74
APGC-MS, ASAP-MS, and MAI-MS: Expanding the Horizons of API-MS Charles McEwen University of the Sciences

APGC-MS, ASAP-MS, and MAI-MS: Expanding the Horizons of API-MS

Embed Size (px)

Citation preview

Page 1: APGC-MS, ASAP-MS, and MAI-MS: Expanding the Horizons of API-MS

APGC-MS, ASAP-MS, and MAI-MS:

Expanding the Horizons of API-MS

Charles McEwen

University of the Sciences

Page 2: APGC-MS, ASAP-MS, and MAI-MS: Expanding the Horizons of API-MS

DuPont VG-ZAB Double Focusing High Resolution Magnetic Sector MS

Page 3: APGC-MS, ASAP-MS, and MAI-MS: Expanding the Horizons of API-MS

Atmospheric Pressure Chemical Ionization

Mass Spectrometry (1973)

Horning, E.C., Horning, M.G., Carroll, D.I., Dzidic, I., Stillwell, R.N.,

Anal. Chem., 1973, 45, 936-943

Page 4: APGC-MS, ASAP-MS, and MAI-MS: Expanding the Horizons of API-MS

John B. Fenn ASMS Distinguished Contribution, 1992

Electrospray Ionization of Some Polypeptides and Small

Proteins C. K. Meng, M. Mann and J. B. Fenn, 36th ASMS Conf., 1988

Page 5: APGC-MS, ASAP-MS, and MAI-MS: Expanding the Horizons of API-MS

The Electrospray Process; Utility Beyond Mass Spectrometry

Professor John FennVirginia Commonwealth University

April 23, 2002

E328/115

10:00 AM

Professor John Fenn is an entertaining speaker and promises to lead a

freewheeling discussion that briefly covers the history of electrospray

ionization and then moves to current and potential applications of this

technology. He will discuss uses such as electrospinning of polymers and

high-sensitivity collection and detection of airborne chemicals. Dr. Fenn has

had an enormous impact on science with his successful interface of

electrospray ionization with mass spectrometry and the discovery that

multiple charging allowed analysis of such large and nonvolatile compounds

as synthetic polymers and proteins. This technology has been especially

valuable to the biological sciences. These discoveries were made during

Professor Fenn's tenure at Yale where he was widely recognized for his

distinguished studies into the properties of supersonic free jets expanding

into vacuum.

John B. Fenn received a B.A. in chemistry from Berea College and a Ph.D. from Yale. After a

dozen years in industry he was appointed Director of Project SQUID, a Navy program of basic

and applied research in Jet Propulsion administered by Princeton University where he becameProfessor of Aerospace and Mechanical Sciences. He returned to Yale as Professor of Chemical

Engineering and Chemistry, remaining there as a Research Scientist after becoming Emeritus in

1987. In 1993 he moved to Virginia Commonwealth University as Research Professor. He hasserved as a visiting Professor at Trento University in Italy, the University of Tokyo, the Indian

Institute of Science at Bangalore, and the Chinese Academy of Science in Beijing and as a

distinguished lecturer at several other institutions. Author of one book and over a hundred papershe is sole or co-inventor on 19 patents. Much of his research has centered on the properties and

uses of supersonic free jets expanding into vacuum. Such jets can produce molecular beams with

much higher intensities and energies than can the classical effusion ovens they have replaced.

Their ability to cool molecules to ultra low temperatures, with or without condensation, hasrevolutionized molecular spectroscopy and made them versatile sources of clusters and van der

Waals molecules. In the scientific community, Fenn is best known for the first successful

interface of electrospray with mass spectrometry and the discovery that large nonvolatilecompounds such as polymers and proteins could be analyzed using this method. He has received

a number of awards for these inventions including the Thompson Medal and the Distinguished

Contribution to Mass Spectrometry award.

Page 6: APGC-MS, ASAP-MS, and MAI-MS: Expanding the Horizons of API-MS

MS inlet HV

melting

Point tube

N2

LC Probe

WickSpray on a Waters Z-spray Source (2002)

wick

Page 7: APGC-MS, ASAP-MS, and MAI-MS: Expanding the Horizons of API-MS

Method and apparatus for electrospray ionization

US 6297499 B1

ABSTRACT

Sample liquid is supplied to the ion source of an Electrospray

Ionization Mass Spectrometer (ESIMS) by capillarity induced

flow through a wick element comprising a permeable porous

aggregate of fibers or particles of material that is wetted by the

sample liquid. This method of liquid introduction eliminates the

need for pumps of pressurized gas to drive the flow. It also

makes possible the convenient extraction of a representative

sample from a stream of liquid flowing at any rate, no matter

how large.

This application claims benefit of Provisional Appln.

