54
Synthesis and Characterization of Bidentate Phosphoryl Ligands for the Chelation of f-block Metals Jeremy Cunningham

CHM 491 Senior Seminar

Embed Size (px)

Citation preview

Page 1: CHM 491 Senior Seminar

Synthesis and Characterization of Bidentate Phosphoryl Ligands for the Chelation of f-block Metals

Jeremy Cunningham

Page 2: CHM 491 Senior Seminar

Power Crisis

• Nuclear Power Plant: $2-6 Billion

• One Fuel Cycle: $40mil

• Coal: $0.3/kWh

• Oil: $0.2/kWh

• Nuclear: $0.08/kWh

• Main Reason: Nuclear Weapons

Images from: YaleClimateCommunications.org

Page 3: CHM 491 Senior Seminar

Nuclear Power

•Provides 20% of energy in USA

•104 reactors in 31 states

•Cost of energy from nuclear is cheaper and more stable than from petroleum

•Nuclear power plants reduce the amount of greenhouse gases produced

Images from: http://www.world-nuclear.org

Page 4: CHM 491 Senior Seminar

Nuclear Waste Storage

• Nuclear waste is projected to increase 30% over the next twenty years

• Some waste products will generate considerable heat as they decay, others will remain intensely radioactive for very long time periods

• 270,000 metric tons of high level radioactive waste has accumulated in 30 countries

Page 5: CHM 491 Senior Seminar

Nuclear Waste: What is it?

The Royal Society Science Policy Centre Report 10/11, Oct 2011; ISBN 978-0-85403-891-6.

**it is this 1% of actinides that accounts for the long term radioactivity of the waste (103-106 years)**

lanthanides in this mixture interfere with transmutation of highly radioactive actinides

Page 6: CHM 491 Senior Seminar

Other Uses for Lanthanides and Actinides

MRI Contrast Agents:

Nd:YAG Lasers

Batteries

Magnets

Page 7: CHM 491 Senior Seminar

Metal Chelation: Defining Terms

• A complex is formed when a metal atom or ion, acting as a Lewis acid, bonds by accepting lone-pair electrons from ligands, acting as Lewis bases.

• A monodentate ligand attaches at a single coordination site of the central metal, a bidentate ligand at two sites, and a polydentate ligand at two or more sites.

• Coordination number represents the total number of points of attachment for a given metal atom or ion.

http://chemwiki.ucdavis.edu/Inorganic_Chemistry/Coordination_Chemistry

Page 8: CHM 491 Senior Seminar

Metal Chelation: HSAB Theory

Hard Acids: High Charge Small Atomic Radius Ex.) Ti4+, Cr3+, Cr6+

Soft Acids: large atomic/ionic radius Low Oxidation States Ex.) Pt2+, Pd2+, Ag+, Au+,

Hg2+

http://www.chem.latech.eduPearson, Ralph G. J. Chem. Sci., Vol. 117, No. 5, 2005, pp. 369–377

Hard Bases: High electronegativity Low Polarizability Ex.) OH–, F–, Cl–,

CH3COO–, CO32–

Soft Bases: Lower Electronegativity High Polarizability Ex.) R3P, SCN–, I–, CN–

Page 9: CHM 491 Senior Seminar

Chelation with d-block Metals

• The transition elements are those which haveopen d-subshells

• Geometry is metal dependent

• Easier to Separate

faculty.uml.edu/ndeluca/84.334/topics/topic6.html

Page 10: CHM 491 Senior Seminar

Metal Chelation: HSAB Theory

Hard Acids Ti4+, Cr3+, Cr6+

Soft Acids Pt2+, Pd2+, Ag+, Au+, Hg2+

Hard Bases OH–, F–, Cl–, NH3, CH3COO–, CO3

2–

Soft Bases R3P, SCN–, I–, CN–

Page 11: CHM 491 Senior Seminar

Chelation of the Lanthanides

Lanthanides:

• bonding is more ionic (buried 4f-orbitals)

• common oxidation state is 3+ across the row

• ionic radii varies only 17 picometers from La3+ (103 pm) to Lu3+ (86 pm)

Page 12: CHM 491 Senior Seminar

Chelation of the Actinides

Actinides:

• bonding is more covalent (5f orbital participation)

