26
Vermelding onderdeel organisatie November 4, 2014 Wave-driven flow in topographically complex environments Johan Reyns, Dano Roelvink (UNESCO-IHE) Sander van der Pijl, Herman Kernkamp (Deltares) 1

DSD-INT 2014 - Symposium Next Generation Hydro Software (NGHS) - Wave modelling with D-Flow FM-Fiji Islands (coastal wave modelling), Johan Reyns, UNESCO-IHE

Embed Size (px)

Citation preview

Vermelding onderdeel organisatie

November 4, 2014

Wave-driven flow in topographically complex environments

Johan Reyns, Dano Roelvink (UNESCO-IHE)

Sander van der Pijl, Herman Kernkamp (Deltares)

1

Why?

3

Walsh et al., 2012

erosion/overwash/inundation

/ Swell Waves

TRADITIONAL SANDY BEACH

Why?

4

REEF-FRONTED BEACH

Wind Waves / Swell Waves Long waves

Reef flat Lagoon

Beach

erosion/overwash/inundation

Salinization

Why?

5

Image by Robert A. Rohde Knutsen et al, 2010 This is why

Why?

6

Hoeke et al, 2013

Why?

7

Long-period swell waves in equatorial zone (no cyclones)

- Generated by storms at mid to high latitudes in the band

of easterly trade winds

- Enter tropical regions with a

- dominant SE direction in the N hemisphere

- dominant NE direction in the S hemisphere

Why?

8

In a reef system, long wave energy is equally/more dominant than

wind/swell (=short) wave energy beyond the short wave breakpoint

Pomeroy et al., 2012

Why?

10

Palau

XBeach modeling concepts

Wave groups Bound and free long waves

Wave breaking and

surface rollers

Sediment transport and

bed level changes

cg

gh

Wave-flow motions time

scale:

25 s <T< 250 s

2D-wave action balance

yxc Ac A c AA D

t x y

( , , )( , , )

( , )

wS x yA x y

x y

A(

) A(

)

A(

)

Propagation is resolved for wave

action in each directional bin similar

to HISWA (Holthuijsen et al., 1989)

however retaining the non-

stationarity of the wave field to allow

for wave groups.

Wave breaking dissipation D

according to Roelvink 1993

X

Y

Flow modeling

sx bx xFu u uu v g

t x y h h x h

sy by yFv v vu v g

t x y h h y h

0hu hv

t x y

E Su u u

E Sv v v

GLM description (Walstra et

al., 2000)

xyxxx

xy yy

y

SSF

x y

S SF

x y

Wave forcing

( )

( )

2

2

11 cos

2

sin cos

11 sin

2

g

xx w

g

xy yx w

g

yy w

cS S d

c

cS S S d

c

cS S d

c

Radiation stresses

Bottom shear stress Pressure gradients Wave forcing

In practice…

- Set up a D-Flow FM* model, add a waveenergybnd

- All flow-related parameters go into the .mdu file

- Add a params.txt XBeach parameter file to the model folder

- Add the wave related parameters into params.txt

- Add additional wave bc files if necessary (eg spectrum file)

- Set wavemodelnr to 4, and run the model!

* D-Flow FM = hydrodynamic simulation engine of Delft3D Flexible Mesh

In practice…

In *.mdu file: … [waves] Wavemodelnr = 4 … [numerics] cstbnd = 1 … In *.ext file: … QUANTITY=waveenergybnd

In practice

nx = 317

ny = 3

xori = 0.

yori = 0.

alfa = 0.

depfile = boers.dep

vardx = 0

dx = 0.1

dy = 0.1

posdwn = 1

thetamin = -180.

thetamax = 180.

dtheta = 360.

CFL = 0.7

eps = 0.005

back = 0

left = 1

right = 1

tstart = 0

tintg = 1

tintm = 133

tintp = 1

tstop = 1800.

taper = 0

nt = 12000

rho = 1025

g = 9.81

tideloc = 0

zs0 = 0.

instat = 4 …………… and much much more!

thetamin = -180.

thetamax = 180.

dtheta = 360.

thetanaut = 0

instat = 4

bcfile = jonswap1.txt

rt = 1800.

dtbc = 0.5

fcutoff = 0.03

sprdthr = 0.01

hmin=0.005

break = 1

roller = 1

beta = 0.1

gamma = 0.43

gammax = 5.

alpha = 1.

delta = 0.0

n = 10.

nspr = 1

D-Flow FM XBeach

Directional grid

Wave parameters

Case study Bonriki, Kiribati

Case study

Case study

Hm0 = 2.0m Tp = 17s mainang = 45. deg

Case study

Case study

Case study

Wave height

Case study

Offshore Slope break Inlet

To do…

- Validate the implementation more thoroughly by setting up a test bank (help needed!)

- Add wave-current interaction

- Standardize wave outputs for morphology module

[email protected]

Thank you!