60/052,885 filed Jul. 17, 1997

Inventor: John B. Fenn

Wickspray Patent Issued to John Fenn (2001)

Page 8: APGC-MS, ASAP-MS, and MAI-MS: Expanding the Horizons of API-MS

High Voltage

Power

Supply

Vented

Bottle

w/pouch

liner

Capillary

Wick

Level

Viewing

Window

Vents

Fragrance Dispersion WickSpray Device

Page 9: APGC-MS, ASAP-MS, and MAI-MS: Expanding the Horizons of API-MS

Liquid dispersion device Patent number: 6871794

Abstract: A device that can be used for dispersing or dispensing a liquid is provided that comprises a

container, a nozzle device, a secondary wick, and a control device in which the container comprises, an

open end and a liquid; the nozzle comprises a primary wick, a first end being in fluid communication with

the liquid, and a second end extending through the open end of the container and having an opening; the

aperture has extended therethrough the primary wick; the secondary wick extends into proximity with the

primary wick; and the secondary wick is securely connected to a control device, which controls the distance

between the primary wick and the secondary wick.

Filed: May 1, 2003 Issued: March 29, 2005

Assignee: E. I. du Pont de Nemours and Company

Inventor: Charles Nehemiah McEwen

Liquid dispersion device Patent number: 6729552

Abstract: A device that can be used for dispersing a liquid is disclose. The device comprises a

container, a capillary device, and a housing. The container has an open end that is connected to the

capillary device and comprises a liquid. The capillary device comprises a substantially tubular member

having one end secured to the open end of the container and the opposing end extended therethrough a

substantially tubular capillary structure, which is coaxially aligned with the substantially tubular member. The

capillary structure is in fluid communication with the liquid in the container. The housing comprises a first

end having an opening attached thereon the container, a low voltage supplier attached to one wall, a high

voltage converter attached to another wall, a voltage contact and a counter electrode, optionally a

heat and/or lighting source, a wicking material, and further optionally electronics for voltage regulation. Also

disclosed is a process for dispensing liquid using the device.

Filed: April 22, 2003 Issued: May 4, 2004

Assignee: E. I. du Pont de Nemours and Company

Inventors: Charles Nehemiah McEwen, William J. Herron, Richard G. McKay

Page 10: APGC-MS, ASAP-MS, and MAI-MS: Expanding the Horizons of API-MS

AP Ionization Technologies

• AP-GC/MS

• ASAP-MS

Page 11: APGC-MS, ASAP-MS, and MAI-MS: Expanding the Horizons of API-MS

MS inlet HV

melting

Point tube

N2

LC Probe

WickSpray on a Waters Z-spray Source (2002)

wick

Page 12: APGC-MS, ASAP-MS, and MAI-MS: Expanding the Horizons of API-MS

Gas Chromatography/Atmospheric

Pressure-Mass Spectrometry

Conversion of LC/MS instruments

to Dual LC/MS and GC/AP-MS

Ion source for a mass spectrometer US7642510

Korfmacher, et al. at the National Center for Toxicological Research in Jefferson,

Arkansas published on AP-GC/MS (negative ion) until 1990’s.

Product 1

Page 13: APGC-MS, ASAP-MS, and MAI-MS: Expanding the Horizons of API-MS

1

19

3

20

21

4

23

22

9

24

19. LC interface probe

20. Nebulizer gas inlet

21. LC column connector

22. LC interface tube

23. LC transfer line

24. Metal sheath gas tube

25. GC purge gas tube and

heater assembly

5

6 8

16

7 25 18

Atmospheric Pressure GC/LC Ion Source Fig. 2

Mass Spec GC Inlet

LC Probe

Corona Needle

Page 14: APGC-MS, ASAP-MS, and MAI-MS: Expanding the Horizons of API-MS

Waters QTof

GC with

autosampler

AP-GC/MS

Page 15: APGC-MS, ASAP-MS, and MAI-MS: Expanding the Horizons of API-MS

Syagen Photoionization Source

APPI-GC/MS

Interface Probe

Page 16: APGC-MS, ASAP-MS, and MAI-MS: Expanding the Horizons of API-MS

APGC/MS of 1ul Injection of 1ppm TOA 50:1 Split

Page 17: APGC-MS, ASAP-MS, and MAI-MS: Expanding the Horizons of API-MS

GC column

N2 gas

in

Tee

Interface probe Ceramic tip

Page 18: APGC-MS, ASAP-MS, and MAI-MS: Expanding the Horizons of API-MS

GC/AP-MS of Restek EPA 8270 Mixture

Air atmosphere

Nitrogen atmosphere

Air

Nitrogen purge

Page 19: APGC-MS, ASAP-MS, and MAI-MS: Expanding the Horizons of API-MS

gcapms 8270 5 ml/min flow

1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00 9.00 10.00 11.00 12.00 13.00Time0