• Charges vary, ions and can have oxides

• U6+ Th4+ Pu4+ Am3+ Np5+ UO2

2+ PuO22+

• ionic radii similar as well (Th4+ = 105 pm; Np5+ = 101 pm; Tb3+ = 104 pm)

Page 13: CHM 491 Senior Seminar

Separation of f-block metals Actinides:

• bonding is more covalent (5f orbital participation)

• Slightly larger than lanthanides with similar oxidation number

Lanthanides:

• bonding is more Ionic (buried 4f orbitals)

f-element coordination chemistry:

• Both are considered as hard acids, ligand interaction predominately determined by steric/electrostatic interactions.

Page 14: CHM 491 Senior Seminar

Nuclear waste remediation

Kaminski, M. D.; Mertz, C. J.; et. al, J. Am. Chem. Soc. 2009, 131, 15705

Page 15: CHM 491 Senior Seminar

The PUREX Process

• Herbert H. Anderson and Larned B. Asprey at the University of Chicago, as part of the Manhattan Project

Kaminski, M. D.; Mertz, C. J.; et. al, J. Am. Chem. Soc. 2009, 131, 15705

Page 16: CHM 491 Senior Seminar

The TRUEXProcess

• Developed in the 1980’s for the extraction of all minor actinides and lanthanides.

Kaminski, M. D.; Mertz, C. J.; et. al, J. Am. Chem. Soc. 2009, 131, 15705

Page 17: CHM 491 Senior Seminar

The DIAMEX Process

• Predecessor to the TRUEX Process

• More eco-friendly upon incineration

Kaminski, M. D.; Mertz, C. J.; et. al, J. Am. Chem. Soc. 2009, 131, 15705

Page 18: CHM 491 Senior Seminar

The SANEX Process

• Sulfur-based soft-donor extractants show selectivity towards An(III)

• Varying pH enhances selectivity and alters solubility properties

Kaminski, M. D.; Mertz, C. J.; et. al, J. Am. Chem. Soc. 2009, 131, 15705

Page 19: CHM 491 Senior Seminar

Nuclear waste remediation

D. Häussinger, J. Huang, S. Grzesiek Journal of the American Chemical Society 2009 131 (41), 14761-14767

Actinides Tend to coordinate best with

soft donor atoms (S/N)

Lanthanides Tend to coordinate best with

hard donor atoms.

Page 20: CHM 491 Senior Seminar

The Biros Research Group

Page 21: CHM 491 Senior Seminar

Previous WorkCis-1,2-bis(diphenylphosphino)

Ethylene Dioxide

(Cis-dppeO2)

Coordinates to all f-block metals

No cis-trans isomerization observed

Cis-1,2-bis(diphenylphosphino) Ethylene Disulfide

(Cis-dppeS2)

Coordinates relatively poorly to Lanthanides

Cis-trans isomerization

P.T. Morse et al., Polyhedron (2015), http://dx.doi.org/10.1016/j.poly.2015.05.016

Paul Morse Brian Rawls

Page 22: CHM 491 Senior Seminar

Our Approach

Conjugated, rigid bridge ligand

Large Atomic Radius; greater electron dispersion, softer ligand

Longer bond length with a stronger dipole moment

P.T. Morse et al., Polyhedron (2015), http://dx.doi.org/10.1016/j.poly.2015.05.016

Page 23: CHM 491 Senior Seminar

Goals

Synthesize the selenide derivative of cis-dppe

Form complexes with f-block metals

Study the extraction efficiency of cis-dppeSe2

P.T. Morse et al., Polyhedron (2015), http://dx.doi.org/10.1016/j.poly.2015.05.016

Se

Se

Previous Extraction Data

Page 24: CHM 491 Senior Seminar

Characterization Methods: Phosphorus-31 NMR

• 31P has an isotopic abundance of 100%

• The 31P nucleus also has a spin of ½, making spectra relatively easy to interpret.

