011.7.10,早朝

2011.11.26

Fig1 フランスでの事故    Fig.2 ブラジルでの発火事故

iPhoneが発熱し,煙と火花が出るという怖い体験をしたユーザーたちがいる.ブラジルで1台,オーストラリアの飛行機内で1台のiPhoneから火が出た. 先に報告されたのはオーストラリアでの発火だ.11月25日,リズモア発シドニー行きのRegional Express航空の機内でのことだ.RegionalExpress社の公式声明によると,着陸後,ある乗客の携帯電話が「かなりの

寮の濃い煙を出し,やがて赤く光った」.客室乗務員が消火し,けが人は出なかったという. 機種は公表されておらず,上に掲載した写真では,「iPhone 4」か「iPhone 4S」かは判断できない. ブラジルの発火は11月22日で,オーストラリアの発火より先に起きていたが,報告されたのは最近のことだ.アイラ・モタさんが,フランスで購入した8GBのiPhone 4を充電しようとして,コンセントにつないで就寝した.夜中に目を覚ますとiPhoneから火花と煙が出ていたという.

6

EVs mount LIBs made in China began to spread after Shanghai EXPO. Several years passed from the EXPO, accidents of the EVs have increased.Because safety on long cycles are not enough. Therefore Japanese technology has been attracted again, resulting in recurrence movement of LIB technology to Japan

Page 4: Tetsuya Osaka at BASF Science Symposium 2015

Super dry room andProduction line of lithium secondary batteries (< 1 Ah)

【Super dry room】Floor area:ca. 14.85m3

Cleanness (Minimum):100 (JIS B9920クラス5)Dew point of air supply:‐95Dew point in the room:‐70connected directly with 2 glove boxes

(Dew point <‐95, O2 < 2ppm)

【Laminated LIB fabrication】a) Mixier, b) Electrode coaterc) Roll press, d) Ultrasonic weldere) Heat sealer, f) Vacuum sealer with electrolyte supply

Leading LIB fabrication process in academic fieldA number of evaluation equipment for LIBs

Charge‐dischargetest equipment

Glove box filled with Ar(Dew point:‐110)

Electrochemical measurement system

Second dry room was built on the basis of the experience by the first one.

Floor area:8.75 m2,Dew point in the room:‐60

Dew point of air supply:‐95(0.04 ppm)Dew point in the room:‐70

7

First dry room

Floor area:14.85 m2

First introduction of a super dry room among universities in Japan (1999)

Construction of leading-edge dry room on the basis of the know-how by first super dry room (2010)

Deliver CUTTING EDGE MATERIALS and TECHNOLOGIES

Facility for production of medium sized LIB: Laminate type (~5Ah)

Final completion in March, 2014

Super dry room andProduction line of lithium secondary batteries

8

【Dry room】Floor area:ca. 62.71m3

Cleanness (max.):10000Dew point of supply air :‐80Dew point in the room:‐50

【Apparatuses for Laminated LIB】・In dry room

Clicking machine,Roll press machine, Welder,Film mold machine,Heat sealer, Vacuum sealer with electrolyte injector,etc.

・Clean benchMixer, Coater

Page 5: Tetsuya Osaka at BASF Science Symposium 2015

Super dry room andProduction line of lithium secondary batteries (~10 Ah)

Ultrasonic WelderCutting frame

Dry room: 60 m2 + Coating space: 6 m2

Production line of lithium secondary batteries (10 Ah class)

Full automaticlamination system

Heat sealer Electrolyte injector and vacuum sealer

LIB production ability of our laboratory

Small LIB (100 – 1500 mAh) for research can be produced by NEDO RISING projectOur LIB is comparable to commercial LIBs

Composition of pouch type batteryWaseda LIB with electrodes lab. made 55 mAhCathode = LiCoO2 /AB+KB/PVdFAnode= Graphite /AB/PVdFSeparator single PPElectrolyte 1MLiPF6/EC DEC=1 1 with VC

Waseda LIB with commercial electrodesCathode active material LiCoO2Anode active material Graphite Separator single PPElectrolyte 1MLiPF6/EC DEC=1 1