100

%

gcapms8270fast TOF MS ES+ BPI

3.51e3

7.27

7.15

6.80

5.723.76

2.89

0.56

2.70

2.05

1.31

2.67

3.203.57

3.36

4.474.13

4.79

5.02

6.77

6.00

6.60

6.36

6.33

7.84

7.79

7.45

7.62

8.46

8.30

8.00

8.62

9.80

9.14

9.50

10.18

9.8811.99

11.66

10.90

11.07

13.4913.24

12.18

12.69

GCAPMS Base peak Chromatogram of Restek 8270 mixture

1ul injected/10:1 split

Positive ion, N2 Purge on:

73 of 76 compounds observed

Page 20: APGC-MS, ASAP-MS, and MAI-MS: Expanding the Horizons of API-MS

gcapms 8270 5 ml/min flow

4.65 4.70 4.75 4.80 4.85 4.90 4.95 5.00 5.05 5.10Time0

100

%

gcapms8270fast TOF MS ES+ BPI909

4.79

4.70

5.02

4.92

5.09

Peak widths half height < 2.5 sec

GCAPMS Resolution on Restek 8270 Misture

Page 21: APGC-MS, ASAP-MS, and MAI-MS: Expanding the Horizons of API-MS

Accurate Mass Measurement of APGC/MS

Peaks Using GC Bleed as Reference Mass

• Meas. Mass Calc. Mass mDa err Formula

• 113.0928 113.0966 -3.8 C7 H13 O

• 122.0593 122.0606 -1.2 C7 H8 N O

• 242.2821 242.2848 -2.6 C16 H36 N

Page 22: APGC-MS, ASAP-MS, and MAI-MS: Expanding the Horizons of API-MS

R2=0.99941 SD=1.67453

GCAPMS of 2-Methylbenzophenone Calibration Curve

from 1ng to 5pg injected using Qtof I Mass Spectrometer

Acquisition m/z 100-400

0 200 400 600 800 1000

0

20

40

60

80

100

120

140

Are

a

PPB Methylbenzophenone

PPB Area

1000 121

500 57

250 29

50 5.9

25 3.5

10 2.1

5 1.9

Page 23: APGC-MS, ASAP-MS, and MAI-MS: Expanding the Horizons of API-MS

Perfume Sample Anti-Counterfeit Analysis

UV Diode Array

LC/MS Electrospray

GC/APMS

2.50 5.00 7.50 10.00 12.50 15.00 17.50 20.00 22.50 25.00 27.50 30.00 32.50 35.00 37.50 40.00 Time 0

100

%

-6

100

%

K25-574A 3: Diode Array TIC

6.53e7

10.9

7.80

1.99 0.12

22.82 18.10

17.12 11.75

14.82

22.29

21.10

24.3 30.45 30.90

K25-574A 1: TOF MS ES+ TIC

1.23e4 17.16

11.0

16.21

12.88

24.4

22.37 17.58

19.91 22.92

29.55 29.82 30.99

APGCMS Perfume4 30m DB1

4.00 6.00 8.00 10.00 12.00 14.00 16.00 18.00 Time 2

100

%

apciperfume4_cv32 Sm (Mn, 1x1) TOF MS ES+ BPI

1.10e3 845

822

783

461

587 692

660

638 747

711

1174

878

928

1110

1019

995

971 1341

13.3

Page 24: APGC-MS, ASAP-MS, and MAI-MS: Expanding the Horizons of API-MS

Waters APGC-MS

Thanks to

Peter Hancock

Page 25: APGC-MS, ASAP-MS, and MAI-MS: Expanding the Horizons of API-MS

Waters GC-APMS Technology

Page 26: APGC-MS, ASAP-MS, and MAI-MS: Expanding the Horizons of API-MS

APGC – How does it work?

