24
Imke de Pater (UC Berkeley) Outline Jupiter: the planet Why study Jupiter? Origin of our Solar System Recent work by our group The Juno Mission HST/NASA

Galaxy Forum USA 2016 - Prof Imke de Pater, UC Berkeley

Embed Size (px)

Citation preview

Page 1: Galaxy Forum USA 2016 - Prof Imke de Pater, UC Berkeley

Imke  de  Pater  (UC  Berkeley)  

Outline

• Jupiter:  the  planet

• Why  study  Jupiter?  Origin  of    our  Solar  System• Recent  work  by  our  group• The  Juno  Mission

HST/NASA

Page 2: Galaxy Forum USA 2016 - Prof Imke de Pater, UC Berkeley

• Largest  planet  in  our  SS• ~12  x  larger  than  Earth• ~300  times  more  mass• ~85%  H2,  15%  He• trace  amounts  CH4,  NH3,  

H2O,  H2S  (on  Sun:  C,N,O,S)

Cassini,   Oct.  31  – Nov.  9,  2000

HST/NASA

Page 3: Galaxy Forum USA 2016 - Prof Imke de Pater, UC Berkeley

Cassini,   Oct.  31  – Nov.  9,  2000

HST/NASA

So,  Why  study  Jupiter?

Page 4: Galaxy Forum USA 2016 - Prof Imke de Pater, UC Berkeley

• Composition  and  internal  structure  Jupiter  à

information  on  conditions  of  our  solar  nebula  during  the  time  the  Sun  and  

planets  formed.

Fundamental  Question:  How  did  our  Solar  System  Form?

Composition  of  a  planet  can  be  determined  through  remote  sensing  or  in  situ  (probe)

Page 5: Galaxy Forum USA 2016 - Prof Imke de Pater, UC Berkeley

IRTF

VLA

50 0 -50

20

0

20

0

Jovic

entri

c Lati

tude

System III Longitudeo o o

o

o

o

o

a b c

d

Visible    (HST)                                      5  µm  (IRTF)                            2  cm  (VLA)

1995-­‐1996:  Galileo  Probe  entry

Determine  composition  through  observations  at  different  wavelengths

Beebe   Ortiz  et  al.,  1998 de  Pater  et  al.  2001

Page 6: Galaxy Forum USA 2016 - Prof Imke de Pater, UC Berkeley

IRTF

VLA

50 0 -50

20

0

20

0

Jovic

entri

c Lati

tude

System III Longitudeo o o

o

o

o

o

a b c

d

Visible    (HST)                                      5  µm  (IRTF)                            2  cm  (VLA)

1995-­‐1996:  Galileo  Probe  entry

Radio: clouds  are  transparant;  Most  of  the  opacity  is  caused  by  NH3 gas.  At  longer  wavelengths  radiation  is  received  from  deeper  levels  in  the  atmosphere.  à NH3abundance  very  similar  to  solar  N  value.  

Beebe   Ortiz  et  al.,  1998 de  Pater  et  al.  2001

Page 7: Galaxy Forum USA 2016 - Prof Imke de Pater, UC Berkeley

Two  questions  surface:  • What  is  the  H2O  abundance  in  Jupiter’s  deep  atmosphere?• How  to  reconcile  the  groundbased (radio)  measurement  

of  NH3 with  the  Galileo  Probe  data?

Owen  et  al.  1999

Page 8: Galaxy Forum USA 2016 - Prof Imke de Pater, UC Berkeley

How  can  we  “loose”  NH3 gas  between  4 and  8  bar?

• Chemistry;  perhaps  H2S  binds  with  more  than  1  NH3molecules?  Or  the  water  cloud  takes  up  more  NH3  than  hitherto  assumed?  Lab  work  ongoing

• Dynamics:  updrafts,  downdrafts,  drying  out  air,  as  the  zone-­‐belt  generic  picture.

