15
Combining density functional theory calculations, supercomputing, and data-driven methods to design new thermoelectric materials Anubhav Jain Energy Technologies Area Lawrence Berkeley National Laboratory Berkeley, CA AIChE 2016 Slides posted to http://www.slideshare.net/anubhavster

Combining density functional theory calculations, supercomputing, and data-driven methods to design new thermoelectric materials

Embed Size (px)

Citation preview

Combining density functional theory calculations, supercomputing, and data-driven methods to design new thermoelectric materials

Anubhav JainEnergy Technologies Area

Lawrence Berkeley National LaboratoryBerkeley, CA

AIChE 2016

Slides posted to http://www.slideshare.net/anubhavster

Using density functional theory to design new materials

2

A. Jain, Y. Shin, and K. A. Persson, Nat. Rev. Mater. 1, 15004 (2016).

We’ve initiated a search for new bulk thermoelectrics

3

Initial procedure similar to Madsen (2006)

On top of this traditional procedure we add:• thermal conductivity

model of Pohl-Cahill• targeted defect

calculations to assess doping

• Today - ~50,000 compounds screened!

Madsen, G. K. H. Automated search for new thermoelectric materials: the case of LiZnSb.J. Am. Chem. Soc., 2006, 128, 12140–6

New Materials from screening – TmAgTe2 (calcs)

4Zhu, H.; Hautier, G.; Aydemir, U.; Gibbs, Z. M.; Li, G.; Bajaj, S.; Pöhls, J.-H.; Broberg, D.; Chen, W.; Jain, A.; White, M. A.; Asta, M.; Snyder, G. J.; Persson, K.; Ceder, G. Computational and experimental investigation of TmAgTe 2 and XYZ 2 compounds, a new group of thermoelectric materials identified by first-principles high-throughput screening, J. Mater. Chem. C, 2015, 3

TmAgTe2 - experiments

5Zhu, H.; Hautier, G.; Aydemir, U.; Gibbs, Z. M.; Li, G.; Bajaj, S.; Pöhls, J.-H.; Broberg, D.; Chen, W.; Jain, A.; White, M. A.; Asta, M.; Snyder, G. J.; Persson, K.; Ceder, G. Computational and experimental investigation of TmAgTe 2 and XYZ 2 compounds, a new group of thermoelectric materials identified by first-principles high-throughput screening, J. Mater. Chem. C, 2015, 3

The limitation - doping

6

p=1020

VB Edge CB Edge

n=1020

1016

E-Ef (eV)

TmAgTe2600K

OurSample

• Calculations indicate TmAg defects are most likely “hole killers”.• Tm deficient samples so far not successful• Meanwhile, explore other chemistries

YCuTe2 – friendlier elements, higher zT (0.75)

7

• A combination of intuition and calculations suggest to try YCuTe2

• Higher carrier concentration of ~1019

• Retains very low thermal conductivity, peak zT ~0.75

• But – unlikely to improve further

Aydemir, U.; Pöhls, J.-H.; Zhu, H.l Hautier, G.; Bajaj, S.; Gibbs, Z. M.; Chen, W.; Li, G.; Broberg, D.; Kang, S.D.; White, M. A.; Asta, M.; Ceder, G.; Persson, K.; Jain, A.; Snyder, G. J. YCuTe2: A Member of a New Class of Thermoelectric Materials with CuTe4-Based Layered Structure. J. Mat Chem C, 2016

experiment

computation

Bournonites – CuPbSbS3 and analogues

• Natural mineral• Measured thermal conductivity for

CuPbSbS3 < 1 W/m*K– Stereochemical lone pair scattering

mechanisms• Measured Seebeck coefficient in

the range of 400 µV/K• BUT electrical conductivity likely

requires improvement – can calculations help?

• Total of 320 substitutions into ABCD3 formula computed

• Experimental study is next

8

Faghaninia A., Yu G., Aydemir U., Wood M., Chen W., Rignanese G.M., Snyder J., Hautier G., Jain, A. A computational assessment of the electronic, thermoelectric, and defect properties of bournonite (CuPbSbS3) and related substitutions (submitted)

Variation of properties with substitution

9

Faghaninia A., Yu G., Aydemir U., Wood M., Chen W., Rignanese G.M., Snyder J., Hautier G., Jain, A. A computational assessment of the electronic, thermoelectric, and defect properties of bournonite (CuPbSbS3) and related substitutions (submitted)

Variation of properties with substitution

10

Faghaninia A., Yu G., Aydemir U., Wood M., Chen W., Rignanese G.M., Snyder J., Hautier G., Jain, A. A computational assessment of the electronic, thermoelectric, and defect properties of bournonite (CuPbSbS3) and related substitutions (submitted)

Variation of properties with substitution

11

Faghaninia A., Yu G., Aydemir U., Wood M., Chen W., Rignanese G.M., Snyder J., Hautier G., Jain, A. A computational assessment of the electronic, thermoelectric, and defect properties of bournonite (CuPbSbS3) and related substitutions (submitted)

Interesting compounds and effect of scattering

12

Faghaninia A., Yu G., Aydemir U., Wood M., Chen W., Rignanese G.M., Snyder J., Hautier G., Jain, A. A computational assessment of the electronic, thermoelectric, and defect properties of bournonite (CuPbSbS3) and related substitutions (submitted)

Defects – selenide looks slightly better than sulfide

13

(a) (b)

• Multiple defects prevent n-type formation• p-type limited by SbPb defect. Situation slightly better in sulfide because VSe can help

compensate• Extrinsic defects calculations (not shown) do not provide clear paths forward

Faghaninia A., Yu G., Aydemir U., Wood M., Chen W., Rignanese G.M., Snyder J., Hautier G., Jain, A. A computational assessment of the electronic, thermoelectric, and defect properties of bournonite (CuPbSbS3) and related substitutions (submitted)

CuPbSbS3 CuPbSbSe3

Open data and software

14

www.materialsproject.org

www.pymatgen.org

www.github.com/hackingmaterials/MatMethods

www.pythonhosted.org/FireWorksNote: results of 50,000 transport calcs will eventually be posted here

Poster on automating surface calculations with these tools:Automating Workflows for Surface Science and Catalysis

Joseph H. Montoya and Kristin PerssonMonday, 6:00 PM - 8:00 PM

Grand Ballroom B (Hilton)COMSEF Poster session

Thank you!

• Collaborating research groups– Jeffrey Snyder– Geoffroy Hautier– Mary Anne White– Mark Asta– Hong Zhu– Kristin Persson– Gerbrand Ceder

• Primary researchers– TmAgTe2 – Prof. Hong Zhu and Dr. Umut Aydemir– YCuTe2 – Dr. Umut Aydemir and Dr. Jan Pohls– CuPbSbS3 – Dr. Alireza Faghaninia

• NERSC computing center and staff

• Funding: U.S. Department of Energy, Basic Energy Sciences, Materials Science Division

15Slides posted to http://www.slideshare.net/anubhavster