Mass Analyser GC Oven

Corona discharge at needle creates plasma at atmospheric pressure

N2 make-up gas delivered through heated transfer line

N2 meets GC eluent flow at transfer line tip

Molecules are ionised after GC elution and directed to the mass analyser

Page 27: APGC-MS, ASAP-MS, and MAI-MS: Expanding the Horizons of API-MS

APGC Source Enclosure

Page 28: APGC-MS, ASAP-MS, and MAI-MS: Expanding the Horizons of API-MS

…familiar processes

N2+●

N2 e-

2e-

2N2

N4+● M+●

M

M+●

M

Charge Transfer

“Dry” source conditions

Favoured by relatively non-polar compounds

Corona discharge needle

Page 29: APGC-MS, ASAP-MS, and MAI-MS: Expanding the Horizons of API-MS

…familiar processes

Corona discharge needle N2

+●

N4+●

H2O

H2O+●

H2O

H3O+●

+OH●

MH+

M

Proton Transfer

Modified source conditions, e.g. with water or methanol

Favoured by relatively polar compounds

Page 30: APGC-MS, ASAP-MS, and MAI-MS: Expanding the Horizons of API-MS

m/z280 281 282 283 284 285 286 287 288 289 290 291 292

%

0

100

%

0

100

ANAPGC200309TEST001 (0.026) Is (1.00,0.10) C6Cl6 TOF MS AP+ 3.40e12283.8102

281.8131

285.8073

287.8043

ANAPGC200309TEST001 905 (7.830) Cm (903:907-885:901) TOF MS AP+ 6.35e3283.8097

281.8131

285.8077

287.8047

m/z20 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320

%

0

100

ANAPGC200309TEST001 905 (7.830) Cm (903:907-887:900) TOF MS AP+ 6.36e3283.8097

281.8131

285.8077

287.8047

(mainlib) Benzene, hexachloro-

20 40 60 80 100 120 140 160 180 200 220 240 260 280 300 3200

50

100

2435

47

53

71

83

95

107

118

130

142

153165

177

190

214

237

249

284

Cl

Cl

Cl

Cl

Cl

Cl

Monoisotopic Mass, Odd and Even Electron Ions

600 formula(e) evaluated with 64 results within limits (all results (up to 1000) for each mass)

Elements Used:

C: 0-20 H: 0-30 N: 0-4 O: 0-10 Cl: 0-6

Minimum: -1.5

Maximum: 100 10 50

Mass Calc. Mass mDa PPM DBE i-FIT Formula

281.8131 281.8131 0 0 4 14 C6 Cl6

281.8217 -8.6 -30.5 -0.5 93.9 C2 H2 N O2 Cl6

281.8091 4 14.2 0 108.4 C N2 O2 Cl6

281.8203 -7.2 -25.5 0 124 N4 O Cl6

281.8342 -21.1 -74.9 -1 125.1 C3 H4 O2 Cl6

281.7979 15.2 53.9 0 126.2 C2 O3 Cl6

Spectral characteristics

Theoretical isotope pattern

APGC data

APGC Spectrum

NIST EI Spectrum

EI

Page 31: APGC-MS, ASAP-MS, and MAI-MS: Expanding the Horizons of API-MS

Faster chromatography at higher flows

Page 32: APGC-MS, ASAP-MS, and MAI-MS: Expanding the Horizons of API-MS

Linearity

HCB 22fg to 10,000fg

MRM on Xevo TQ-S

Page 33: APGC-MS, ASAP-MS, and MAI-MS: Expanding the Horizons of API-MS

APGC-MS Examples

Page 34: APGC-MS, ASAP-MS, and MAI-MS: Expanding the Horizons of API-MS

(mainlib) .lambda.-Cyhalothrin

10 40 70 100 130 160 190 220 250 280 310 340 370 400 430 4600

50

100

1527

41

51

65

77

91115

141

152

181

197

208

225241 262 313 349 368 404

449

Cl

FF

F

O

O

N

O

Time5.00 6.00 7.00 8.00 9.00 10.00 11.00

%

0

100

5.00 6.00 7.00 8.00 9.00 10.00 11.00

%

0

100

ANAPGC270409TEST005 TOF MS AP+ 450.107 0.03Da

897Area, Height

11.1129.566

895

11.029.499305

ANAPGC270409TEST005 TOF MS AP+ 423.095 0.03Da

395Area, Height

11.1112.728

394

11.023.716108

10.523.114

90

Time4.00 5.00 6.00 7.00 8.00 9.00 10.00 11.00

%

0

100

4.00 5.00 6.00 7.00 8.00 9.00 10.00 11.00

%

0

100

ANAPGC270409TEST010 TOF MS AP+ 450.103 0.03Da

156Area, Height

11.135.278156

11.051.952

666.06

0.99732

ANAPGC270409TEST010 TOF MS AP+ 423.097 0.05Da

69.0Area, Height

11.132.156

69

50 pg/µL standard

m/z20 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 360 380 400 420 440 460

%

0

100450.1071

423.0949

225.0285

-cyhalothrin in persimmon

10 ppb in persimmon

NIST EI spectrum

APGC spectrum

Page 35: APGC-MS, ASAP-MS, and MAI-MS: Expanding the Horizons of API-MS

Deltamethrin in nectarine

Page 36: APGC-MS, ASAP-MS, and MAI-MS: Expanding the Horizons of API-MS

Background

• Aerosol pharmaceutical products must be tested to ensure

the quality and safety of the final product

Page 37: APGC-MS, ASAP-MS, and MAI-MS: Expanding the Horizons of API-MS

TIC of EI GC/MS on Single

Quad

1 5 .6 01 5 .7 01 5 .8 01 5 .9 01 6 .0 01 6 .1 01 6 .2 01 6 .3 01 6 .4 01 6 .5 01 6 .6 01 6 .7 0