Commercial LIB for electric assisted bycicle (5 Ah)Cathode active material Mn based materialAnode active material Graphite

20

30

40

50

60

70

80

90

100

0 1 2 3 4 5 6

No

rmal

ize

d C

apac

ity

%

C-rate C

BatterySystem

Evaluation

Materials

terytem

E

Anode Cathode Electrolyte

Feedback to developmentof materials and system

Material evaluation as a actual battery

Advantage of our group

Non-destructive analysis by electrochemical impedance spectroscopy

New material creation by electrochemical Nano-technology

Integration technology and system optimizationfor battery performance

Our LIB production technique enables materials we developed to be evaluated as actual battery

Higher performance than commercial LIB

Page 6: Tetsuya Osaka at BASF Science Symposium 2015

One setmultiple sets

~5 Ah

Specification of lithium secondary batteries made by Osaka Lab.

~2.5 mAh~75 mAh

multiple sets

2~3Ah

70mm×30~70mm

18 mm φ70 mm×70 mm

70 mm ×70 mm70mm × 140 mm

Semi automatic assembly machine Handmade

~1.5 AhCapacityLiCoO2/C

60 mm×800 mm

One set

ElectrodeSize

Slurrypreparation

Coater

Assembly

Sheets One set

Pouch Cell Cylindrical Cell Pouch Cell Pouch Cell Button Cell

Roll to Roll (W200mm)

Desktop Coater

Powder mixing/ Slurry preparation (0.5L~5L) (0.15~1L)Mixer

Roll to Roll (W150mm)

Coating Duplex Duplex Duplex Simplex Simplex

Center of Innovation ProgramSmart Life Support Innovation R&D Center

122014.12

Page 7: Tetsuya Osaka at BASF Science Symposium 2015

Visualization of BEMSSeminar room, Office room

Clean roomElectrode coating

Dry roomLIB assembling

Super dry roomLaboratory

Separated laboratories with confidentiality

Industry-academia partnership project room

Innovation design center〜

Waseda Smart Life Support Innovation R&D Center(Final completion in December, 2014)

R&D Center

Hall

Center of Innovation ProgramSmart Energy System Innovation R&D Center

13

Contents

• Introduction

• Design of Equivalent Circuit for Electrochemical Impedance Spectroscopy on LIB

• Dependence of EIS on Temperature

• EIS for Degradation Analysis of LIBs

• Square Current/Potential-EIS

• Summary

14

Page 8: Tetsuya Osaka at BASF Science Symposium 2015

Possible Phenomena relate to LIB performance

Phenomenon in LIB LIB performance

Electron Migration・Electrode layer・Current collector / Electrode

layer・Current collector

Power decayCapacity decay

Ion migration・Electrolyte・Electrolyte in electrode layer・SEI

Power decayCapacity decay

Electrochemical reaction (Chargetransfer)

・Active material / Electrolyte (Active material / SEI)

Power decayCapacity decay

Life deterioration Safety deterioration

Diffusion in Solid of Active MaterialsPower decay

Capacity decay

Cu current collectorAl current collector Electrolyte

Anode active materialCathode active materialElectron conductive additive

SEI

SEI: Solid Electrolyte Interphase 15

Design of Equivalent Circuit for LIB

• Examples– Solid-Solid contact interface

– Active material / Electrolyte

– SEI Active material

Electron conductive additive

Current collector

16

Page 9: Tetsuya Osaka at BASF Science Symposium 2015

Design of Equivalent Circuit for LIB

17

SEI

Active material

Electrolyte

Li+

Li+

Li+

• Examples– Solid-Solid contact interface

– Active material / Electrolyte

– SEI

Key phenomenon should selectedfor practical application of EIS to LIB evaluation. 17

Nyquist plot of a Commercial LIB

Nyquist plot obtained from a LIB at 100% of SOC. (Frequency range100 kHz ‐ 0.1 mHz)

<Conditions>Equipment:Solartron SI1287, SI1252ACharge‐discharge:Constant current (1 A)‐Constant voltage (4.2 V kept until less than 1 mA).Impedance measurement:Open circuit voltage at a SOC, Amplitude 10 mV, Frequency range 100 kHz ‐ 0.1 mHz.

