30
HUMAN EVO LUTIO N Vol. 29 - n. 1-3 (141-170) - 2014 Meijers, D.J.W. International Society for Biosemiotic Studies, Beta Sciences Department Head and Teacher (Retired), Zuyderzeecollege, Emmeloord, NL 8302 GA, Netherlands. Email: [email protected] Key words: Homo sapiens, baby swimming, aquatic adaptation, aquatic reflex es , human evolution. Aquatic Adapting of Human Newborns In 1960 Sir Alister Hardy posed the question Was M an more aquatic in the past?” To honour Hardy, this paper discusses the skills of human ba- bies and toddlers in aquatic settings as a possible leftover of a littoral past in the evolution of our human ancestors. It demon- strates that there is a sensitive period early in the life of Homo sapiens when specific innate templates are activated for adapt- ing to aquatic conditions. However, whether the early aquatic adaptations of babies are connected to the evolution of Homo sapiens has never been reported. Following their introduction, baby swimming courses received a lot of attention in many different countries. In 1937, M yr- tle McGraw first described the swimming behaviour of babies. Since then it has always been reported that the repeated expo- sure of babies to water activates reflexes that result in ‘water- proof babies. Additionally striking is the quicker physiological, mental and social interaction of swimming babies compared to their non-swimming peers. From very early childhood to maturity, Homo sapiens is able to waterproof behaviour, float- ing, swimming and diving. In the Hominin group, only Homo sapiens is aquatically versatile, an attribute not shared by Pan (Chimpanzee, Bonobo) and Gorilla. Therefore, this is an argument for “yes” to Hardy’ s question. The baby-swimming project Nowadays, however, with the proliferation of baby-swimming courses for the privi- leged all over the world, one can clearly observe that with an early start, only a few months from birth, babies and toddlers are able to learn to float and perform primitive swimming and diving, thus providing the bases for my observations in this article. Yet even though there are aquatic adaptations in human newborns, these have never been reported of other hominin babies (Gorilla, Chimpanzee, Bonobo), which suggests that there are no other hominin ‘waterproof babies. And while wading and grabbing food in shallow water is known of all hominins, real swimming and diving, to collect fruits de mer, in the wild is never seen in apes, which is not surprising, since their habitats rarely necessitate these abilities. Early knowledge of complex animal behaviour remained obscure during the heyday of behaviourism, and one aspect was underestimated: babies and very young children are very aware and ‘understand’ more than was first believed. Myrtle McGraw knew this, and commenced research, which led to the discovery of the ‘water baby’. From the foetus to old age, internal processes are based on innate mechanisms. The definitions ‘reflexes’ and ‘instincts’ are no longer useful given that many very complex

Aquatic adapting of human newborns newborns

Embed Size (px)

DESCRIPTION

Aquatic adapting newborn humans in: HUMAN EVOLUTION' Vol. 29 - n.1-3 - 2014 Based on lecture in conference: "Human Evolution Past, Present & Future – Anthropological, Medical & Nutritional Considerations” *

Citation preview

Page 1: Aquatic adapting of human newborns newborns

HUMAN EVO LUTIO N Vol. 29 - n. 1-3 (141-170) - 2014

Meijers, D.J.W. International Society for Biosemiotic

Studies, Beta Sciences Department

Head and Teacher (Retired),

Zuyderzeecollege, Emmeloord, NL

8302 GA, Netherlands. Email: [email protected]

Key words: Homo sapiens, baby

swimming, aquatic adaptation,

aquatic reflexes , human evolution.

Aquatic Adapting of Human Newborns In 1960 Sir Alister Hardy posed the question “Was Man more

aquatic in the past?”

To honour Hardy, this paper discusses the skills of human ba-

bies and toddlers in aquatic settings as a possible leftover of a

littoral past in the evolution of our human ancestors. It demon-

strates that there is a sensitive period early in the life of Homo

sapiens when specific innate templates are activated for adapt-

ing to aquatic conditions. However, whether the early aquatic

adaptations of babies are connected to the evolution of Homo

sapiens has never been reported.

Following their introduction, baby swimming courses received

a lot of attention in many different countries. In 1937, Myr-

tle McGraw first described the swimming behaviour of babies.

Since then it has always been reported that the repeated expo-

sure of babies to water activates reflexes that result in ‘water-

proof’ babies. Additionally striking is the quicker physiological,

mental and social interaction of swimming babies compared

to their non-swimming peers. From very early childhood to

maturity, Homo sapiens is able to waterproof behaviour, float-

ing, swimming and diving. In the Hominin group, only Homo

sapiens is aquatically versatile, an attribute not shared by Pan

(Chimpanzee, Bonobo) and Gorilla.

Therefore, this is an argument for “yes” to Hardy’s question.

The baby-swimming project

Nowadays, however, with the proliferation of baby-swimming courses for the privi-

leged all over the world, one can clearly observe that with an early start, only a few

months from birth, babies and toddlers are able to learn to float and perform primitive

swimming and diving, thus providing the bases for my observations in this article.

Yet even though there are aquatic adaptations in human newborns, these have never been

reported of other hominin babies (Gorilla, Chimpanzee, Bonobo), which suggests that

there are no other hominin ‘waterproof’ babies. And while wading and grabbing food in

shallow water is known of all hominins, real swimming and diving, to collect fruits de

mer, in the wild is never seen in apes, which is not surprising, since their habitats rarely

necessitate these abilities.

Early knowledge of complex animal behaviour remained obscure during the heyday

of behaviourism, and one aspect was underestimated: babies and very young children are

very aware and ‘understand’ more than was first believed. Myrtle McGraw knew this,

and commenced research, which led to the discovery of the ‘water baby’.

From the foetus to old age, internal processes are based on innate mechanisms. The

definitions ‘reflexes’ and ‘instincts’ are no longer useful given that many very complex

Page 2: Aquatic adapting of human newborns newborns

142 MEIJERS

adapting processes have been discovered since. In both ethology and neuropsychology,

several ‘time frames’ are reported for adaptive imprinting to activate time-critical or

time-sensitive central nervous system (CNS) templates.

Template models are tools for understanding how intensely babies and mothers in-

teract, and how this is responsible for the development in general (including aquatic

adaptations). These are further described in the ‘Mother-child interaction and aquatic

activities’ section below.

Mechanisms for the innate releasing of preformatted CNS templates are influenced

particularly during primal periods. Once active in aquatic settings, they bring about well

developed floating, swimming, diving and playing, and an ‘aquatic memory’ until adult-

hood.

In water, babies factually experience their first sense of free moving, feeling greater

freedom and receiving important stimulation of neural pathways in the brain, more than

their ‘terrestrial bound’ peers. Babyswimmers sit, stand, crawl and start walking (just

like non-babyswimming peers), though they definitely acquire important extra-activated

development, beyond their waterproof abilities.

Activities in and near water with the important, active participation of mothers (and

others) are very natural. In traditional societies, extended families or joint family groups

acting together provided this. When in these societies babies are ‘waterproof’, they float,

dive and swim primitively, while interacting with groups of kin made up of adults and

children. Nowadays, the ‘norm’ in modern societies is a ‘nuclear’ family, and the concept

of ‘extended’ as in the original semi-aquatic populations rarely exists. Consequently,

its role has now been taken over by the professionals in baby and children swimming

courses.

Suggested hypothesis

By displaying the ability to float, swim and dive during the first few months after

birth, human babies and toddlers are proof of successful aquatic adaptation. The inbuilt

properties involved are triggered in a genetically preset, sensitive process, which starts

in the newborn and lasts for about a year. This quickens the development of physical,

physiological, emotional and social capacities, and the functional properties of babies and

toddlers.

These spontaneous innate adaptations to aquatic conditions are not known to occur in

apes, including the other hominins, Pan (Chimpanzee, Bonobo) and Gorilla. This indicates

that it is part of our ancestral heritage and possibly a reason for responding “yes” to Sir

Alister Hardy’s question.

Page 3: Aquatic adapting of human newborns newborns

143 AQUATIC ADAPTING OF HUMAN NEWBORNS

Waterbabies and Myrtle McGraw (1899–1988)

In the 1930s, Myrtle McGraw [6, 25, 26] demonstrated that babies, through adapta-

tion, could learn involved movements like how to stay afloat. Her data suggested how

cortical control emerges gradually, enabling infants to increase awareness of and control

over actions. Her way of testing was considered controversial, at a time when underesti-

mating the perceptions and emotions of newborns was normal. Yet to McGraw it was the

other way around, and her results are now accepted.

Swimming was only a part of it, and having noticed its positive influence, she made

many professionals aware of it. When, in the 1930s and ’40s, Myrtle McGraw first pub-

lished the effects of aquatic training on babies, it inspired in Homo sapiens a widespread

swimming boom in newborns and babies.

Her work inspired research on babyswimming. She began in the heyday of behav-

iouralism, and her views on the limitations of perspective were underscored in Myrtle

McGraw: Pioneer in Neurobehavioral Development, Dalton and Bergenn [6]. The fol-

lowing is a brief account of how it all began:

She reported that she and another experimenter, at Columbia Presbyterian Medical Centre,

entered an elevator together, he with a monkey on his shoulder and she with a baby in her arms.

Both were headed for the laboratories to conduct some physiological measurements. As the elevator

ascended, the young man asked her why she was studying babies.

She answered, “Well, really, I am not studying babies, I am interested in the process of growth.”