5 0 0 0 0

1 0 0 0 0 0

1 5 0 0 0 0

2 0 0 0 0 0

2 5 0 0 0 0

3 0 0 0 0 0

3 5 0 0 0 0

4 0 0 0 0 0

4 5 0 0 0 0

5 0 0 0 0 0

5 5 0 0 0 0

T im e -->

A b u n d a n c e

T IC : 1 2 0 6 1 0 0 0 7 .D \ d a ta .m s

1 6 .0 3 21 6 .0 9 3

1 6 .2 2 2

1 6 .3 5 2

Page 38: APGC-MS, ASAP-MS, and MAI-MS: Expanding the Horizons of API-MS

EI Spectrum of

Peak at 16.03mins

2 0 4 0 6 0 8 01 0 01 2 01 4 01 6 01 8 02 0 02 2 02 4 02 6 02 8 03 0 03 2 03 4 03 6 03 8 04 0 04 2 00

1 0 0

2 0 0

3 0 0

4 0 0

5 0 0

6 0 0

7 0 0

8 0 0

9 0 0

1 0 0 0

1 1 0 0

1 2 0 0

m / z -->

A b u n d a n c e

S c a n 1 7 1 9 (1 6 .0 3 4 m in ): 1 2 0 6 1 0 0 0 7 .D \ d a ta .m s (-1 7 1 5 ) (-)5 6

2 2 0

1 0 57 9

3 83 2 53 4 2 4 3 11 9 3 2 8 2

1 3 3

2 5 11 6 3

No library match due to low response and poor spectral quality

Page 39: APGC-MS, ASAP-MS, and MAI-MS: Expanding the Horizons of API-MS

CI GC/MS on Single Quad

1 5 .0 0 1 5 .5 0 1 6 .0 0 1 6 .5 0 1 7 .0 0 1 7 .5 0

3 9 5 0 0 0

4 0 0 0 0 0

4 0 5 0 0 0

4 1 0 0 0 0

4 1 5 0 0 0

4 2 0 0 0 0

4 2 5 0 0 0

4 3 0 0 0 0

4 3 5 0 0 0

4 4 0 0 0 0

T im e -->

A b u n d a n c e

T IC : 1 2 1 6 1 0 0 0 9 .D \ d a ta .m s

1 6 .2 1 0

No peak detected

Page 40: APGC-MS, ASAP-MS, and MAI-MS: Expanding the Horizons of API-MS

APGC High and Low Energy

Chromatograms

High energy

Low energy

Unaligned data

Page 41: APGC-MS, ASAP-MS, and MAI-MS: Expanding the Horizons of API-MS

APGC High/Low Energy Spectra Unknown

Impurity 15.75mins

High energy

Low energy

Page 42: APGC-MS, ASAP-MS, and MAI-MS: Expanding the Horizons of API-MS

Summary and Conclusions

Complementary to EI allowing selection of molecular ion or

fragmentation.

Quantification over wide concentration range

Faster separations and higher sensitivity the EI GC/MS

Positive/negative ion switching

Detection of compounds that are not observed in LC/MS

Does not require analyte solubility

API source with ASAP® probe, GC/MS as well as LC/MS

extends the range of analytes addressed by one instrument

Page 43: APGC-MS, ASAP-MS, and MAI-MS: Expanding the Horizons of API-MS

Product 2

ASAP-MS

Rapid technique for the analysis of solids,

liquids, polymers, and tissue samples

Page 44: APGC-MS, ASAP-MS, and MAI-MS: Expanding the Horizons of API-MS

ASAP®-MS

Page 45: APGC-MS, ASAP-MS, and MAI-MS: Expanding the Horizons of API-MS

MS inlet ASAP Probe

discharge

needle

melting

Point tube

N2

heated gas

LC Probe

Atmospheric Solids Analysis Probe (ASAP®)

Simple

Fast

Sensitive

Versatile

McEwen, C. N.; McKay, R. G.; Larsen, B. S., Anal. Chem. 2005, 77, 7826-7831.

Page 46: APGC-MS, ASAP-MS, and MAI-MS: Expanding the Horizons of API-MS
Page 47: APGC-MS, ASAP-MS, and MAI-MS: Expanding the Horizons of API-MS