Page 25: CHM 491 Senior Seminar

X-Ray Crystallography•Bruker Diffractometer•Olex2

•Atomic Resolution

Characterization Methods:X-Ray Crystallography

Page 26: CHM 491 Senior Seminar

X-Ray Crystallography•Bruker Diffractometer•Olex2

•Atomic Resolution

Characterization Methods:X-Ray Crystallography

Page 27: CHM 491 Senior Seminar

SUMMER 2014

Trans-dppeSe2 observed (δP=Se:29.6ppm)

• Reaction occurred at reflux (65ºC) for 20 hours

• Red powder observed upon work-up

+KSeCN

THF

Page 28: CHM 491 Senior Seminar

Preparation of cis-1,2-bis(diphenylphosphoryl)Ethylene Diselenide

• Concentrated reaction conditions (0.13M)

• Under nitrogen

• Stirred at room temperature for 4 hours

+2Se(s)

Toluene

Page 29: CHM 491 Senior Seminar

31PNMR of reaction mixture• Three visible

products.

• Oxidized phosphorus: δ=(+)ppm

Page 30: CHM 491 Senior Seminar

Cis-1,2-bis(diphenylphosphoryl)Ethylene Monoselenide

δP:= -27.5ppm(d)

3JP-P= 22.5Hz

δP=Se=+22.2ppm(d)

1JSe-P= 1258Hz

Page 31: CHM 491 Senior Seminar

Trans-1,2-bis(diphenylphosphoryl)Ethylene Diselenide

δP=Se=+29.6ppm(s)

1JSe-P=695Hz, 815Hz

Z. Phasha, S. Makhoba, A. Muller, Acta Crystallographica E 68 (2012)

Page 32: CHM 491 Senior Seminar

Cis-1,2-bis(diphenylphosphoryl)Ethylene Diselenide

• After Benzene Recrystallization

δ: +23.7ppm(s)1JP=Se= 737.1Hz

ppm

Page 33: CHM 491 Senior Seminar

X-Ray Crystal Structure

P=O: 1.50Å P=S: 1.95Å P=Se: 2.10Å

Page 34: CHM 491 Senior Seminar

Phosphorus-Chalcogenide Bond Character

• Strong dipole, weak bond strength

• Unobservable on IR

• P to Se σ bond determines bond energy

Bond

Dipole Moment

(D)IR(cm-

1)

31PNMR

(ppm)P=O 4.51* 1173 21.6

P=S 4.88* 637 32.3P=S

e 5.17* 561* 23.7

P.T.Morse Th(IV) complexes with cis-ethylenebis(diphenylphosphine oxide): X-ray structures and NMR solution studies Polyhedron*Kenneth B. Capps,Bodo Wixmerten,Andreas Bauer, and, and Carl D. Hoff Inorganic Chemistry 1998 37, 2861-2864

Page 35: CHM 491 Senior Seminar

Phosphorus-Chalcogenide Bond Character

• Strong dipole, weak bond strength

• Unobservable on IR

• P to Se σ bond determines bond energy

• Observed dissociation of Selenium

Bond

Dipole Moment

(D)IR(cm-

1)

31PNMR

(ppm)P=O 4.51* 1173 21.6

P=S 4.88* 637 32.3P=S

e 5.17* 561* 23.7

P.T.Morse Th(IV) complexes with cis-ethylenebis(diphenylphosphine oxide): X-ray structures and NMR solution studies Polyhedron*Kenneth B. Capps,Bodo Wixmerten,Andreas Bauer, and, and Carl D. Hoff Inorganic Chemistry 1998 37, 2861-2864

Page 36: CHM 491 Senior Seminar

Cis-Trans Isomerization

• Observed as sole product in KSeCN reaction• During attempted isolation via column

chromatography• Under heated reaction conditions• In very dilute solutions• After extraction studies

Page 37: CHM 491 Senior Seminar

Cis-Trans: Aguiar & Daigle (1964)

Observations:

• Photoisomerization of cis-dppe failed.

• Benzene minimized isomerization

• Treatment trans-dppeS2 with acetic acid lead to trans-dppeO2

• Reflux in THF with PCl3 caused isomerization

A.M. Aguiar and D. Daigle, J. Am. Chem. Soc., 86, 2299 (1964)

,

Page 38: CHM 491 Senior Seminar

Cis-Trans Thermal Isomerization

A.M. Aguiar and D. Daigle, J. Am. Chem. Soc., 86, 2299 (1964)Sigl, M., Schier, A. & Schmidbaur, H.  Zeitschrift für Naturforschung B, 53(11), pp. 1301-1306 (2014).