“Then why do you use human babies and not animals for subjects?” he asked, “You can do

more with animals, and they aren’t nearly so messy.”

“Yes, I know,” she answered, “but when your monkey grows up it will still be a monkey, while

my baby will be a human. I want to know how he does it.”

She was not content with ‘standard’ processes, described as ‘classical’ and ‘operant’

conditioning, and was a forerunner of early ethological-based reasoning. She refused to

observe monkeys and apes merely as subjects, and possibly was the only person to witness

the aquatic properties of our newborns. Some of her renowned ‘followers’ were: Virginia

Hunt Newman (World Aquatic Babies & Children Network WABC), Langendorfer and

Bruya [22], Diem [7], Barnett [3], Freedman [10] and Odent [30, 31].

Baby ‘swimming’ is not, of course, real swimming, but the term ‘babyswimming’

became commonly used when successful baby courses started. It is, in fact, only the reali-

zation of ‘waterproof’ behaviour. Real swimming is only possible after a specific period.

Although we refer to ‘babies’, generally it is thought that aquatic activities should only

commence after four to six months, and sometimes even later because the immune system

has not yet been fully inoculated and the infant is less able to perform voluntary move-

ments.

Biological arguments for an earlier start in ‘Homo sapiens in natura’ are based on

facts: although this is not generally accepted, earlier is possible, even in the neonatal pe-

riod.

Page 4: Aquatic adapting of human newborns newborns

144 MEIJERS

In the original (very small) populations of many ‘primitive’ (non-industrial, often trib-

al) semi-aquatic cultures, babies were taken care of in water, and mothers spent more years

breast-feeding their babies and toddlers; a basal habitat connected with resources required

immunoglobulin antibodies. The principal ‘extended family’ in those cultures is in no way

comparable to the (vast, disease-spreading) mass-populations of modern Homo sapiens.

To find adaptations and the name of this ‘probable ancestor’ is risky since it can only be

observed now with the interference of professional trainers in pleasant swimming pools.

A survey of waterproof babies in semi-aquatic human populations would have more value,

but their existence is fast diminishing, and researchers are hindered by distinct private and

social rules.

Water adapted newborns had, in fact, already been observed in the 18th century as

mentioned by Odent and Johnson [30]: “When Captain Cook discovered the Hawaiian

Islands in 1778, he later wrote of seeing ‘neonates, floating on their backs, in the warm

streams and lagoons’ …”

However, reported sightings of natural water births in sea people societies are increas-

ingly rare. Eyewitnesses occasionally still report accounts of young indigenous children

swimming and diving in the Amazons, on Andaman and Nicobar islands and in all the

swimming and diving boat-dwelling, fishing and foraging sea nomad communities. These

diminishing populations, with several features in common, are found in the Southeast

Asian territories of Myanmar, Thailand, Malaysia, India, Indonesia, Phillippines; and on

the South Korean Jeju Island, with its female divers.

In Seashore – Primitive Home of Man [36], Carl Ortwin Sauer described:

However primitive the people who live by warm or temperate water, they are generally excel-

lent swimmers and divers. European seamen who visited Tasmania in early days were impressed by

the ability of the aborigines to swim and dive, especially to bring shellfish from the sea floor. The

natives of the Gulf of California were among the most primitive inhabitants of North America; they

included the Seri of the mainland and, on the peninsula of Lower California, the Pericu, Gaicura, and

Cochimi. All were very adept swimmers and divers. Spaniards employed them to collect valuable

pearl oysters (of the genus Pinctada), when diving for which they weighted themselves with stones.

The Pericu were also able to spear fish while diving.

In the New Scientist, Helen Phillips [33] reported remarks by Erica Schagatay about

observations on the physiological properties of Indonesian Sea Dwellers: “Orang Suku

Laut sea people spend up to 10 hours every day in the water, they give birth in the water,

the children dive before they walk and the people harvest all their food from the sea.”

Françoise Freedman [10], founder of BirthLight baby swimming, conducted field-

work on the upper Amazon in the 1970s and noticed how much fun indigenous people had

everyday with babies and children playing in the rivers. Babies were trained to hold onto

parents and swim towards them and were always picked up before they got distressed. It

was the Amazonian forest people who inspired the original BirthLight approach to ba-

byswimming.

Page 5: Aquatic adapting of human newborns newborns

145 AQUATIC ADAPTING OF HUMAN NEWBORNS

Baby-swimming is a model accepted in all industrialised societies, and the resulting

waterproof babies are called ‘waterbabies’.

Alongside baby swimming, waterbirths for human babies were propagated in the

1970s and became accepted in Western societies. Experiences became available through

the work of Michel Odent [31].

Waterbirths appeared to be remarkably safe and peaceful, and opened a new connec-

tion between our waterproof babies and the innate, semi-aquatic ‘waterproof’ past of their

ancestors.

A general lack of knowledge about waterproof freely moving human newborn babies

and toddlers accounts for why a split between ourselves and our kin had never been no-

ticed. Possibly because it had not occurred in parallel hominin evolutionary lines: Pan and

Gorilla.

Our historical knowledge was based only on information on ‘adult’ behaviour. Wa-

terproof swimming and diving was scarcely mentioned, let alone waterproof babies and

toddlers. Therefore, without Myrtle McGraw, we would possibly never have made the

connection. Her exemplary work was an important source for knowledge, as described in

the next paragraph.

The aquatic behaviour of newborns and young babies

Getting newborns and very young babies used to water happens earlier and easier

than expected. With increased safety precautions to prevent drowning, parents were en-

couraged to overcome their initial fears and what was recognized in all aquatic ‘starters’

was this:

- the diving reflex already functions in newborns,

- none inhale water during ‘diving’ when gently pulled underwater,

- babies are not generally apprehensive about the next dive, and some are eager to repeat it,

- underwater, the epiglottis closes over and blocks water from going down into the throat,

- babies always keep their eyes wide open under water,

- at times, they open their mouths without choking,

- they perform primitive ‘salamander-like’ swimming,

- they move their legs to make a turn,

- movement to the surface is carried out with an effective lordotic curvature of the lower

back (Figure 5),

- within a few months, they are able to float on their backs.

After years of worldwide baby swimming, more is known about the innate behaviour-

al properties and the many general positive effects. Interaction between babies, mothers,

fathers, brothers and sisters is considerable in realizing what is performed. Ethologically,

it is comparable to the behaviour of aquatic and semi-aquatic animals when adapting their

young to water.

Page 6: Aquatic adapting of human newborns newborns

146 MEIJERS

An important point is whether there is a difference in the acquisition of adaptive re-

flexes in newborns: is the baby ‘only subject’ to what is trained aquatically, or is there an

innate resource for adaptation to aquatic behaviour?

Reflexes were already related to physiology and neurobehavioral development, and

McGraw’s conclusions started further research into its development (Sweeny J.K. [40]):

The swimming reflex in normal infants was first described by McGraw, who developed a three

phase classification of aquatic behavioural development: A. reflex swimming, B. disorganized mo-

tor activity, and C. deliberate voluntary movements. These three phases were concluded after 445

observations of 42 infants (from 11 days to 2 ½ years old) to identify the amphibian motions used

by children of varying ages during spontaneous prone propulsion through water without swimming

instructions.

Figure 1. The diagonal crawling of Johnny Woods

McGraw [25, 26] (modified, Meijers).

It is not certain whether A, B, and C, of Johnny Woods in Figure 1 are all really de-

liberate voluntary movements. A. is a swimming movement of the depicted Salamander

larvae, observed by McGraw in eleven day old Johnny Woods. Johnny was swimming B

and C for about 2–3 months before the movement became more variable. Possibly it ‘acti-

vated innate locomotive properties’ which once triggered led to more.

In stage B, we recognize something from the Infant Swimming Resource ISR [19a]

promotion film Drowning Prevention Strategy for Infants and Young Children. Harvey

Barnett [3] popularised the teaching of effective floating in babies. It is comparable to a life

jacket position, based on the buoyancy of the ‘baby’s own body shape’.

B is coincidental with the achievement of unsupported bipedal locomotion.

C, newborn ‘salamander’ movements, no longer present when the infant is placed in

water after phase B, suggest original ontogenetic adaptation to intrauterine environment.

Their ‘reappearance’ then in phase C, possibly has something to do with practicing (learn-

Page 7: Aquatic adapting of human newborns newborns

147 AQUATIC ADAPTING OF HUMAN NEWBORNS

ing) like in her co-twin studies. They also demonstrate the influence of decreasing gravita-

tional constraints on the behaviour of newborns.

McGraw considered these three stages to be better organized than either neonatal

crawling or stepping movements. It was an early observation of the positive effects of baby

swimming based on the first free movements of newborns. To say that they are ‘only’ reflec-

tive and ‘not voluntary’ is neither useful nor appropriate here. Eibl-Eibesfeldt [8] defined

them more approprionately as innate properties of babies and innate releasing mechanisms.

He mentioned diagonal crawling (right) in Figure 2 as ‘diagonal walk’ but this drawing is

the replicated salamander swimming phase published by McGraw (A in Figure 1) [25].