Feature 1•High frequency (> 5 kHz): Inductive response

Feature 2•Middle frequency (5 kHz - 1 Hz): Several overlapped semicircles

Feature 3•Low frequency (< 1 Hz): Diffusive response and limiting capacitance

‐0.01

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0 0.01 0.02 0.03 0.04 0.05 0.06

‐Z"

/ Ω

Z’ / Ω

← 100 kHz

10 kHz →

← 1 mHz

1 Hz↓

0.1 mHz →

Feature1

Feature 2

Feature 3

18

Page 10: Tetsuya Osaka at BASF Science Symposium 2015

Fundamental Equivalent Circuit for Batteries

The equivalent circuit containsCharge transfer reactions and diffusions on anodeCharge transfer reactions and diffusions on cathode Ionic resistance of electrolyte.

19

‐0.01

‐0.005

0

0.005

0.005 0.010 0.015

‐Z"

/ Ω

Z’ / Ω

Experimental Data Fitting

R2

Rs

CPE2

ZW2

R1

CPE1

ZW1

L0

R0

Fundamental equivalent circuit with inductive element

Inductive response (Feature 1)

20

Page 11: Tetsuya Osaka at BASF Science Symposium 2015

Equivalent circuit with inductive element

21

ZD(L-1)

L-2L-1

L-1

ZD-1(L-1)

ZD-2(L-2)

Distributeddiffusion length

Uniformdiffusion length

Size distribution of active material

22

Page 12: Tetsuya Osaka at BASF Science Symposium 2015

Equivalent circuit counting diffusion distribution

T. Osaka, S. Nakade, M. Rajamaki, T. Momma, J. Power Sources, 119, 929 (2003)

Equivalent circuit 2 can fit the impedance responses of features 2 and 3 in a commercial LIB. 23

Solid Electrolyte Interphase on anodeSolid Electrolyte Interphase (SEI) Desolvation Electrolyte

(Solvated ion)

Li+ migration in interphase

Migrationin electrolyte

Migrationin SEI

Diffusionin graphite

http://www.jst.go.jp/kisoken/crest/report/sh_heisei10/shigen/ogumi.pdf

24

Page 13: Tetsuya Osaka at BASF Science Symposium 2015

Equivalent circuit counting SEIT. Osaka, T. Momma, D. Mukoyama, H. Nara, J. Power Sources, 205, 483‐486, 2012.

25

Residual Errors for the Impedance Data

LIB (0.85Ah), SOC100%

T. Osaka, T. Momma, D. Mukoyama, H. Nara, J. Power Sources, 205, 483‐486 (2012). 26

Page 14: Tetsuya Osaka at BASF Science Symposium 2015

Contents

• Introduction

• Design of Equivalent Circuit for Electrochemical Impedance Spectroscopy on LIB

• Dependence of EIS on Temperature

• EIS for Degradation Analysis of LIBs

• Square Current/Potential-EIS

• Summary

27

-0.03

0

0.03

0 0.03 0.06

-Z"

[Ω]

Z’ [Ω]

-0.1

0

0.1

0.2

0.3

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

-Z"

[Ω]

Z’ [Ω]

RS

RF

CPEF

RI

L

RA

CPEA

RC

CPEC

SEI Anode Cathode

- 20 ˚C20 ˚C

Impedance Measurements at Low Temperature as Useful Technique to Detect SEI

T. Momma, M. Matsunaga, D. Mukoyama, T. Osaka,J. Power Sources, 216, 304, 2012.

Commercial LIB、0.83Ah、SOC 50%

28

Page 15: Tetsuya Osaka at BASF Science Symposium 2015

Fitting Parameters under Temperature Control

Cell B、0.83Ah、SOC 50%

000

000

000

000

001

-30 -20 -10 0 10 20 30

Log

(Res

ista

nce)