DART® Cocaine on Dollar Bill

Page 48: APGC-MS, ASAP-MS, and MAI-MS: Expanding the Horizons of API-MS

ASAP Cocaine on a Dollar Bill

Cocaine

C17H22O4N

-PhCOOH

C10H16O2N

Phathalate

C8H5O3

C24H39O4

150 200 250 300 350 400 450 500

m/z

0

5

10

15

20

25

30

35

40

45

50

55

60

65

70

75

80

85

90

95

100 R

ela

tive A

bundance

149.023

C 8 H 5 O 3

304.154

C 17 H 22 O 4 N 1

182.117

C 10 H 16 O 2 N 1

391.284

C 24 H 39 O 4

167.034

C 8 H 7 O 4 367.269

C 18 H 39 O 7

425.311

C 22 H 41 O 4 N 4 279.159

C 16 H 23 O 4 483.352

C 25 H 47 O 5 N 4

353.305

C 22 H 41 O 3

117.090

C 6 H 13 O 2

135.116

C 10 H 15

Page 49: APGC-MS, ASAP-MS, and MAI-MS: Expanding the Horizons of API-MS

ASAP

• Solids probe replacement

• Accurate mass of mixtures

• Quantification

• Analysis of drugs (or explosives)

• Analysis of biological tissue

• Analysis of polymer additives

• Analysis of food residues

• Analysis of everything volatile

Page 50: APGC-MS, ASAP-MS, and MAI-MS: Expanding the Horizons of API-MS

EPA8270_060524143111 #4 RT: 0.06 AV: 1 NL: 6.03E7

T: FTMS + p APCI corona Full ms [ 50.00-1000.00]

95 100 105 110 115 120 125 130 135 140 145 150 155 160 165 170

m/z

0

5

10

15

20

25

30

35

40

45

50

55

60

65

70

75

80

85

90

95

100

Re

lative

Ab

un

da

nce

131.12C6 H15 O1 N2

109.06

C7 H9 O1

139.11C9 H15 O1

94.06

C6 H8 N1

143.09

C11 H11

128.03C9 H4 O1

123.08

C8 H11 O1155.09C12 H11

153.07C12 H9

163.04C9 H7 O3107.05

C7 H7 O1170.10

C12 H12 N1

121.06C8 H9 O1

149.02

C8 H5 O3

135.08

C9 H11 O1

96.05

C1 H8 O3 N2

166.08C13 H10

105.07

C8 H9

145.06C10 H9 O1

111.04

C6 H7 O2

115.05C9 H7

119.09C9 H11

1

2

3

4

5

6

7

8

9

1. Aminobenzene

2. Phenol

3. Methylphenol

4. Dimethylphenol

5. Nitroso-di-propylamine

6. Isophorone

7. Methylnapthalene

8. Acenaphthylene

9. Diphenylamine

ASAP of Restek EPA 8270 Megamix

Page 51: APGC-MS, ASAP-MS, and MAI-MS: Expanding the Horizons of API-MS

US 301

75 100 125 150 175 200 225 250 275 300 325 350 375 400 425 450 475 500 525 550 575 600 625 650 675 700m/z0

100

%

cnmtest 145 (2.694) Cm (140:147-(126:137+151:163)) TOF MS ES+1.53e485.0

84.0

127.0

97.0

99.0

115.0

145.1

289.1

271.1

163.1

253.1

241.1229.1

180.1 211.1

325.1

307.1

326.2

US 301

410 420 430 440 450 460 470 480 490 500 510 520 530 540 550 560 570 580 590 600 610 620 630 640 650 660 670 680 690m/z0

100

%

cnmtest 145 (2.694) Cm (140:147-(126:137+151:163)) TOF MS ES+ 264537.5

416.2

415.2

408.2

433.2

431.4

417.4

451.2434.2

446.2

536.5

469.2460.2

472.2

538.5

539.5

545.6591.6577.6

575.6

561.6

619.6617.6

593.6 621.6 681.6

AP Solids Probe of Tomato

Lycopene, m/z 537

537

m/z 400 - 700

Page 52: APGC-MS, ASAP-MS, and MAI-MS: Expanding the Horizons of API-MS

US 301

75 100 125 150 175 200 225 250 275 300 325 350 375 400 425 450 475 500 525 550 575 600 625 650 675 700m/z0

100

%

cnmtest 262 (4.959) Cm (261:263) TOF MS ES+ 2.00e3112.1

102.1

84.1

86.1

130.1

337.4

132.1

166.1

133.1

147.1

165.1

257.3

239.3

182.1191.2

225.3

309.4

285.3

267.3

295.4310.4

326.4

365.5338.4

341.4

354.5

369.4

395.4

386.5

565.7

431.4400.5537.5

435.6

463.5538.5

582.7

583.7625.7

610.7

US 301

410 420 430 440 450 460 470 480 490 500 510 520 530 540 550 560 570 580 590 600 610 620 630 640 650 660 670 680 690m/z0

100

%

cnmtest 262 (4.959) Cm (261:263) TOF MS ES+ 357565.7

431.4

400.5

414.5

412.3

411.5415.5

425.5

537.5

435.6

463.5

451.4437.5

442.5 451.5

481.6498.6

490.5512.6

501.5 523.5

513.6 535.6

538.5551.5

538.6

554.7

555.6

582.7

566.7

570.6

579.6

583.7

625.7

610.7593.7

607.7

594.7613.6 626.7

653.8649.8638.7

666.8 694.8682.8

AP Solids Probe of Spinach Leaf

Apo-carotenal, 431

Beta-carotene, 537

Canthaxanthin, 565

Astaxanthin?