Myrtle McGraw recounts in an interview published as Myrtle McGraw: Pioneer in

Neurobehavioural Development in Portraits of Pioneers in Psychology [6]:

Coghill (1929, 1930) visited our laboratory several times and I had become somewhat knowl-

edgeable of his embryological studies of salamanders. I was particularly impressed with his descrip-

tion of the ‘S’ movement of the spinal axis of embryonic vertebrates and his theory of individual

development. I had observed that some of the newborn infants could progress several feet across the

bed by using that kind of S-shaped spinal movement. Watson had stated, on the basis of his earlier

studies, that there was no evidence of a swimming reflex in the behaviour of the newborn infant.

When he saw me demonstrate the reflex by putting the babies in the water and letting their heads go

under, he said, “Girl you have a lot more courage than I had.” It was those observations and thoughts

that triggered our studies of the swimming reflex in the infant (McGraw in 1939 [25]).

The fixed action experiments shown in Figure 2 describe newborns as ‘robot-like’

subjects: “... the cerebral cortex is at that time not functional in any real sense”[8]. How-

ever, in these experimental tests with newborns, physical and emotional reactions are vis-

ible. Nowadays we recognize such negative emotional states. ‘Robotic’ is hardly the way to

describe McGraw’s work with the Woods boy in 1934, even though she preceded him. She

later said that in her opinion a mother should first of all learn her baby’s responses, an alter-

native viewpoint preluding the notion that postnatal functional brain development within

the cerebral cortex involves organizing complex interregional interactions (Jonson [18]).

In 1953, McGraw began training undergraduate women to work with infants and

young children. In an article published after her retirement in 1972, she argued that in

an era featuring the disappearance of the extended family and with increasing instability

in nuclear families, methods should be developed to train young people to observe and

understand the behavioural development of infants before having their own.

Her work with free movements in water provided compelling evidence of how the

innate possibilities of infants and young children have systematic and quantifiable ef-

fects on development. It was an eye opener to incorporated innate elements of baby

swimming that presented a link to a possible ancestral habitat of the ‘species Homo

sapiens’ (Lorenz [23]; Eibl-eibesfeldt [8, 9]).

With this in mind, it is important to be aware of recent findings, and it may be useful

to cite Sample Gosse and Gotzke [35] from Interacting (0 -3 Months) - Relating to Each

Other Right From the Start:

Page 8: Aquatic adapting of human newborns newborns

148 MEIJERS

Figure 2. Eibl-Eibesfeldt: Hand grasping, foot grasping, primary stepping, diagonal crawling [8].

Page 9: Aquatic adapting of human newborns newborns

149 AQUATIC ADAPTING OF HUMAN NEWBORNS

ing) like in her co-twin studies. They also demonstrate the influence of decreasing gravita-

say that these little beings are ‘prewired’ to communicate with others. Even very young babies show

interests and abilities that support interaction with those around them. In turn, caregivers promote

interaction by treating a baby’s behaviour as a form of communication. Listening and vocal skills de-

velop within the framework of these caregiver-baby interactions. Throughout the first three months,

caregivers and babies are learning to understand each other’s communication signals.

Discussions about baby swimming resulting in sound toddlers and little swimmers are

important. Langendorfer and Bruya [22] mention this explicitly, pointing to different views

and consequences. Examples are: “Generally, children are not developmentally ready for

formal swimming lessons until their fourth birthday,” and neither the terms ‘developmen-

tally ready’ nor ‘formal swimming lessons’ are well defined. No current research data ex-

ists to support the application of the ‘fourth birthday’ (or any other such age) as a cut-off

point for initiating swimming lessons. Langendorfer and Bruya take a view somewhere in

between: baby swimming training is okay, but starting at a very early age is not. They warn

not to underestimate the dangers of a very early start, as McGraw did with the newborn

Johnny Woods. I would accept a warning related to baby swimming courses with many

participants in ‘open’ swimming pools, but not regarding effective home settings, when

one knows what is safe and appropriate during the first month.

Recently (2010) these stances are changing and the involvement of organisations is

becoming more acceptable. In all of this, however, the role of ‘adults’ is prominent. If I

change the word ‘adults’ to ‘parents and siblings’ it fits 100% with the ethological (natural

biological) perspective: the acting together of joint family groups in traditional societies.

Behaviour then includes all actions between mother and child, such as interactions (speak-

ing, singing, chattering, caressing, playing), discipline (physical guiding, watching) and

actions not directed at the child (interactions with other people present). In that way, it

functions as it still does in sea dwelling populations and similar extinct groups, based on

the same ‘memory’ of probable littoral ancestors.

Critical or sensitive imprinting period

‘Imprinting’ was introduced into ethology by research on animal behaviour. ‘Imprints’

are now explained as aspects of innate ‘neural templates’ responsible for specific adapta-

tions. The process ‘runs’ in a fixed short or variable, longer time-window, known as the

‘critical or sensitive period’.

During this interval, an indelible memory of certain salient stimuli in the ‘home’ en-

vironment is acquired and retained. Imprinted behaviour, however, is by no means in all

cases 100% regulated by templates, and whether they are innate or learned by experience

is not always clear. As far as the behaviour of waterproof babies is concerned, innate fixed

short-term patterns play an important role. In later stages of toddlers and pre-school chil-

Page 10: Aquatic adapting of human newborns newborns

150 MEIJERS

dren, a ‘not-clear-cut’ logical situation appears, and learning real swimming is still pos-

sible, of course. Though it takes much longer for those who have never been ‘baby swim-

mers’, and longer still if they do so when they are older children or adults. This is clearly

comparable to problems arising from an overdue start to learning a non-native language.

Eibl-Eibesfeldt [8, 9] defined several learning strategies and inter-social behavioural

processes in Homo sapiens. A problem was, and often still is, that of describing the human

as a ‘tabula rasa’ (Uzgalis W. [42]):

At one extreme, we have John Locke’s (1632–1704) idea of ‘tabula rasa’ that proposes that the

minds of newborn infants are blank slates that will be differentiated and altered only through sensory

experience. Modern biological determinism represents the other extreme. In its strictest form, this

ideology suggests that behaviours are inherent and innate, resulting from the expression of genes.

Most intellectuals subscribe to a view somewhere between these two extremes, on the gradient of a

controversy that is still a hot topic of debate in many intellectual fields.

Heather Sample Gosse and Carrie Gotzke [35] no longer accepted ‘tabula rasa’ when

interacting with (0–3 month old) babies. McGraw recognized this earlier and, in fact, used

interacting techniques with babies in ways most developmental researchers had never done

so previously. Knezek [21] correctly described it: “a variety of faculties to receive and

abilities to manipulate or process”.

A mammalian central nervous system (CNS) is never a ‘tabula rasa’ when engaged in

finding solutions to abstract problems. In Homo sapiens, the earliest moments of childhood

involve intense occupation with modulating important bodily parameters. It is an ongoing

interaction with the environment to overcome obstacles.

Behavioural aspects of imprinting aquatically are only a ‘small’ part of everything else

that is going on in babies. Nevertheless, intense interacting between newborns and mothers

(and other caregivers) during free-moving baby-swimming results in effective adaptation.

It is a complete ‘package’, functioning early on in (even very young) babies, with breath-

holding, swimming, diving and floating.

The language-adapting timeframe is a better-known example that can be used as a

comparison with aquatic adaptation. Language is a very important aspect of ‘super-social’

Homo sapiens, and a lot of research is available, although there are still different opinions

about when it starts and how it functions. Humans obviously require extensive postnatal

experience to produce and decode speech sounds, the basis of language. A critical period

for learning a new language is demonstrated by the poorer ability (fluency), based on the

age, evident in non-native immigrants to adapt to situations requiring a different language.

The ability to score well in tests on non-native grammar and vocabulary declines from ap-

proximately the age of 6 or 7 onwards. And while innate templates for adapting to aquatic

conditons begin to run and ends already in the first year, with language-imprinting, there

is a longer ‘critical period’ for completion. And although, as with language, swimming can

be learnt many years later, it will take older children and grown-ups a lot longer to achieve

results.

Page 11: Aquatic adapting of human newborns newborns

151 AQUATIC ADAPTING OF HUMAN NEWBORNS

Harvey Barnett, founder of Infant Swimming Resource, presented his considerations

in A Behavioural Approach to Paediatric Drowning Prevention’ at the University of Okla-

homa Health Science Centre, on March 5, 2009 [3]. He stated that the apparent reflexes of

very young children adapting to aquatic circumstances differ completely between 2 and 4

years of age. An early starting point leads to quick and easy aquatic adaptation of newborns

and toddlers. Barnett, like others, mentions that such development is connected to early

psychomotor abilities. It is a very complex process with many more involved preformatted

templates, which starts earlier than after 4 months and is not ‘just an unconscious instinc-

tive process’. It functions in a biosemiotic way as interaction between open-minded ‘sub-

jects’: a Homo sapiens neonate with its mother and with everyone and everything around

it. The conscious open mind of a young baby is a factor that should not be underestimated.

Myrtle McGraw showed visionary reasoning [6]:

… Let me reiterate what I said in the concluding chapter of Growth: A behaviour-

course is not an isolated unit growing in every direction all the time at once. It is comprised

of many aspects, each of which has its own growth rate and rhythm. While each aspect of a

growing action-pattern has its own identifiable way of developing, it is at the same time an

integral part of the total behaviour-pattern, in the same fashion that the behaviour-pattern

in question is an integral part of the total action-system of the individual. One aspect of

a behaviour-pattern goes through a period of rapid development, then pauses as another

aspect moves rapidly forward. But the growth of each aspect of development influences

and determines the growth of the other. The development of one aspect overlaps with

the development of another so that there are no sharp lines of demarcation separating the

phases of a developing pattern, but the connection of one phase or one pattern with another

is more than mere overlapping.