Requires a strong lewis acid (such as PCl3)

MX3= AlBr3, GaBr3, InBr3

Page 39: CHM 491 Senior Seminar

Cis-Trans Thermal Isomerization

Sigl, M., Schier, A. & Schmidbaur, H.  Zeitschrift für Naturforschung B, 53(11), pp. 1301-1306 (2014).

Requires a strong lewis acid (such as PCl3)

Unoxidized phosphines. MX3=GaBr3, AlBr3, InBr3

Page 40: CHM 491 Senior Seminar

Cis-Trans Photoisomerization

Janet B. Foley, Alice E. Bruce, and Mitchell R. M. Bruce Journal of the American Chemical Society 1995 117 (37), 9596-9597

Page 41: CHM 491 Senior Seminar

Cis-Trans Photoisomerization

• π* character increases with atom softness

• Isomerization occurred within 3 mins by exposure to >300nm light

Janet B. Foley, Alice E. Bruce, and Mitchell R. M. Bruce Journal of the American Chemical Society 1995 117 (37), 9596-9597

Page 42: CHM 491 Senior Seminar

Cis-Trans IsomerizationHνΔ

Page 43: CHM 491 Senior Seminar

Cis-Trans IsomerizationHνΔ

δ- - - δ- - - δ- - δ- - δ- δ-

<< <

P=O: 1.50Å P=S: 1.95Å P=Se: 2.10Å

Page 44: CHM 491 Senior Seminar

Extraction Procedure

• 1x10-4M An(III)/La(III) solution in 1M HNO3

• 3x10-4M cis-dppeSe2 solution in DCM.

Martin, K. A.; Horwitz, E. P.; Ferraro, J. R. Solvent Extr. Ion Exch. 1986, 4, 449; Stockmann, T.; Ding, Z. Analytical Chem. 2011, 83, 7542–7549.

Page 45: CHM 491 Senior Seminar

Extraction Procedure

• 1x10-4M An(III)/La(III) solution in 1M HNO3

• 3x10-4M cis-dppeSe2 solution in DCM.

o 6.4x10-4M Arsenazo solution in Formic Acid Buffer (pH=2.9)

o λmax=655nm for Ln(III)

λmax=665nm for An(III)

Martin, K. A.; Horwitz, E. P.; Ferraro, J. R. Solvent Extr. Ion Exch. 1986, 4, 449; Stockmann, T.; Ding, Z. Analytical Chem. 2011, 83, 7542–7549.

Page 46: CHM 491 Senior Seminar

Previous Extraction Efficiencies Cis-dppeO2

P.T.Morse Th(IV) complexes with cis-ethylenebis(diphenylphosphine oxide): X-ray structures and NMR solution studies Polyhedron

Page 47: CHM 491 Senior Seminar

Previous Extraction Efficiencies Cis-dppeS2

Page 48: CHM 491 Senior Seminar

Extraction Efficiency of cis-1,2-bis(diphenylphosphino) Ethylene Diselenide

Page 49: CHM 491 Senior Seminar

Synthesis of cis-dppeSe1

• Reaction occurred in benzene

• The mixture was sonicated for 20mins before sitting for 3hrs

• ½ Equivalent of selenium, sit for 24 hours

• Methanol recrystallization

Page 50: CHM 491 Senior Seminar

Characterization of Cis-dppeSe1

Crystal Structure 31P-NMR

• δP=Se=+22.2ppm(d)• 1JSe-P= 1258Hz

• δP:= -27.5ppm(d)• 3JP-P= 22.5Hz

Page 51: CHM 491 Senior Seminar

Summer 2015

Cis-dppeS2: Platinum Complex

2

2

Page 52: CHM 491 Senior Seminar

Future Work

Form more f-block metal complexes Preform more extraction studies Synthesize a new ligand

Page 53: CHM 491 Senior Seminar

Acknowledgements and Funding Acknowledgements

Dr. Shannon Biros Dr. John Bender Dr. Richard Staples GVSU Chemistry Faculty

• Funding• National Science Foundation• GVSU: OURS

Dr. Richard StaplesMichigan State University

Dr. John BenderGrand Valley State University

Page 54: CHM 491 Senior Seminar

Questions?