m/z 400 - 700

Page 53: APGC-MS, ASAP-MS, and MAI-MS: Expanding the Horizons of API-MS

ASAP of Nonwoven Fiber

1

2

3

4

5

6

1. Erucamide

2. Fragment of 4

3. Irganox 1076

4. Irgafos 168

5. Irgafos 168 oxidized

6. Irganox 3114

:

300 350 400 450 500 550 600 650 700 750 800

m/z

0

5

10

15

20

25

30

35

40

45

50

55

60

65

70

75

80

85

90

95

100

Rela

tive A

bundance

646.451 C 42 H 63 O 3 P 1

530.469 C 35 H 62 O 3

441.291 C 28 H 42 O 2 P 1

338.341 C 22 H 44 O 1 N 1

783.517 C 48 H 69 O 6 N 3

Page 54: APGC-MS, ASAP-MS, and MAI-MS: Expanding the Horizons of API-MS

+

+

-

- +

+

+ +

+ ASAP

Probe

AP

CI

Pro

be

HV

Mass

Analyzer

N2

+

Crude Oil Sample by ASAP MS

Page 55: APGC-MS, ASAP-MS, and MAI-MS: Expanding the Horizons of API-MS

PTEY = 150407+1.13976e+007*X R 2̂ = 0.9891 W: 1/X

0 5 10 15 20 25

0

50000000

100000000

150000000

200000000

250000000

300000000

Are

a

DZY = -496002+1.27123e+007*X R 2̂ = 0.9894 W: Equal

0 5 10 15 20 25

0

50000000

100000000

150000000

200000000

250000000

300000000

Are

a

MLTY = -499440+680790*X R^2 = 0.9911 W: Equal

0 5 10 15 20 25

0

5000000

10000000

15000000

Are

a

PTE

1 ng/mL

MLT

1 ng/mL

DZ

1 ng/mL

OEt

OEt

Pr-iMe

O P

SN

N

Diazinon (DZ)

EtO OEt

OMe

OMe

CH

S

CH 2C

P

C

O

S

O

Malathion (MLT)

OEt

OEt

O 2 N

PO

S

Parathion-ethyl (PTE)

Page 56: APGC-MS, ASAP-MS, and MAI-MS: Expanding the Horizons of API-MS

Waters ASAP® Probe

Page 57: APGC-MS, ASAP-MS, and MAI-MS: Expanding the Horizons of API-MS

Conclusion

• Direct analysis of vaporizable compounds

• Liquids, solids, and materials

• Minimal modification of ESI/APCI source

• Rapid switching from ASAP to ESI/APCI

• Simple to use and highly sensitive

Page 58: APGC-MS, ASAP-MS, and MAI-MS: Expanding the Horizons of API-MS

Future Product?

MAI

Page 59: APGC-MS, ASAP-MS, and MAI-MS: Expanding the Horizons of API-MS
Page 60: APGC-MS, ASAP-MS, and MAI-MS: Expanding the Horizons of API-MS

Matrix-assisted ionization

Vacuum (MAIV), 2013

• Solid Matrix

• No Laser

• No Heat

• No voltage

• All MAIV matrices sublime in vacuum

eliminating instrument contamination

Inutan, E. D.; Trimpin, S., Mol. and Cell. Proteomics 2013, 12, 792-796

Page 61: APGC-MS, ASAP-MS, and MAI-MS: Expanding the Horizons of API-MS

Ubiquitin Mass Spectrum using the

SYNAPT G2 MALDI Source

m/z 700 800 900 1000 1100 1200 1300 1400 1500 1600 1700 1800 1900

%

0

100 1071.51

952.56

857.41

779.56

714.77

1224.44

1428.33

1713.98 +5

+6

+7

+8

+9

+10

+11

+12

No laser and only 5 V extraction!

Page 62: APGC-MS, ASAP-MS, and MAI-MS: Expanding the Horizons of API-MS

N

N H

N

N

C l

100 200 300 m/z

Full MS Scan

270.08

272.08

250.19

192.07 144.11

0

%

100

360.34

327.15 [M+H]+

4.32e4

MAI-MSE: Untargeted MS/MS of Drug Spiked Human Urine

Woodall, D.W., Wang, B., Inutan, E.D., Narayan, S.B., Trimpin, S. Anal. Chem., 2015, 87, 4667-

4679.

