35
Ventilationperfusion in health & Ventilationperfusion in health & disease Arjun Srinivasan Arjun Srinivasan

Pneumology - Ventilation perfusion-ratio-and-clinical-importance

Embed Size (px)

DESCRIPTION

website: http://www.am-medicine.com Facebook page : https://www.facebook.com/pages/Am-medicine/207726329406832 Facebook group: https://www.facebook.com/groups/1409138472653811/

Citation preview

Page 1: Pneumology - Ventilation perfusion-ratio-and-clinical-importance

Ventilation‐perfusion in health &Ventilation‐perfusion in health & disease

Arjun SrinivasanArjun Srinivasan

Page 2: Pneumology - Ventilation perfusion-ratio-and-clinical-importance

Where was the beginning ?

Page 3: Pneumology - Ventilation perfusion-ratio-and-clinical-importance

Distribution of ventilationDistribution of ventilation

• Spatial & anatomical variation

• Rate of alveolar filling• Rate of alveolar filling

• Rate of alveolar emptying

Page 4: Pneumology - Ventilation perfusion-ratio-and-clinical-importance

Ventilation distribution RC tVentilation distribution‐ RC tf s

last

low

100

100

100

)

50

75

50

75

50

75

R=1 R=2C 1 %

of f

inal

)

25

50

25

50

25

50

R=1C 1

C=.5t = .5

C=1t =2

olum

e (%

00 1 2 3

00 1 2 3

00 1 2 3

C=1t = 1

v0 1 2 3

sekundy0 1 2 3

sekundy0 1 2 3

sekundyseconds

Page 5: Pneumology - Ventilation perfusion-ratio-and-clinical-importance

Clinical relevanceClinical relevance 

• Perfusion is poor & pulsatile at apex

• P & P proportionately increases from top toPa & Pv proportionately increases from top to bottom

P h i i ll i h i• PA changes minimally with gravity

• Pressures are max at bottom – Pulm edema starts at bottom

Redistribution of blood flow to apex antler’s– Redistribution of blood flow to apex – antler’s horn

Page 6: Pneumology - Ventilation perfusion-ratio-and-clinical-importance

Its not just gravity!Its not just gravity!

Lung perfusion in zero gravity  situations is more uniform but  by  no meansequally distributed

Nunn’s Applied respiratory physiology, 6 th edition

Page 7: Pneumology - Ventilation perfusion-ratio-and-clinical-importance

Understanding V/Q relationshipsUnderstanding V/Q relationships

C id l i l it• Consider lung as single unit

l h b l l– Relationships  between PA O2, PA CO2, alveolar ventilation & pulmonary blood flow

– Alveolar gas equation 

• Consider lung as multiple units of varying V/Q

– Clinical consequences in health & disease

Page 8: Pneumology - Ventilation perfusion-ratio-and-clinical-importance

Alveolar PO and PCOAlveolar PO2 and PCO2

D i d b h i b il i d• Determined by the ratio between ventilation and blood flow: V/Q

• PO2 and PCO2 are inversely related through alveolar il iventilation

• Increasing V/Q produces higher PAO2 and lower PACO2

• Decreasing V/Q produces lower PAO2 and higher PACO2

Page 9: Pneumology - Ventilation perfusion-ratio-and-clinical-importance

Gas Composition in the Alveolar SpaceGas Composition in the Alveolar SpacePiO2 = (barometric pressure‐H2O vapor pressure) xFiO2

( )=  (760 – 47) x 0.21 =150 mmHg

Page 10: Pneumology - Ventilation perfusion-ratio-and-clinical-importance

Alveolar Gas EquationAlveolar Gas Equation

PAO2 = (PiO2) – (PaCO2/R)

PaCO2 approximates PACO2 due to the rapid diffusion of CO2

R = Respiratory Quotient (VCO2/V02) = 0.8

In a normal individual breathing room air:

PAO2 = 150 – 40/0.8 = 100 mmHg2 / g

Page 11: Pneumology - Ventilation perfusion-ratio-and-clinical-importance

il i / f i i ( / )Ventilation/perfusion ratio (V/Q)

V

Q

Page 12: Pneumology - Ventilation perfusion-ratio-and-clinical-importance

V/Q distribution in health 

West JB, Respiratory Physiology, The Essentials, 6th ed. 2000, Lippincott, p. 54.