There is a close interdependence in the growth of various aspects of a pattern. Devel-

opment works backwards and forwards; here and there it strikes rapidly, in other spots it

pauses or regresses. The appearance of a new movement or aspect of pattern facilitates or

inhibits the growth of a previously developing movement and also determines the emer-

gence and organization of a succeeding one. It is the gradual twining and intertwining

of movements and phases of developing patterns, which make it difficult to allocate the

rhythms and spurts of growth. (McGraw, 1935: pp. 305-306)

If ‘innate CNS templates’ had then already been defined, she would certainly have

used them to make her point.

Mother-child interaction and aquatic activities

The releasing time of sensitive templates to adapt a mother and baby to each other

starts in the first few hours and days after birth. The absence of contact between the two, or

less than is needed, makes adapting uneasy and difficult in many ways. Early participation

in highly interactive baby swimming enhances mutual adapting, and an ‘extra’ spin-off has

Page 12: Aquatic adapting of human newborns newborns

152 MEIJERS

been proved: the quicker development of babies. Apart from the waterproof and prelimi-

nary features of baby swimming already described, an account of some of the important

properties involved will be useful. Free movement in water provides heightened multi-

sensory stimulation involving touch, hearing, sight, taste and smell, in combination with

emotions, such as confidence, trust and self-esteem:

1. Physical development reveals that, like all animals, humans are subject, both directly

and indirectly, to the potentially irresistible influences of metabolic effects on muscle, mo-

tive, and motor actions.

2. Once born, a baby senses gravity, a ‘sensation’ that was not present in the womb, where

it experienced the influence of ‘mass’, producing sensations that it received during 3D

movements of its mother. After birth, ‘weight’ is added, and the baby has to learn to ‘cope’

with the difference. During aquatic activities, this ‘change’ is revived, teaching babies how

to govern ‘habitat morphologic-motor familiarity’ in gaining and losing gravity at the same

time.

3. As a result of a combination of properties (wetness, coldness, buoyancy, resistance etc.),

aquatic activities improve perceptivity, an important enhanced faculty. Perception is one of

the most important prerequisites for healthy mobility. Water also offers ‘three-dimension-

ality’ and a freedom of movement that is not possible on land. It provides confidence and

has a positive effect on the physical and mental development of the baby.

4. The intense physical parent-child body contact promotes in the baby a strong sense of

trust in its parent. In addition, it promotes mutual trust in the psychological development

of the child.

5. Mothers recognize the sounds of their own babies and different states of mind:

enjoyment, fun, pleasure, tiredness, hunger, pain, and fear. Vocal ‘noise’ is always abun-

dantly there when children are active in water, albeit in a swimming pool, lake, riverside,

or on the beach. During baby swimming and other aquatic activities, babies and parents

show sensitive, appropriate-minded talk linked to what they are feeling-sensing-thinking.

Babies and little children show a preference for ‘baby talk’, making eye contact with the

person who is speaking. Adult and adolescent speech to babies is already innately adapted

to this special style of speaking: slower, more melodic, higher pitched, and more repetitive.

Babies understand this ‘infant-directed voice-pitch speech’, which is moulded by emo-

tions and mental states. Suggesting the basic ingredients of empathy (the ability to share

the emotions of another person), it proves that newborns have a sense of self. Engaging in

these sensitive, appropriate mind-voices is an innate reactive behaviour between child and

parent, interacting with feelings, senses and meaning. This is a communicating principle

also dominant in other mammalian species, which is used effectively on a large scale in

baby swimming activities.

6. Newborns prefer to look at faces and face-like stimuli, and recognize their parents’ faces

very quickly, not withstanding blurry vision. Like many adults, newborns show a prefer-

ence for eye contact. Gaze following is an important developmental skill in older babies,

and even newborns practice it in some rudimentary form. In baby swimming sessions, this

Page 13: Aquatic adapting of human newborns newborns

153 AQUATIC ADAPTING OF HUMAN NEWBORNS

skill is permanently active, the baby looks to the parent to determine how they should react

to new situations. This also occurs while babies are diving, their eyes being always open.

Behaviour during adaptation includes all interactions between all behaviours of the

mother and baby, such as talking, singing, chattering, caressing, playing, watching, physi-

cal guiding in floating, swimming and diving. I chose only a few and use a simplified bio-

semiotic model (Figure 3). Biosemiosis presents biological denotations and specific defini-

tions to describe the interconnected existence of all living ‘entities’. A complex dispute

is going on in ‘biosemiotic circles’, but for me biosemiosis is a general ‘tool’ that can be

applied to all life sciences (Hoffmeijer [16], Sedov [37], Witzany [43]).

Figure 3. template model and templates functioning.

To explain how it functions, I use biosemiosis: a CNS template ‘senses’ an outside

‘signal’, ‘reacts’ in turn, creating a ‘self’-produced ‘sign’ connected to an internal ‘sense

of self’. Activating innate templates via gene-environment interaction, this starts up very

complex adaptive ‘spirals’ (Figure 3). The functions of this ‘webbing’ is not 100% robotic

(‘instinctive’) in adaptation and behaviour: CNS innate coded templates release ‘module

patterns’ called [Fixed] Action Patterns ([F]AP), connecting many templates of ‘higher’

levels (Figure 3). External and internal ‘signals’ interact, and these effect development and

activate learning.

The releasing of innate ‘mama’-preformatted template protocols already starts in the

foeto-placental period, and exerts considerable influence on the mother and foetus.

In other words, timed actions and interactions between mother and child release the

linked ‘templates’ in the CNS, together with information on preserved co-adaptive func-

tions throughout the generations.

In ‘Aquatic Adapting of Newborn Humans’, different levels influence one another.

Having released specific templates of mother-and-baby-bonding, the next step is neces-

sary. In the picture of mama and baby interacting in water (Figure 4), I have added some

aspects of interactive sensing, signing and reacting, which speak for themselves.

Page 14: Aquatic adapting of human newborns newborns

154 MEIJERS

Figure 4. Mama-baby interacting in water (© Holloway [41]).

The complex functioning of innate templates are the basic mechanisms behind baby

and toddler performance in aquatic settings. Thanks to baby swimming, we now know that

it makes active babies and toddlers waterproof.

Human baby swimmers show a considerably short ‘timeline’ in aquatic adapting, and

develop a number of different characteristics impressively faster than early non-aquatically

active peers (Figure 3), which is noted in all associated literature, and corroborated by di-

rect observations. The innate properties of our offspring to ‘shape’ these aquatic activities

reveal a probable beginning of early ancestral populations in ‘natural’ (semi) aquatic habi-

tats. Not just any stimuli will do: imprinting is linked to restricted innate ‘neural templates’

and triggered only by specific interactions, such as those in aquatic activities.

Manifold worldwide baby swimming courses promote these basic activities and share

a vision about what is safe and sound. Françoise Barbira Freedman [10] from BirthLight,

speaking for them all says:

Newborn babies are naturally at home in water, having spent nine months in the am-

niotic fluid of the womb. Playing together in water is an excellent way for parents to relax

and start bonding with their new child. It also develops the child’s physical and mental

skills as well self-confidence.

Page 15: Aquatic adapting of human newborns newborns

155 AQUATIC ADAPTING OF HUMAN NEWBORNS

Aquatic imprinting of babies

The success of baby swimming is real, connecting to linked CNS templates in the

sensitive imprinting period. This ‘runs’ from the first months to more than a year after birth.

To reach full potential in baby swimming, interaction with parents (or trainers) is necessary.

It establishes an ethological perspective of human adaptation under aquatic conditions.

Missing early imprinting can damage basic behaviour in many birds and mammals, our

species included (Eibl-Eibesfeldt [9] and Alcock [1]).

The same applies in psychology and neuropsychology and some, like Balatskii [2],

have compared it to ethological definitions in biology:

Imprints are tinges of human instincts, which were studied, particularly by K. Lor-

enz. Many of the currently dominating theses concerning the imprinting process are either

disputable or vague. What we know about imprinting is as follows: First, imprints occupy

an intermediate place between genetic imperatives (instincts) and conditioning. Second,

they are formed accidentally (their character cannot be predicted). Third, they are realized

during critical periods called moments of imprint vulnerability, when the individual cannot

resist external directives. Fourth, imprints are of two types: good (positive directives) and

bad (negative directives).

Safe aquatic behaviour is most effective in young human babies when they interact

with parents (and siblings). This creates positive affectivity between children and parents,

and two significant ethological observations have been noted:

a) Missing this experience can lead to problems later on when really learning to swim and

dive.

b) It takes longer to adjust, and, in some cases, to overcome hydrophobia.

It does not make swimming impossible forever after, but it makes it more difficult to ac-

complish.

Clearly, this differs substantially from missing the important imprinting phases for de-

veloping much more complex abilities, like speech and language (Purves et al [34]). Lan-

guage is of the utmost importance for the functioning of Homo sapiens, swimming is not.

Because learning to swim and dive is obviously possible for adults later on, I prefer to

label the time-frame for baby swimming as ‘sensitive’ and ‘critical’, rather than ‘pertinent’.

The three phases are constantly observed and referred to in baby swimming courses and

are a main focus in research.