Clozapine (MW 326)

Page 63: APGC-MS, ASAP-MS, and MAI-MS: Expanding the Horizons of API-MS

227.05

N

N H

N

N

C l 192.07

270.08

100 200 300 m/z

Full MS Scan

270.08

272.08

250.19

192.07 144.11

0

%

100

360.34

327.15 [M+H]+

4.32e4

B

%

300200100

100192.07

270.08

227.05

0

m/z

MSE Product Ion Spectra

100

0 100 200 300

192.07

227.05

270.08

m/z

%

MAI-MSE: Untargeted MS/MS of Drug Spiked Human Urine

Woodall, D.W., Wang, B., Inutan, E.D., Narayan, S.B., Trimpin, S. Anal. Chem., 2015, 87, 4667-

4679.

270.09(3.66) 227.05(3.66) 192.08(3.66)

300

100

200

400

m/z

Drift time (ms) 5.0 4.0 3.0 2.0

Clozapine (MW 326) CID in Transfer Collision Cell

Page 64: APGC-MS, ASAP-MS, and MAI-MS: Expanding the Horizons of API-MS

ESI

source

enclosure

Overridden

Z-Spray

source

ESI source

enclosure

and skimmer

cones

removed

Operating

temperature

used

INSTRUMENTATION Waters ACQUITY QDa

Detector Mass Spectrometer

Inlet

aperture

Page 65: APGC-MS, ASAP-MS, and MAI-MS: Expanding the Horizons of API-MS
Page 66: APGC-MS, ASAP-MS, and MAI-MS: Expanding the Horizons of API-MS

Fast Polarity Switching using Waters QDa,

MAI of Angiotensin I

[M-2H]2-

[M+2H]2+

[M+3H]3+

m/z 100 120 140 160 180 200 220 240 260 280 300 320 340 360 380 400 420 440 460 480 500 520 540 560 580 600 620 640 660 680 700

%

0

100

m/z 100 120 140 160 180 200 220 240 260 280 300 320 340 360 380 400 420 440 460 480 500 520 540 560 580 600 620 640 660 680 700

%

0

100 4.08e5 202.9588

141.9816

126.9913

142.9810

167.0691

217.1569 647.03

289.0624 218.1568

268.0585 301.0654 335.6765

316.3699 364.1879

576.6978 393.1011 473.2426

1.37e7 649.12

433.154

325.0662 129.0050 198.2893

132.5229 175.2030

272.0847 245.0887 338.2089

395.0921 591.5055 502.8628 445.8398

513.3965 561.3858 640.6224

668.0519 680.7145

Negative

Positive

Page 67: APGC-MS, ASAP-MS, and MAI-MS: Expanding the Horizons of API-MS

Mass Analyzer

X-Y-Z Stage Movable Carriage

1 µL Syringe

Loaded Syringe is introduced to MS Inlet

0.3 µL matrix/ analyte

deposited and dried on

needle

MSTM platform

Page 68: APGC-MS, ASAP-MS, and MAI-MS: Expanding the Horizons of API-MS
Page 69: APGC-MS, ASAP-MS, and MAI-MS: Expanding the Horizons of API-MS

Syringe Method (1uL)

• 1ul syringe

• 10mg/ml 3-NBN solution

• Inlet temperature : 70 C

• 0.2ul of analyte was pulled into the syringe

and ejected out

• 0.2ul of 3-NBN solution was withdrew into

syringe and pushed out to make droplet at

a tip of needle

• Rinse with water/methanol between

samples.

69

zero

de

ad

vo

lum

e s

yrin

ge

Page 70: APGC-MS, ASAP-MS, and MAI-MS: Expanding the Horizons of API-MS

Prototype MAI Platform for Waters Instruments

APGC Source Housing

Cover Removed

1 µL Syringe Holder

Page 71: APGC-MS, ASAP-MS, and MAI-MS: Expanding the Horizons of API-MS
Page 72: APGC-MS, ASAP-MS, and MAI-MS: Expanding the Horizons of API-MS

MH2+2

MH3+3

MH+

Substance P (1 pmol/µL) MAI Needle Method Waters Xevo Alpha

MH2+2

MH+

MH3+3

Page 73: APGC-MS, ASAP-MS, and MAI-MS: Expanding the Horizons of API-MS

Conclusion

• Matrix-assisted ionization (MAI) is sensitive,

easy to use, and robust

• Provides a rapid means of analyzing volatile,

nonvolatile, low- and high-mass compounds

Page 74: APGC-MS, ASAP-MS, and MAI-MS: Expanding the Horizons of API-MS

Acknowledgements

Barbara Larsen, DuPont: Rich McKay, M&M: Sarah Trimpin, WSU

McEwen lab: Shuba Chakrabarty, Vince Pagnotti,

Milan Pophristic , Christian Reynolds

Khoa Hoang , Dan Woodall

Jessica DeLeeuw Zachary Devereaux

MSTM

solutions

NSF STTR Phase I Grant