10–16 10–14 10–12 10–10 10–8

Cloud density rate Rx (g cm–3 cm–1)

300

250

200

150

Tem

pera

ture

(K)

7.0

5.04.0

3.0

2.0

1.5

1.0

0.5

0.75

Pres

sure

(bar

)

Water solution

Water ice

NH4SH solid

NH3 ice

Wong  et  al.,  2014

Page 9: Galaxy Forum USA 2016 - Prof Imke de Pater, UC Berkeley

In  order  to  solve  the  NH3 and  H2O  questions,  we  obtained  data  to  probe  below  Jupiter’s  clouds:

• Spectroscopic  data  at  5  µm• Maps  at  radio  wavelengths  at  2-­‐6  cm  (4-­‐18  GHz)  

De  Pater  et  al.,  2011

5-­‐µm  image  of  Jupiter’s  northern  hemisphere.

In  hot  regions  (hot  spots,  5-­‐µm  rings  around  vortices)  we  probe  down  to  5-­‐7  bar

Page 10: Galaxy Forum USA 2016 - Prof Imke de Pater, UC Berkeley

Bjoraker et  al.,  2015

Zones  exhibit  narrow  CH3D  line  profiles.  Modeling  indicates  the  presence  of  a  cloud  at  ~4  bars,  which  must  be  a  water  cloud.à Consistent  with  historical  picture  of  rising  air  in  zones,  sinking  in  belts;  H2O  must  be  >1.2  x  solar  O.

Hot  Spots,  Belts,  and  high-­‐latitude  regions  exhibit  broad  CH3D  line  profiles  àprobing  ~7  bar  àNo  opaque  H2O  

clouds.

5-­‐µm  Spectra

Page 11: Galaxy Forum USA 2016 - Prof Imke de Pater, UC Berkeley

de  Pater  et  al.,  2016

Radio  observations  at  2  -­‐ 6  cm  (or  4  – 18  GHz)  

NH3

SolutionH2O

NH4SH

Equilibrium NH3(Fig. 3A, profile a)

Depleted NH3(Fig. 3A, profile e)

17.4 GHz

4.42 GHz7.45 GHz11.5 GHz14.2 GHz

1.46 GHz

17.4 GHz

4.42 GHz7.45 GHz11.5 GHz14.2 GHz

1.46 GHz

A B

Fig. 1

0

10

1

0.1

10

1

0.1

0.5 1 1.5

100 200 300 400

Normalized contribution functions

Pres

sure

(bar

)

Pres

sure

(bar

)

Temperature (K)

0 0.5 1 1.5

100 200 300 400

Normalized contribution functions

Temperature (K)

Page 12: Galaxy Forum USA 2016 - Prof Imke de Pater, UC Berkeley

JUPITER:Radio spectrum

Temperature (K)

De  Pater  et  al.,  2016

NH4SH  àNH3-­‐ice  à

Page 13: Galaxy Forum USA 2016 - Prof Imke de Pater, UC Berkeley

brg c

Temperature (K)

TP profile

de  Pater  et  al.,  2016

Page 14: Galaxy Forum USA 2016 - Prof Imke de Pater, UC Berkeley

de  Pater  et  al.,  2016

2  cm

2  cm

6 cm

3.5  cm

Page 15: Galaxy Forum USA 2016 - Prof Imke de Pater, UC Berkeley

de  Pater  et  al.,  2016

Page 16: Galaxy Forum USA 2016 - Prof Imke de Pater, UC Berkeley

SUMMARY:  

• Microwave  maps  show  spatial  variations  in  Tb,  resembling  

visible  light  maps.  

• Radio-­‐hot  belt  at  ~8  deg N

• Localized  NH3 depletions  (hot  spots)  down  to  >  8  bar

• Localized  upwellings (plumes)  from  P  >  8  bar:  planetary  wave,  connecting  the  5-­‐µm hot  spots  and  plumes.

• Plumes  explain  radio  – Galileo  conundrum

Page 17: Galaxy Forum USA 2016 - Prof Imke de Pater, UC Berkeley

NASA’s  Juno  Mission• Launch  Aug  5th 2011.• Arrival  July  4th 2016  • 2700  miles  above  the  jovian

cloud  tops  in  a  polar  orbit• Key  goals:

– Gravity  field  mapping  to  detect  the  presence  of  a  core.  