McGraw exposed little Johnny Woods to water in the first few weeks, but nowadays

starting at four to six months is the general practice. Reasons for starting later are generally

associated with the immune system, which in newborns is thought to be not fully devel-

oped until around six months. An earlier start would be more likely in ‘primitive’ non-

dense populations, where mothers pass on immunoglobulin antibodies by breast-feeding

for several years.

The baby’s first swimming activities are referred to as ‘salamander like’ [25, 17, 19]

as shown in Figure 1 and 6a. Then, by rotating the legs in one direction and popping-up,

Page 16: Aquatic adapting of human newborns newborns

156 MEIJERS

it realizes floating on its back, as if wearing a life jacket. Some of the reported move-

ments when testing very young babies in water were ethologically described earlier by

Eibl-Eibesfedt [9], but were not explicitly ‘aquatic’ traits:

Swimming movements can be released in infants that are a few weeks old by placing them into

the water in a prone position and merely holding them up by their chin. They paddle in a coordinated

fashion with hands and legs. The behaviour disappears at 3 to 4 months.

A salamander-swimming fragment of a simulation of “salamander locomotion” [14]

was recently added to the film clip about Johnny [17, 19] (Figure 5, right) and is phase A

in Figure 1 and Figure 6.

Figure 5. Left: Drowning prevention ISR YMCA [19b], right:

Johnny Woods’s 11 day ‘salamander’ style [24, 17, 19a].

The ‘floating effect’ is an important feature described on numerous sites about baby

swimming. A good and important example is the film published by ISR [3, 19]: Miles

Story, Drowning Prevention Strategy for Infants and Young Children”. The baby in this

film had 3 weeks of ISR lessons prior to fulfilling fully clothed self-rescue. Figure 5 dem-

onstrates baby Miles moving his legs for turning upwards. McGraw described this as the

movement of ‘Johnny’ B, in Figure 1, and it can be observed in baby swimming classes

everywhere. Submerged, they hold their breath, start swimming motions, and perform ro-

tation to float (Figure 6). Floating on their backs, face above water, they start to breath and

make relaxed crying and babbling sounds. A very young baby can only paddle a few feet

before being able to float. Because at birth the head is one third of its weight, it is not able

to raise it out of water. Breathing is one of the skills that need to be learnt for buoyancy,

but swimming needs much more. Founder of Infant Swimming Resource (ISR), Harvey

Barnett [3] states that ‘real’ swimming is not possible before at least twelve months when

the body has grown successfully.

Page 17: Aquatic adapting of human newborns newborns

157 AQUATIC ADAPTING OF HUMAN NEWBORNS

Figure 6. Three (ancestral) stages: A. salamander stroke, B. rotation, and C. float ing .

© Meijers, 2009.

The human aquatic adaptive sensitive period ends after about one year. Taking into

account Myrtle McGraw’s results and modern knowledge of preset templates, it is plau-

sible that sensitive adaptive processes start directly after birth. However, accepting a very

early start, and that ‘we’ as newborns have ‘instinctive’ behaviour and beyond that ‘innate

imprinted’ learning phases, is still heavily debated. Nevertheless, neuropsychology has

picked up on links with definitions of imprinting in the ethology of animals and Homo sa-

piens, which show a more open-minded approach to our position among other mammals.

While discussing the role of imprinting in Bonding Matters, The Chemistry of Attachment,

Palmer [32] states that the situation still needs improvement:

Sadly, over the last century parents have been encouraged by industry-educated experts to

ignore their every instinct to respond to baby’s powerful parenting lessons. Psychologists, neurolo-

gists, and biochemists have now confirme d what many of us have instinctually suspected: that many

of the rewards of parenthood have been missed along the way, and that generations of children may

have missed out on important lifelong advantages.

Cited in nearly all publications on baby swimming, next to Myrtle McGraw, is the

work of Liselotte Diem [7]. By systematically testing kindergarten children and children

from the Cologne Sports High School in Germany, between 1974 and 1976, she discov-

ered that greater achievement is realized by interaction with parents and peers. It resulted

in children learning to swim at an early age and demonstrating advanced development in

motor skills, reaction time (reflexes), concentration (focus), extra positive social interac-

tion, self-confidence, independence and a greater tendency to cope with new unfamiliar

situations. Overall, children were better adjusted than their peers who had not participated

in early swimming programs. It confirmed that children who started swimming at an early

age, benefited from positive interaction and bonding with parents. Liselot Diem stated:

Page 18: Aquatic adapting of human newborns newborns

158 MEIJERS

Clearly evident and statistically born out, children who started to swim in their third month:

1) showed an earlier and greater disposition for contacts, integrated faster and earlier to a peer group

and were able to overcome disappointments caused by playmates more readily,

2) were more independent and less fearful when confronted by new situations,

3) showed better results in regard to intellectual ability and performance than the children in the

comparison groups,

4) had greater precision in motion, better co-ordination and better balance.

As Federal Minister for Education and Science, she therefore propagated swimming

for babies, and teaching methods and gymnastics for children at preschool and kindergar-

tens.

Sigmundsson and Hopkins [38] recently explored the effects of baby swim-

ming on subsequent motor skills. In this study a group of active baby swimmers

(2-4 months old) was compared to a group that had never had this experience.

Once again the results corroborate those of McGraw and Diem, and show an accurate view

of stimulating swimming activities, as noted in the following key passages:

— Physical exercise facilitates the development of motor skills.

— Programmed baby swimming may have positive effects on motor skill development.

— Programmed targeted baby swimming activities promote hand-eye coordination and

vestibular stimulation.

— Baby swimming may have rather specific effects on the motor domain, its potential

positive benefits should also be explored in other areas of relevance in child development.

Bell et al., in Concept Clarification of Neonatal Neurobehavioural Organization

(NNBO)” [4] formulated this:

What is already known about this topic:

1. In the neonatal period (the first 28 days after birth) there is a sensitive and dynamic

unfolding of development unique to the neonate.

2. This is therefore an opportune time to assess and intervene to promote optimal

neurobehavioural organization.

3. The policy and culture of many maternal-child units demand clinicians to be task rather

than synchrony-oriented and thus there are missed opportunities to enhance neonatal neu-

robehavioural organization.

What is added:

1. Inconsistent terminology, lack of a gold standard measurement, limited understanding

of the concept’s interplay between environmental interaction and genetic expression, and

limited evidence of the concept’s predictive relationship between the neonatal period and

later developmental trajectories were identified in literature.

2. Neonatal neurobehavioural organization is the ability of the neonate to use goal directed

states of consciousness, in reciprocal interaction with the care-giving environment, to fa-

cilitate the emergence of differentiating, hierarchical and coordinated neurobehavioural

systems.

Page 19: Aquatic adapting of human newborns newborns

159 AQUATIC ADAPTING OF HUMAN NEWBORNS

3. Maturation of neonatal neurobehavioural organization is evidenced by the neonate’s

ever-increasing resiliency and capacity to learn from complex stimuli.

Partly mentioned in the conclusion:

Neonatal neurobehavioural organization is a global phenomenon that captures the es-

sence of healthy full-term neonatal function as resilient, individualized, complex, experi-

ential and holistic. A clear conceptual definition will aid the international community (1)

to communicate effectively within and between disciplines, (2) to apply evidence-based

research findings, and (3) encourage the development of valid and reliable instruments to

capture the multiple dimensions of NNBO. Clarification of NNBO directs attention to the

infant’s experience, which facilitates sculpting of early NNBO.

All totally in accordance with ethological concepts, and finally the observations of

Gottlieb [12] in Myrtle McGraw’s ‘Unrecognizable Conceptual Contribution to Develop-

mental Psychology’:

In the late nineteenth century and through much of the twentieth century, the notion of the

early developmental autonomy of motor behaviour pervaded behavioural embryology and the de-

velopmental psychology of infant behaviour. In the midst of this predeterministic climate of opinion

concerning motor development, Myrtle McGraw briefly and tentatively broached the probabilistic

epigenetic notion of a bidirectional or reciprocal relationship between structural maturation and

function, whereby structural maturation of the nervous system is influenced by functional activity as

well as the other way around.

Myrtle McGraw thus anticipated our current understanding of the role of experience in the

cortical and motor maturation of infants in the first year of postnatal life. It is all the more remarkable

that she contributed this when there was a theoretical climate of opinion epitomized by predeter-

ministic epigenetic thinking. In the same vein, McGraw’s second unrecognized contribution is her

clear formulation of a flexible critical period concept in 1935, one that is consonant with our current

understanding.

What is described here are the processes mentioned earlier which fit in a biosemiotic

model. Swimming adaptation of (even very young) Homo sapiens babies is a remarkable

example, because it happens very early on, and always in the same order. Once the in-

volved templates start to function, they produce not only aquatic competence and stability,

but much more besides. And it is worth repeating that the effects of baby swimming have

been verified over and over again, unleashing an unexpected series of ‘innate’ possibilities

in newborn Homo sapiens.

McGraw [25], Langendorfer [22], Diem [7], Barnett [3], Freedman [10], MacDonald

[24], Odent [31] and Sigmundsson and Hopkins [38] have all witnessed it, and recently

so have Jorgensen et al., in 2012, in their findings published in Adding Capital to Young

Australians [20]:

Children under five who have swimming lessons develop better language, literacy and nu-

meracy skills and are likely to be more prepared for the transition to school, according to a Griffith

University study.