Page 13: Pneumology - Ventilation perfusion-ratio-and-clinical-importance

V/Q ratio in diseaseV/Q ratio in disease

obstruction alveolusvessel

40

50

40

50

40

50 “ideal”V/Q

↓30

PCO2( )

30PCO2

( )

30PCO2

( )

↓ V/Q ↑ V/Q

shunt/deadspace

10

20(mmHg)

10

20(mmHg)

10

20(mmHg)

embolus

shunt/venous

admixture

space

0

10

0 40 80 120 1600

10

0 40 80 120 1600

10

0 40 80 120 160

embolus

PO2 (mmHg)PO2 (mmHg)PO2 (mmHg)

Page 14: Pneumology - Ventilation perfusion-ratio-and-clinical-importance

Low V/Q Effect on OxygenationLow V/Q Effect on OxygenationOne lung unit hasOne lung unit hasnormal ventilation andperfusion, while the has inadequate ventilationhas inadequate ventilation

L↑ PCO2↓Normal Low

V/Q↓ PO2

PO2 100

PO2 50

PO2 ?PO2 100 PO2 ?

Page 15: Pneumology - Ventilation perfusion-ratio-and-clinical-importance

Oxyhemoglobin Dissociation CurveOxyhemoglobin Dissociation CurveCO2=(1.3 x HGB x Sat) + (.003 x PO2)

100

on

( ) ( )

16

20

00 m

l)

60

80

aturatio

12

16

t (m

l/10

40

60

glob

in S

8 Con

tent

20

% Hem

og

4 ygen

C

00

20 40 60 80 100

%

0

Oxy

0 20 40 60 80 100

PO2mmHg

Page 16: Pneumology - Ventilation perfusion-ratio-and-clinical-importance

Low V/Q Effect on OxygenationLow V/Q Effect on Oxygenation

LPO2 50 mmHg

Normal LowV/Q

Sat 80%O2 content 16ml/dl

PO2 100

PO2 50

PO2 100 mmHg PO2 100PO2 = 60Sat  90%O2 content 18ml/dl

2 gSat 100%O2 content 20ml/dl

Page 17: Pneumology - Ventilation perfusion-ratio-and-clinical-importance

HIGH V/Q Effect on OxygenationHIGH V/Q Effect on Oxygenation

HIGHPO2  130mmHg

Normal HIGHV/Q

Sat 100%O2 content 20 ml/dl

PO2 100

PO2 130

PO2 100 mmHg PO2 100PO2 = 100Sat  100%O2 content 20 ml/dl

2 gSat 100%O2 content 20ml/dl

Page 18: Pneumology - Ventilation perfusion-ratio-and-clinical-importance

High + low V/Q = ?High + low V/Q = ?

LPO2 50 mmHg

HIGH V/Q LowV/Q

Sat 80%O2 content 16ml/dl

PO2 130

PO2 50

PO2 130 mmHg PO2 130PO2 = 60Sat  90%O2 content 18ml/dl

2 gSat 100%O2 content 20ml/dl

Page 19: Pneumology - Ventilation perfusion-ratio-and-clinical-importance

Local ↑ V/Q above ~1 has minimal effect on [O2]

160

160 23

120

160

PaO2(mmHg)

120

160

21

22

23

O2content

( / )120120

20

21 (ml/100 ml)

8080

18

19

4040

16

17

00.001 0.01 0.1 1 10 100

V/Q

0 150.001 0.01 0.1 1 10 100

V/Q

Thus ↑ V/Q in one part of lung can’t compensate for ↓ elsewhere

Page 20: Pneumology - Ventilation perfusion-ratio-and-clinical-importance

PCO in V/Q MismatchPCO2 in V/Q Mismatch

• Increased ventilation can compensate for low V/Q units

80

ml)low V/Q units

– Shape of CO2 curve

60

T (m

l/100

m

Shape of CO2 curve

• Total ventilation (VE) 

40

20 CO

NTE

NT

2( )must increase for this compensation

20

0 40 60 80

CO

2

0 20 40 60 80

PCO2

(mmHg)

Page 21: Pneumology - Ventilation perfusion-ratio-and-clinical-importance

fi iInfinity 

↑V/Q↑V/QDead space

Page 22: Pneumology - Ventilation perfusion-ratio-and-clinical-importance

Zero

↓V/QShuntShunt

Venous admixture

Page 23: Pneumology - Ventilation perfusion-ratio-and-clinical-importance

Ventilation to Perfusion MismatchVentilation to Perfusion Mismatch  Pure PureShunt

Perfusion with No Ventilation

Dead SpaceVentilation withNo Perfusion

Shunt LikeUnits

Dead Space Like UnitsNo Ventilation No PerfusionUnits Like Units

shunt Dead space

Page 24: Pneumology - Ventilation perfusion-ratio-and-clinical-importance

3 compartment model3‐ compartment model  

1

2

3

Page 25: Pneumology - Ventilation perfusion-ratio-and-clinical-importance

Dead spaceDead space

• Defined as wasted ventilation

• Classification– Anatomical ( 1 ml / pound of ideal body wt)