– Microwave  mapping  to  peer  beneath  the  clouds,  constrain  oxygen.

• 32  orbits:    1-­‐8  for  remote  sensing  and  microwave.

• 9-­‐32  for  gravity  mapping• De-­‐orbit  March  2018.

Slide  adapted  from  Orton

Page 18: Galaxy Forum USA 2016 - Prof Imke de Pater, UC Berkeley

26

Juno’s    Specific  Science  ObjectivesOrigin

Determine  water  abundance  and  constrain  core  mass  to  decide  among  alternative  theories  of  origin.

InteriorUnderstand  Jupiter's  interior  structure  and  dynamical  properties  by  mapping  its  gravitational  and  magnetic  fields

AtmosphereMap  variations  in  atmospheric  composition,  cloud  opacity  and  dynamics  to  depths  greater  than  100  bars  at  all  latitudes.

MagnetosphereCharacterize  the  three-­‐dimensional  structure  of  Jupiter's  polar  magnetosphere  and  auroras.

Slide  adapted  from  Orton

Page 19: Galaxy Forum USA 2016 - Prof Imke de Pater, UC Berkeley

Probing  the  deep  interior  from  orbit

Juno  maps  Jupiter  from  the  deepest  interior  to  the  atmosphere  using  microwaves,  and  magnetic  and  gravity  fields.

Slide  adapted  from  Orton

Page 20: Galaxy Forum USA 2016 - Prof Imke de Pater, UC Berkeley

Mapping  Jupiter’s  gravityTracking  changes  in  Juno’s  velocity  reveals  Jupiter’s  gravity  (and  how  the  planet  is  arranged  on  the  inside).

Precise  Doppler  measurements  of  spacecraft  motion  reveal  the  gravity  field.

Slide  adapted  from  Orton

Page 21: Galaxy Forum USA 2016 - Prof Imke de Pater, UC Berkeley

Juno’s  Microwave  Radiometer  measures  thermal  radiation  from  the  atmosphere  to  as  deep  as  a  few  100  bar  pressure  (few  100  km  below  the  visible  cloud  tops).    

Sensing  the  deep  atmosphere  

Goal:  to  determine  the  3D  H2O  and  NH3 abundances.

Page 22: Galaxy Forum USA 2016 - Prof Imke de Pater, UC Berkeley

Sensing  the  deep  atmosphere  

At  wavelengths  >  6  cm  (freqs <  4  GHz)  Jupiter’s  synchrotron  radiation  makes  it  very  difficult  to  map  the  atmosphere  from  the  Earth.  Juno  flies  inside  the  radiation  belts.    VLA  map  at  21  cm;  

de  Pater  et  al.,  1997

Juno’s  field  of  view  is  tiny  à need  context  maps.

Page 23: Galaxy Forum USA 2016 - Prof Imke de Pater, UC Berkeley

Slide  adapted  from  Bagenal

Mapping  Jupiter’s  magnetic  field  and  aurora

HST/NASA

Page 24: Galaxy Forum USA 2016 - Prof Imke de Pater, UC Berkeley

Ground-­‐based  observing  campaign  to  support  Juno

• Dedicated  network  of  amateur  astronomers.  

• Many  telescopes  allocated  time,  from  X-­‐rays  to  uv-­‐visible,  near-­‐and  mid-­‐infrared,  and  radio  from  cm—m  wavelengths.

• Unique  opportunity  to  characterize  Jupiter’s  atmosphere  from  the  stratosphere  down  to  100’s  of  bars.  Time  variability  mandates  simultaneous  data  to  fully  characterize  the  planet.

• Synergy  VLA  &  Juno:  VLA  provides  context  maps  to  put  Juno  MWR  data  in  perspective;  Juno  extends  the  information  to  much  deeper  levels.  Juno  also  has  a  superb  view  of  the  poles.