Page 20: Aquatic adapting of human newborns newborns

160 MEIJERS

The four-year study surveyed almost 7000 parents of children from Australia, New

Zealand and the United States, and independently assessed 177 children aged three, four

and five. While acknowledging benefits from baby-swimming, here they are somewhat ex-

aggerated, and although Jorgenson’s group does promote important acquisitions, I totally

reject a boosting of IQ ‘for all’.

Most parents simply don’t have access: lack of spare time, lack of money, non-orien-

tated baby swimming society etc. Even in Australia, the percentage of baby swimmers is

small. The study is of no value if it does not compare subjects with those who never had

the aforementioned benefits.

Is the IQ boosting effect still measurable in adolescents and adults? I shouldn’t think

so, like with language: little expat children learn foreign languages very quickly, but their

older brothers and sisters do not. This has no influence later on in life. As far as adults are

concerned, it is different and comparable to the difficulties encountered when learning to

swim.

My only serious point is that baby-swimming does prove that there is an aquatic

‘something’ connected to our evolution, apparent from this critical or sensitive imprinting

period, and rest my case, given the ‘overall picture’ of our babies’ aquatic behaviour, and

Eibl-Eibesfeldt’s notion in Human Ethology [9]: the ethological coherence of babies, tod-

dlers and children in all human populations everywhere.

Neoteny and pedomorphosis

The hypothesis of the aquatic adapting of newborns has no bases if not connected to

neoteny and pedomorphy. The swimming adaptation of a newborn Homo sapiens has to

be linked to carried ancestral ‘predispositions’. In species, phylogenetic characteristics are

revealed in adults who retain traits previously seen in juveniles. In fact, human newborns

in water remind us of the original neotenic developmental properties described in differ-

ent animals and humans, also by Lorenz [23], Morris [28] and Gould [13]. This important

point is the result of research into transcriptional neoteny in Homo sapiens.

A finding of less note, though still important, shows that neoteny in Homo sapiens acts

on considerably separate levels (Somel et al. [39]).

Lorenz defined the combination of neotenic and pedomorphic retention of (foetal and)

juvenile characteristics into adult life, possibly linked to original ancestral properties:

… In other words, it only involves palingenetic characters that are recapitulated from ancestral

forms. It was necessary to discuss all of this in some detail because human beings correspond to the

juvenile stages of anthropoid apes in a large number of features, both in morphology and in the realm

of innate behaviour. Because a number of these persistent juvenile features of humans are ancestral

characters, authors that failed to take into account the principles of neoteny set out above have re-

peatedly cited them as arguments against our derivation from anthropoid apes. In reality, they do not

provide such negative evidence.

Page 21: Aquatic adapting of human newborns newborns

161 AQUATIC ADAPTING OF HUMAN NEWBORNS

3. Maturation of neonatal neurobehavioural organization is evidenced by the neonate’s

man) apes. This is an important notion for newborns and adults, corresponding with some

properties of morphology, physiology, and innate behaviour.

Therefore, if aquatic adaptive behaviour in our species is comparable to Lorenz’s

definition of neoteny, it allows us to connect with ancestral characters. Neoteny in humans

is generally linked to very long developing processes of the brain.

The question still remains: What was first ancestral? Maybe a naked, shore-dwelling,

swimming bipedal ape first, and then a brain-exploding tool-maker as a spin-off? If we ac-

cept this, early human ancestors possibly did undergo forced adaptation in restricted sets of

habitats, leading to the aquatic physiological, morphological and behavioural properties.

Not strictly aquatic, but at least intensely semi-aquatic, thus demanding special adapta-

tions. As to exactly where, when and with whom, we are still speculating what possibly

happened (Fig 19.). Niemitz [29] hints: “we see in children, adolescents and adults ances-

tral behaviour, the preference for aquatic and semi-aquatic habitats.”

My own theory is that the juvenile aquatic properties of human newborn babies and

toddlers are neotenic and pedomorphic examples of aquatically adapted mature Homo sa-

piens. The physiological properties encompass: diving, controlling breath, early swimming

movements, or swimming and diving in very little children, which continues from adoles-

cence to maturity. Swimming, diving, and playing in and near water can all be classed as

natural human behaviour in all stages of growth.

This fits with hand-free bipedalism connected with aquatic adaptations. Bipedal abili-

ties came first, followed by the gradual use of tools, and skilful dispersions, with greater

brains in bigger skullcaps.

And then, of course, we have long distance swimming, (very) deep diving, and float-

ing on practically anything available. Not just for playing, but also for foraging, dispersing,

transporting and travelling.

Views are gradually changing, albeit cautiously, as outlined in Wrangham et al. [44]:

Given that early hominins in the tropics lived in relatively dry habitats, while others occupied

temperate latitudes, ripe, fleshy fruits of the type preferred by African apes would not normally have

been available year round. We therefore suggest that aquatic or semi-aquatic underground storage

organs of plants were likely to have been key fallback foods, and that dry season access to aquatic

habitats would have been an important predictor of hominin home range quality. This study differs

from traditional savannah chimpanzee models of hominin origins by proposing that access to aquatic

habitats was a necessary condition for adaptation to savannah habitats. It also raises the possibility

that harvesting efficiency in shallow water promoted adaptations for habitual bipedality in early

hominins.

Would the explorative activity have been facilitated by the ancestral aquatic adapta-

tions we have seen in newborn Homo sapiens? Maybe we need to point to strong evidence

on the speed of worldwide human dispersals along shores, riverbanks and over water to

many remote islands, archipelagos and ‘new’ continents. Acknowledged neotenic facts

further support the theory: like newborns, both sexes are without fur. The absence of fur

Page 22: Aquatic adapting of human newborns newborns

162 MEIJERS

prevents negative cooling in semi-aquatic habitats. Water evaporating from fur costs bodily

heat, as I once demonstrated to students with a wet T-shirt. Another strong point: our babies

have a much greater surface-volume proportion than adults, resulting in a much stronger

cooling effect. It therefore seems logical that they are considerably more ‘naked’ than na-

ked grown-ups, and have more subcutaneous fat linked to their surface-volume proportion.

A denser and fattier fur, like that of many aquatic mammals, was an option, but we

are not the only naked talented mammalian swimmers and divers. Subcutaneous fat is an

adaptation to swimming and the in-and-out of water activities of babies, toddlers, children

and adolescent humans. Via isolation, it protects most aquatic mammalian species against

cooling and heat loss in two ways: by allowing less cooling while swimming (and diving),

and by preventing heat loss through evaporation ashore. The production of sebum acts as

a basic water-repellent in newborns (and foetuses) and is maintained in all stages up to

pubertal and adult humans (oily waterproof secretion of the sebaceous glands). Apart from

that, it is also an important protector against infections.

Chimpanzees, as revealed in experimental medical studies, have very different skin

to ours. Their sebaceous glands are not as well developed, and only rarely do they contain

glycogen granules, which are abundant in all human sebaceous glands. This must have

something to do with not having adapted to similar habitats. The alignment of centres of

buoyancy and gravity in males and females differ. Predominantly, females are better able to

float horizontally with considerable body volume above the surface, because their centres

of gravity and buoyancy almost coincide, allowing them to swim with ease and float com-

fortably. An example of the position of ‘floaters’ is provided in Figure 7.

Figure 7. Floating baby and floating mama.

Page 23: Aquatic adapting of human newborns newborns

163 AQUATIC ADAPTING OF HUMAN NEWBORNS

What is true for mothers is even more so for babies. Successful ISR training of the

floating position proves it. Can a mother floating with her baby during water-play be the

realization of semi-aquatic adaptation? Is the mother’s ability to float proof of a neotenic

baby feature? The unproven, though accepted, conclusion is, worldwide human babies are

able to realize waterproof behaviour. Moreover, swimming, diving, and playing in and near

water is natural behaviour at all ages.

Discussion about what possibly happened

Waterproof behaviour in newborns is a unique, innate feature of our versatile swim-

ming and diving species. Homo sapiens is a talented aquatic swimmer and diver, playing,

foraging, dispersing, transporting and travelling in water. Our real swimming, diving and

fun in ‘the wild’ is totally absent in purely terrestrial hominin (Pan, Gorilla). For them,

swimming and diving is impossible because buoyancy is hindered by body shape and dis-

persed muscle mass. Their habitats are not semi-aquatic, though wading and grabbing food

in shallow water has been known. Aquatic behaviour is natural in babies, mature adults

and in the elderly. Research shows that baby-swimming enhances early social interaction,

self-confidence, independence, and coping with new unfamiliar situations. This special

adaptive development is connected to innate psychomotor and social abilities in the first

year of life. If we accept this, a semi-aquatic habitat is clearly indicated as the probable

evolutionary starting point of our early human ancestors.

If we had started in a predominantly terrestrial habitat, why are our young unable to

walk and why do they cling to their mothers, without fur, for the first year of life? This,

combined with the aquatic adaptations demonstrated by our newborns, toddlers and adults,

seriously lacks coherence with a purely terrestrial habitat. Aquatically adapted babies re-

veal a far more probable link to ancestral semi aquatic habitats. Figure 8 depicts, in my

opinion what possibly happened: maybe a significantly small ancestral population were

isolated for a very long period of time on the islands of an archipelago. Possibly, that way,

a number of diversified archaic groups were forced to adapt to semi aquatic habitats.