– Alveolar

– Physiological • Anatomical + alveolarAnatomical + alveolar 

Page 26: Pneumology - Ventilation perfusion-ratio-and-clinical-importance

Physiological Dead Space by Bohr’s 

V X F V X F

Method (for CO2)VT X FE = VA X FA

VT = VA + VDVA = VT – VDVT X FE = (VT – VD) X FA

VD = FA – FEVT FAVT  FA

VD = PACO2 – PECO2 (Bohr Equation), so…VT PACO2

VD = PaCO2 – PECO2V PaCO P CO

VT PaCO2

Page 27: Pneumology - Ventilation perfusion-ratio-and-clinical-importance

Physiologic Dead Space &V/Q Mismatch

Hyperinflation Low Perfusion No PerfusionHyperinflation Low Perfusion No Perfusion

• Airway Obstruction • Low Cardiac Output • Pulmonary Embolus• Dynamic Hyperinflation • Tidal Volume• PEEP

• Pulmonary VascularInjury

• Extravascular

• Vascular Obliteration• Emphysema

Compression

Page 28: Pneumology - Ventilation perfusion-ratio-and-clinical-importance

Shunt equationShunt equation 

Qt x CaO2 = [(Qt – Qs) x Cc’O2] + [Qs x CvO2] 

22' CaOOCcQs −=

22' CvOOCcQt −

Page 29: Pneumology - Ventilation perfusion-ratio-and-clinical-importance

Causes of ShuntCauses of Shunt

• Physiologic shunts– Bronchial veins, pleural veins, p

P th l i h t• Pathologic shunts– Intracardiac

– Intrapulmonary• Vascular malformations

• Unventilated or collapsed alveoli 

Page 30: Pneumology - Ventilation perfusion-ratio-and-clinical-importance

Normal shunt fractionNormal shunt fraction 

• ~ 5 %

• Due to– Physiological shunt

– Gravity related V/Q mismatchy

• Contributes to A a D O• Contributes to A‐a D O2

– 10 – 15 mm hg 

Page 31: Pneumology - Ventilation perfusion-ratio-and-clinical-importance

A a DOA a DO2

PAO2 ( l l ti ) t i l P O2• PAO2 (alveolar gas equation)‐ arterial PaO2

I t t ll ffi i t l it ith t h d V/Q• In a totally efficient lung unit with matched V/Q, alveolar and capillary PO2 would be equal

• Admixture of venous blood or V/Q scatter from low V/Q lung units will increase A a DO2V/Q lung units will  increase A a DO2

• Increases ~ 3 mm hg every decade after 30 yrs of ageIncreases   3 mm hg every decade after 30 yrs of age

Page 32: Pneumology - Ventilation perfusion-ratio-and-clinical-importance

Shunt VS V/Q scatterShunt    VS. V/Q scatter

C l l d h f i O• Calculated shunt fraction or A a DO2– Does not differentiate

• Response of pa O2 to increasing Fi O2

• V/Q scatter – Pa O2 increase with small increase in FiO2(.21‐.35)

• Pure shunt– Not much response p

Page 33: Pneumology - Ventilation perfusion-ratio-and-clinical-importance

MIGETMIGET

• 50 parallel gas exchange units characterized by VA‐Q ratio.

• Fit predicted PE & Pa to experimental data.

• Output:  Ventilation and perfusion distributions.

Page 34: Pneumology - Ventilation perfusion-ratio-and-clinical-importance

Compensation of V/Q inequality ?Compensation of V/Q inequality ?

• ↑V/Q → local hypocapnia → ↑pH → local bronchoconstriction (↓V/Q )

• ↓V/Q → ↑CO → ↑ ventilation• ↓V/Q → ↑CO2 → ↑ ventilation– improves CO2 > O2 (dissociation curves)

• ↓V/Q → hypoxic pulmonary vasoconstriction

Page 35: Pneumology - Ventilation perfusion-ratio-and-clinical-importance

Points to remember

• Ventilation and Perfusion must be matched at the alveolar capillary

Points to remember

• Ventilation and Perfusion must be matched at the alveolar capillary level

• Most important cause of hypoxemia in most respiratory diseases• Most important cause of hypoxemia in most respiratory diseases

• V/Q ratios close to 1.0 result in alveolar PO2 close to 100 mmHg and PCO2 close to 40 mmHgand PCO2 close to 40 mmHg

• V/Q greater than 1.0 increase PO2 and Decrease PCO2.  V/Q less than 1 0 decrease PO2 and Increase PCO2than 1.0 decrease PO2 and Increase PCO2

• Shunt and Dead Space are Extremes of V/Q mismatching.

• A‐a Gradient of 10‐15 Results from gravitational effects on V/Q and Physiologic Shunt