] Cathode Anode SEI

000

000

000

001

010

-30 -20 -10 0 10 20 30

Log

(Cap

acita

nce)

[F

]

Temperature []

0

-1

-2

1

-3

0

-1

-3

-2

RS

RF

CPEF

RI

L

RA

CPEA

RC

CPEC

Cathode Anode SEI

T. Momma, M. Matsunaga, D. Mukoyama, T. Osaka, J. Power Sources, 216, 304, 2012.

29

Contents

• Introduction

• Design of Equivalent Circuit for Electrochemical Impedance Spectroscopy on LIB

• Dependence of EIS on Temperature

• EIS for Degradation Analysis of LIBs

• Square Current/Potential-EIS

• Summary

30

Page 16: Tetsuya Osaka at BASF Science Symposium 2015

EIS Analysis for Cycling Degradation

31

D. Mukoyama, T. Momma, H. Nara, and T. Osaka,Chem. Lett., 41, 4, 444 (2012).

-0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

-Z"

[Ω]

Z’ [Ω]

Whole resistance represented as the real part of whole cell impedance

Limiting capacitance from low frequency impedance plots

Cell C、0.85Ah、SOC100%

Whole resistance represented as the real part

Limiting capacitance

31

T. Hang, D. Mukoyama, H. Nara, N. Takami, T. Momma, T. Osaka,J. Power Sources, 2013.

LIB with Li4Ti5O12 Anode、4.2 Ah

Fig. Battery charge capacity with the number of charge–discharge cycles.

Fig. Variation of the (a) resistance and (b) limiting capacity with the number of charge‐discharge cycles at DOD of 20%

Electrochemical Impedance Spectroscopy Analysis for Lithium-Ion Battery Using Li4Ti5O12 Anode

32

Page 17: Tetsuya Osaka at BASF Science Symposium 2015

Contents

• Introduction

• Design of Equivalent Circuit for Electrochemical Impedance Spectroscopy on LIB

• Dependence of EIS on Temperature

• EIS for Degradation Analysis of LIBs

• Square Current/Potential-EIS

• Summary

33

-0.01

-0.005

0

0.005

0.01

0.015

0.02

0.005 0.01 0.015 0.02 0.025

-Z"

/ Ω

Z’ / Ω

1 mHz

1 kHz

1 Hz

Fig. Example of a commercial LIB impedance response.Battery Capacity:5Ah, Frequency range:10k – 1mHz, V0‐p = 5mV

Recent Progress of LIBs

Battery for power grid systemThe battery capacity: Larger×The inner impedance: smaller

0.0001

0.001

0.01

0.1

1

10

0.01 0.1 1 10 100

Re

al p

art

of

imp

ed

ance / Ω

Battery Capacity / mAh

Large‐capacity LIB

10 year before

Present

Fig. Correlation of battery capacity to real part of impedance 1k ‐ 1Hz.Samples:Several commercial LIB cells

34

Page 18: Tetsuya Osaka at BASF Science Symposium 2015

Concept of Battery Analysis

Conventional EIS

Square current EIS (SC‐EIS) for large capacity LIB

Input signal

High frequency range (Base model)

-0.005

0

0.005

0.005 0.01 0.015

-Z"

/ Ω

Z’ / Ω

Frequency response

Measure

Fourier Transform

Data processing

Input signal

-0.005

0

0.005

0.005 0.01 0.015

-Z"

/ Ω

Z’ / Ω

Frequency response

Measure

Data processing

0

0.2

0.4

0.6

0 200 400 600

|A|

Frequency [Hz]

|A|spectrum

0

0.005

0.01

0 200 400 600

|V|

Frequency [Hz]

|V|spectrumLow frequency range: less than 1 Hz

35

Application of (SC-EIS) to Analysisfor Degradation of Lithium Ion Battery

Battery system・ Power output:60W (4V, 5Ah, 3C):Laminated cell × 1・ Nominal capacity:20Wh (4V, 5Ah)・ SOC in commercial use:50%

Charging/discharging system・ HJ3010SD8 (Hokuto) + 34410A (Agilent)×2(Current, Voltage)・ Power control

Control rate; per 10 msec Start to 100%; 1 msec

・ Property a switch that interrupts an electric circuit in the event of current cut‐

off. It takes 40 to 60 msec to return polarity.