Page 24: Aquatic adapting of human newborns newborns

164 MEIJERS

Figure 8. What possibly happened. © DM.

Although it may be said that some primates are partially semi-aquatic, they are

never so to the extent of being versatile fishers, waders, swimmers and divers like Homo

sapiens. This is worth noting because they are adapted to habitats possibly similar to

those of our early ancestors:

Proboscis monkey (Nasalis larvatus), arboreal, endemic to the south-east Asian is-

land of Borneo (Malay and Kalimantan). In Kalimantan, it is called monyet belanda

(‘Dutch monkey’) or orang belanda (‘blanke man’) because Dutch and British colonisers

had somewhat similar noses and fat bellies.

Rhesus macaque (Macaca mulatta), native to South, Central and Southeast Asia,

inhabiting a variety of habitats: grasslands, arid and forested areas, and often close to

human settlements.

They are regular swimmers, and babies as young as a few days old can swim. Adults

are known to be able to swim over half a mile to islands, but they are sometimes also

found drowned in places where they drink water.

Allen’s swamp monkey (Allenopithe cus nigroviridis), African Congo region. It has

slight webbing of fingers and toes which point to a partially aquatic life.

Brazza’s monkey (Cercopithecus neglectus) endemic to central African wetlands.

It is a widespread African forest primate.

The DNA gene sequences of humans and chimpanzees are nearly identical, but there

are differences in large sections of DNA near to ‘activated’ genes, which are highly varied.

Research indicates that differences between the two species can be attributed to these

genomic ‘gaps’, comparable to viral sequences called retro-transposons, which seem to

comprise about 50% of the genomes of Homo and Pongo.

Page 25: Aquatic adapting of human newborns newborns

165 AQUATIC ADAPTING OF HUMAN NEWBORNS

This is what I suspected, and therefore my hypothesis about small populations isolated

on islands becomes viable. We have often seen in evolution aquatically isolated small pop-

ulations, which started to differ. A well-known example is how the very different habitats

of the Galapagos islands ‘dictated’ it, resulting in many different Darwin’s finches. After

millennia, adapted ancestors have provided us with still viable aquatic newborns, why not?

I failed to find anything in paleo-anthropology, or genetics, that makes it impossible

that bipedalism came first, combined with a very suitable semi-aquatic habitat combination

of wading, swimming and diving.

When our babies can, it indicates that they could have been early semi-aquatic pio-

neers in the game of time. In those days, populations were very small. Fossilized baby

remains among paleontological finds, proving that I am either wrong or right, are hardly

to be expected.

The same can be said of finding hair, proving whether or not ancestors had fur. As

usual, ‘Lucy’ is not depicted as totally naked, and if she were, it may offend her feelings.

Hence, my arguments can only be based on living, fleshy, very young – and adult

– Homo sapiens. And I seriously defend my answer, “Well, maybe yes”, to Sir Alister

Hardy’s question in1960, “Was Man more aquatic in the past?” [15]. A conviction that is

further strengthened by the views of Elaine Morgan [27] in The Descent of Woman:

Most land animals can walk or even run within an hour of being born. But a newborn baby can-

not even crawl and is totally dependent on its mother. For this to happen it means that human babies

had to be able to evolve in very safe conditions.

An important aspect is the ‘floating’ reflex, which is compromised if babies and little

children are not brought into contact with water during the first four to six months, or up to

one year, after birth. If they have missed the aforementioned sensitive imprinting period,

then there is the real danger of little children drowning, as Eibl-Eibesfeldt mentioned [8].

Young babies and toddlers easily adapt to water within a few weeks. Consequently,

they have less fear in the presence of parents and react naturally to diving and swimming.

In their early years they demonstrate greater freedom of movement in aquatic conditions

and show increased coordination, compared to their land-bound counterparts.

Because training babies in swimming pools started only recently, the possibility of

strengthening reflexive adaptations was not fully recognized, and an ethological interpreta-

tion was lacking. There is, nevertheless, controversy regarding the importance of baby and

toddler swimming in order to realize very young competent swimmers. Although better,

safe swimmers are generally not to be expected at more than four years of age. However,

‘natural’ early learning in an extended family setting has existed for a long time in our spe-

cies and possibly much longer in our hominin history.

Many children in extensive societies, because of age discrepancies, started swimming

lessons much later, and so either adapted with difficulty, or didn’t adapt at all; some never

learned to swim, and a lot of adults, even seamen, are unable to swim. This is a valid reason

to promote baby-swimming as a valuable activity everywhere.

Page 26: Aquatic adapting of human newborns newborns

166 MEIJERS

However, this is no guarantee that every baby-swimming course provides safe swim-

ming and diving, despite the strong evidence in favour of quicker semi-aquatic adaptation,

and much more. It would be a real challenge for researchers to establish the different out-

comes related to time lags in the various age groups.Another challenge would be to gather

evidence of the ethological aquatic adaptations of other mammals, to discover whether

human newborns really are unique, even though Homo sapiens babies seem to perform

aquatic adaptations unlike any other hominin. Chimpanzee and gorillas babies start to walk

only a few months earlier than we do, but are never able to acquire waterproof behaviour,

even after many years. They have greater freedom in terrestrial movements and increased

coordination in their first ten to twelve months. But there are absolutely no other examples

of Primates with this distinct period where there is a combination of ‘non walking’ though

‘aquatically able’. Hence, the differences in the first year of life between the land-bound

hominin babies of Chimpanzees, Gorillas, and our own aquatic free moving ones, are re-

ally quite remarkable.

Of course, the countless variations in the physical possibilities of Homo sapiens were

described by Eibl-Eibesfeldt [9] when citing Konrad Lorenz: “Konrad Lorenz (1943) once

characterized man as the specialist in the unspecialised, a reference to human universality

how man is superior to all other animals in versatility.” However, one of Eibl-Eibefeldt’s

statements when discussing Lorenz is particularly relevant (cursive typeface: Meijers):

Using the example of the following imaginary athletics competition, he showed how man is su-

perior to all other animals in versatility. If the contest consisted of sprinting 100 m, diving into a pond

and retrieving three objects from a depth of 5 m, then swimming 100 m toward a rope at the other

bank, climbing 5 m up the rope, and finally walking an additional 10 km, any untrained physically

fit adult, even older individuals, could execute the task, where no other vertebrate could perform it.

The conclusion at that stage was that the aquatic part did not fit within a generally

accepted terrestrially adapted ancestral hominin, but the tide is definitely turning: David

W. Cameron and Colin P. Grooves in The Emergence of Ardipithecus and Early Australo-

pithecines [5] wrote:

Nor can we exclude the Aquatic ape Hypothesis (AAT) Elaine Morgan has long argued that

many aspects of human anatomy are best explained as a legacy of a semi aquatic phase in the proto-

human trajectory, and this includes upright posture to cope with increased water depth as our ances-

tors foraged farther and further from the lake or seashore. At first, this idea was simply ignored as

grotesque, and perhaps unworthy because proposed by an amateur. But Morgan’s latest arguments

have reached a sophistication that simply demand to be taken seriously (Morgan, 1990, 1997). And

although the authors shade away from more speculative reconstructions in favour of phylogenetic

scenarios, we insist that the AAT takes its place in the battery of possible functional scenarios of

hominin divergence.

The best reconstruction proposed, in my view, can be found in The Evolution of Hominid Bipe-

dalism by Michael J. Friedman [11]:

Paleoanthropologists mark the divergence between apes and hominids with the adaptation of

bipedalism five to six million years ago. In this paper, I argue that while the first upright hominids

occurred in this time frame, the process of becoming a fully efficient biped took much longer and

Page 27: Aquatic adapting of human newborns newborns

167 AQUATIC ADAPTING OF HUMAN NEWBORNS

was not complete until Homo erectus at 1.8 million years ago. To provide context to the puzzle of

how and why our ancestors evolved upright walking, I examine many of the prevailing theories of

bipedal origins, including the aquatic ape hypothesis, heat hypothesis, and the carrying hypothesis.

Conclusion

The waterproof innate ‘reflexes’ of newborns are essentially unique features of our

own species, not observed in any other hominin (Pan, Gorilla). This is so in natural behav-

iour in all later stages of development, to pubertal and adult maturity. These physiologi-

cal and physical reflexes encompass: floating, controlling breath when submerged, early

swimming movement, diving and playing in and near water.

Research confirms that baby-swimming not only makes babies waterproof, but also

enhances: locomotion, early social interaction, self-confidence, independence, and coping

with new unfamiliar situations. These special developments are connected to innate psy-

chomotor and social abilities in the first year of life.

The behaviour of babies is ethologically based on genetically fixed innate ‘neural

templates’ activated in a defined, sensitive period, and the success of imprinting is guar-

anteed when innate waterproof reflexes are combined and triggered. Young babies and

toddlers easily adapt to water within a few weeks, and this sensitive period is effective

from four months – or even earlier if the baby is exposed to water sooner – to a year, when

carried out with the interaction of parents and other related individuals.

Aquatic dynamics experienced in early life guarantee greater activity in aquatic situ-

ations later on. I repeat, Homo sapiens babies are performing these aquatic adaptations

while no other hominin species are able to do so, neither newborn nor adult: Gorilla (Go-

rilla), Chimpanzee and Bonobo (Pan).