Measurement specification

36

Page 19: Tetsuya Osaka at BASF Science Symposium 2015

Square-Current EIS with High Frequency

Time / s

Cu

rren

t I

/ A

IB

IP‐P

IA

tontoff

tr

ton = toff = 1, 10 msec

tr = 1 msec

IA = 1A

IB = 1mA = 20, 200 msecf = 5, 50 Hz

IP‐P = 1 A

Range of high frequency:250~5Hz

37

To use another current waveform for the phase difference measurementcomparing that with high frequency, quasi sine wave current generated by puttinga multistage step of 50Hz was used.

Time / s

Cu

rren

t I

/ A

‐IA

IP‐P

IA

Range of low frequency:Less than 1Hz

Square-Current EIS with Low Frequency

38

Page 20: Tetsuya Osaka at BASF Science Symposium 2015

Nyquist Plots

0

0.01

0.02

0.005 0.015 0.025

‐Z''/Ω

Z'/Ω

Sweep 10p/1d0A±1A 1mHz0A±1A 10mHz0A±1A 100mHz0A±1A 1Hz0.5A±0.5A1Hz0.5A±0.5A 5Hz0.5A±0.5A 10Hz0.5A±0.5A 16.7Hz

0

0.001

0.002

0.009 0.01 0.011 0.012 0.013

‐Z''/Ω

Z'/Ω

SC-EIS Results

Bode Diagram

0

0.01

0.02

0.03

0.04

0.0001 0.001 0.01 0.1 1 10 100 1000

|Z|

f / Hz

0

10

20

30

40

0.0001 0.001 0.01 0.1 1 10 100 1000

θ/d

egr

ee

f / Hz

We realized the measurement of the frequency response of the electrochemistry impedance with charge‐discharge system and the simple and low‐cost measuring equipment using the

digital multi‐meter.

41

Tuning of Measurement and Analysis Program

Low frequency range: less than 1 Hz

High frequency range (Base model)

42

Page 21: Tetsuya Osaka at BASF Science Symposium 2015

Cutting-edge Data

‐0.002

0

0.002

0.005 0.007 0.009 0.011

‐Z”

/ Ω

Z’ / Ω

EIS

SC‐EIS

SC: 50 Hz, 5 Hz, 0.5 Hz

Measurement timing between current and voltage was synchronized sampling frequency until 1 MHz.

Beautiful !!

43

The square wave impedance method (SW‐EIS) isused similarly to the general FRA method. SP‐EISand SC‐EIS are proved to give the equal results tothat of FRA‐EIS. Especially, the square wave currentimpedance method (SC‐EIS) works well to the largecapacity battery with low inner impedance .

Application of Square Wave Impedance to battery analysis

New Analysis of High Capacity LIBs with Low Internal Resistance

Summary: Square Current/Potential-EIS

Page 22: Tetsuya Osaka at BASF Science Symposium 2015

Contents

• Introduction

• Design of Equivalent Circuit for Electrochemical Impedance Spectroscopy on LIB

• Dependence of EIS on Temperature

• EIS for Degradation Analysis of LIBs

• Square Current/Potential-EIS

• Summary

45

Summary

• EIS for commercial Li‐ion batteries is able to beanalyzed with using the proposed equivalent circuit,thus the degradation is estimated with this methodusing non‐destructive evaluation.

• The Square Wave‐EIS method proposed showed aresult similar to that of general FRA method, especially,the Square Current‐EIS method works effectively for thebattery system with lower internal impedance lessthan a few m.

46

Page 23: Tetsuya Osaka at BASF Science Symposium 2015

47

Acknowledgement

for recent our staffs and students.Karuizawa seminar House of Waseda univ 2014.8.

Thank you four your attention.

Battery Group Meeting at Kamogwa Seminar House of Wased Univ/ 2011.7.26.