Human offspring are unable to walk before eight to twelve months after birth. Al-

though newborns and little children can not swim, they adapt very quickly to free move-

ment in water before that time, performing functional aquatic activities and this process is

linked to quicker development in many ways

It is undeniable that the completely terrestrial hominin babies of Chimpanzees and

Gorillas can not be compared with the terrestrial AND aquatic adapted Homo sapiens ba-

bies in the first year of life. Every member of our extended family of Primates has fur. We

alone became the naked swimmers, diving, walking, singing and killing.

And we alone have remained semi-aquatic, maybe because we can sing, swim AND

vigorously kill our kin…

Page 28: Aquatic adapting of human newborns newborns

168 MEIJERS

The hypothesis can be accepted

By displaying the ability to float, swim and dive in the first months after birth, human

babies and toddlers are proof of successful aquatic adaptation.

These inbuilt potentials are triggered in a genetically preset sensitive period, which

starts in the newborn and lasts for about a year. It quickens development and the learning of

physical, physiological, emotional, social and functional properties in babies and toddlers.

Innate adaptations to aquatic conditions are not known in any other hominin, Pan and Go-

rilla. This proves our ancestral heritage and provides a possible argument for responding

“yes” to Sir Alister Hardy’s question posed in 1960.

References

1. Alcock, J. (1993). Animal Behaviour. Sunderland: Sinauer Associates.

2. Balatskii, E.V. (2007). Auxiliary Imprints and Human Behaviour. Herald of the Russian Academy of

Sciences, 77 (5): 479-484.

3. Barnett, H. (2009). A Behavioural Approach to Paediatric Drowning Prevention. University of Okla-

homa Health Science Centre, USA. URL: http://tvs-media-ex. ouhsc. edu/with dr Barnett

4. Bell, A.F., Lucas, R., & White-Traut, R.C. (2008). Concept Clarification of Neonatal Neurobehavioural

Organization. Journal of Advanced Nursing, 61 (5): 570-581.

5. Cameron, D.W., & Grooves, C.P. (2004). Bones, Stones and Molecules. Boston: Elsevier Academic

Press.

6. Dalton, T., & Bergenn, V. (1998). Myrtle McGraw: Pioneer in Neurobehavioral Development. In G.

Kimble and M. Wertheimer (Eds.), Portraits of the Pioneers in Psychology. Washington DC: Ameri-

can Psychological Association III.

7. Diem, L. (1979). Baby Swimming Advances. Independence and Development of Intelligence. The

Federal Minister for Education and Science Public Relations Bulletin, Germany.

8. Eibl-Eibesfeldt, I. (1970). Ethology, the Biology of Behaviour. Austin, TX: Holt, Rinehart and Winston.

9. Eibl-Eibesfeldt, I. (2007). Human Ethology. The State University of New Jersey. Piscataway, NJ:

Transaction Publishers.

10. Freedman, F.B. (2005). Water Babies, Safe Starts in Swimming. UK: Anness Publishing LTD.

11. Friedman, M.J. (2006). The Evolution of Hominid Bipedalis m . Illinois: Wesleyan University.

12. Gottlieb, G. (1998). Myrtle McGraw’s Unrecognized Conceptual Contribution to Developmental Psy-

chology. Developmental Review: Perspectives in Behavior and Cognition, 18 (4): 437-448. Amster-

dam: Elsevier.

13. Gould, S.J. (1977). Ontogeny and Phylogeny. Massachusetts: Belknap, a division of Harvard Univer-

sity Press.

14. Growth: A Study of Johnny and Jimmy. Johnny and Jimmy, Film by Myrtle McGraw, Recorded in

1932. New York: Appleton-Century Co.

15. Hardy, A. (1960). Was Man More Aquatic in the Past? UK: The New Scientist, 17 March 1960.

16. Hoffmeyer, J. (2008). Biosemiotics. An Examination into the Signs of Life and the Life of Signs. USA:

University of Scranton Press. 17. IJspeert, A.J., Crespi, A., Ryczko, D., & Cabelguen, J.M. (2007).

From Swimming to Walking with a Salamander Robot Driven by a Spinal Cordmodel. Science, 315

(5817):1416-142.

Page 29: Aquatic adapting of human newborns newborns

169 AQUATIC ADAPTING OF HUMAN NEWBORNS

18. Johnson, M.H. (2000). Functional Brain Development in Infants: Elements of an Interactive Speciali-

zation Framework. Child Development , 71 (1): 75–81.

19a . McGraw: Jimmy Swimming (clip). URL:http://www.youtube. com/watch?v=s4rT5i7CPzM (clip)

and http://www.youtube.com/watch?v=2IWrkzygLHI (complete film 1958).

19b. Drowning Prevention Strategy for Infants and Young Children URL: http://www.infantswim. com/

isr-experience/Miles.html URL: http://www.youtube.com/watch?v=ibWxZcgK5SM

20. Jorgensen, R. (2012). Adding Capital to Young Australians. Background Paper: Griffith University.

Early Years Swimming. http://www.griffith.edu.au/education/early-years-swimming/publications

21. Knezek, M. (1997). Nature vs.Nurture: The Miracle of Language. Exploring the Mind. Duke Univer-

sity, Durham NC. URL: http://www.duke.edu/~pk10/EM.htm

22. Langendorfer, S., & Bruya, L.D. (1995). Aquatic Readiness: Developing Water Competence in Young

Children. Human Kinetics, Champaign, II. 23. Lorenz, K. (1997). The Natural Science of the Human

Species. The Russian Manuscript 1944-1948. USA: MIT Press Massachusetts.

24. MacDonald, S. (2012). Doctors: OK to Teach Toddlers to Swim. Houston: MyFox.

25. McGraw, M.B. (1935). Growth: A Study of Johnny and Jimmy. New York: Appleton-Century-Crofts.

26. McGraw, M.B. (1939). The Neuromuscular Maturation of the Human Infant. New York: Institute of

Child Development.

27. Morgan, E. (1997). The Aquatic Ape Hypothesis. London: Souvenir Press.

28. Morris, D. (1967). The Naked Ape. London: Jonathan Cape.

29. Niemitz, C. (1991). Das Geheimniss des Aufrechten Ganges. München: Verlag C.H. Beck.

30. Odent, M., & Johnson, J. (1994). We Are All Water Babies. London: Collins & Brown.

31. Odent. M. (2000). A Landmark in the History of Birthing Pools. Midwifery Today, 5.

32. Palmer, L.F. (2002). Bonding Matters, The Chemistry of Attachment. Attachment Parenting Interna-

tional News, 5, (2). Alpharetta, GA, USA.

33. Phillips, H. (2001). Into the Abyss. New Scientist, March p. 232.

34. Purves, D., Augustine, G.J., Fitzpatrick, D., Katz, L.C., La Mantia, A.S., McNamara, J.O., & Williams,

S.M. (2001). The Development of Language: A Critical Period in Humans. Sunderland, MA: Sinauer

Associates.

35. Sample Gosse, H, & Gotzke, C. (2007). Parent/Caregiver Narrative: Interacting 0 – 3 Months. In L.M.

Phillips (Ed.), Handbook of Language and Literacy Development: A Roadmap From 0 - 60 Months

(pp. 1-8). London: Canadian Language and Literacy Research Network.

36. Sauer, C.O., in Leighly, J. (Ed.) (1967). Land and Life, A Selection From the Writings of Carl Ortwin

Sauer. Berkley and Los Angeles: University of California Press.

37. Sedov, A.E. (2002?) Sustainability of Biological Systems During Development Depends on the Types

of Part-Whole Interactions: Semiotic Comparisons Between Various Structural Levels. Not published.

Available on: [http://home.comcast.net/~sharov/biosem/sedov/Lvpwengl.doc] with permission of A.

Sharov, Biosemiotics.

38. Sigmundsson, H., & Hopkins, B. (2010). Baby Swimming: Exploring the Effects of Early Intervention

on Subsequent Motor Abilities. In Child: Care, Health andDevel opm ent , 36 (3). Blackwell Publishing.

39. Somel, M., Franz, H., Yan, Z., Lorenc, A., Guo, S., Giger, T., Kelso, J., Nickel, B., Dannemann, M.,

Bahn, S., Maree, J., Webster, M.J., Weickert, C.S., & Lachmann, M. (2009). Transcriptional Neoteny

in the Human Brain. PNAS, 106 (14).

40. Sweeny, J.K. (1983). Neonatal Hydrotherapy. An Adjunct to Developmental Intervention in an Inten-

sive Care Nursery Setting. In F.H. Dulcy, Aquatics, A Revived Approach to Pediatric Management (p.

40). New York: The Haworth Press.

41. Urchin Rock, Holloway, Z. (2004). Griffith, P. Professional Underwater Photography. London: The

Coach House.

Page 30: Aquatic adapting of human newborns newborns

170 MEIJERS

42. Uzgalis, W. (2007). John Locke. In Edward, N.Z., Editor, The Stanford Encyclopedia of Philosophy.

Stanford University, Stanford: The Metaphysics Research Lab. Center for the Study of Language and

Information.

43. Witzany, G. (1998). Explaining and Understanding LIFE. Journal of the International Association for

Semiotic Studies, 120: 421-438. Berlin and New York: Mouton de Gruyter.

44. Wrangham R., Cheney, D., Seyfarth, R., & Armiento, E. (2009). Shallow-Water Habitats as Sources of

Fallback Foods for Hominins. American Journal of Physical Anthropology, 140: 630–642.