84

Introduction to doe

Embed Size (px)

DESCRIPTION

 

Citation preview

Page 2: Introduction to doe

2

“Designing  an  efficient  process  with  an  effec;ve  process  control  approach  is  dependent  on  the  process  knowledge  and  understanding  obtained.  Design  of  Experiment  (DOE)  studies  can  help  develop  process  knowledge  by  revealing  rela;onships,  including  mul;-­‐factorial  interac;ons,  between  the  variable  inputs  …  and  the  resul;ng  outputs.      Risk  analysis  tools  can  be  used  to  screen  poten;al  variables  for  DOE  studies  to  minimize  the  total  number  of  experiments  conducted  while    maximizing  knowledge  gained.      The  results  of  DOE  studies  can  provide  jus;fica;on  for  establishing  ranges  of  incoming  component  quality,  equipment  parameters,  and  in  process  material  quality  aKributes.”  

Page 3: Introduction to doe

3

What  is  it?  The  ability  to  accurately  predict/control  process  responses.    

How  do  we  acquire  it?  Scien;fic  experimenta;on  and  modeling.    

How  do  we  communicate  it?  Tell  a  compelling  scien;fic  story.  Give  the  prior  knowledge,  theory,  assump;ons.  Show  the  model.  Quan;fy  the  risks,  and  uncertain;es.    Outline  the  boundaries  of  the  model.  Use  pictures.  Demonstrate  predictability.  

Page 4: Introduction to doe

4

Screening  Designs  •   2  level  factorial/  frac;onal  factorial  designs      •   Weed  out  the  less  important  factors  •   Skeleton  for  a  follow-­‐up  RSM  design  

Response  Surface  Designs  •   3+  level  designs      •   Find  design  space  •   Explore  limits  of  experimental  region  

Confirmatory  Designs  

•     Confirm  Findings  •     Characterize  Variability  

Page 5: Introduction to doe

5 Cau;on:  EVERYTHING  depends  on  gecng  this  right  !!!  

Key  Factors   Key  

Responses  

Page 6: Introduction to doe

6

Make  ACE  

Tablets  

Disint  (A  or  B)  

Drug%  (5-­‐15%)  

Disint%  (1-­‐4%)  

DrugPS  (10-­‐40%)  

Lub%  (1-­‐2%)  

Dissolu;on%  (>90%)        WeightRSD%(<2%)    

Fixed  Factors   Responses  

Day  

Random  Factors  

Page 7: Introduction to doe

7

Trial   DrugPS   Lub%    

Disso%  

1   25   1   85  2   25   2   95  3   10   1.5   90  4   40   1.5   70  

DrugPS  

Lubricant%

 

85  

95  

70  90  

10   40  1  

2  

Page 8: Introduction to doe

8

=

+ ×

− ×

Disso% 86.66710 Lub%0.667 DrugPS

DrugPS  

Lubricant%

 

85  

95  

70  90  

10   40  1  

2  

Page 9: Introduction to doe

9

�  Previous  example  had  only  2  factors.  Ø Factor  space  is  2D.  We  can  visualize  on  paper.  

�  With  3  factors  we  need  3D  paper.  Ø Corners  even  further  away  

�  Most  new  processes  have  >3  factors  �  OFAT  can  only  accommodate  addi;ve  models  �  We  need  a  more  efficient  approach  

Page 10: Introduction to doe

10

True  response   • Goal:  Maximize  response  

• Fix  Factor  2  at  A.  • Op;mize  Factor  1  to  B.  

• Fix  Factor  1  at  B.  • Op;mize  Factor  2  to  C.  

• Done?    True  op;mum  is  Factor  1  =  D  and    Factor  2  =  E.  

• We  need  to  accommodate  curvature  and  interac/ons  

A  

Factor  1  

Factor  2  

B  

C  

D  

E  80  60  40  

Page 11: Introduction to doe

11

Response  

Factor  level  A   B   C   D  

•  A  to  B  may  give  poor  signal  to  noise  •  A  to  C  gives  beKer  signal  to  noise  and  rela;onship  is  s;ll  nearly  linear  

•  A  to  D  may  give  poor  signal  to  noise  and  completely  miss  curvature  

•  Rule  of  thumb:  Be  bold  (but  not  too  bold)  

Page 12: Introduction to doe

12

Trial   DrugPS   Lub%    

Disso%  

1   10   1   75  2   10   2   100  3   40   1   75  4   40   2   80  

DrugPS  

Lubricant%

 

75  

80  

75  

100  

10   40  1  

2  

Page 13: Introduction to doe

13

DrugPS  

Lubricant%

 

75  

80  

75  

100  

10   40  1  

2  

=

+ ×

+ ×

− × ×

Disso% 43.330.667 DrugPS31.667 Lub%0.667 DrugPS Lub%

Page 14: Introduction to doe

14

� Model  non-­‐addiKve  behavior  

›  interacKons,  curvature  

� Efficiently  explore  the  factor  space  

� Take  advantage  of  hidden  replicaKon  

Page 15: Introduction to doe

15

Planar:  no  interac;on  

1 2Y a b X c X= + ⋅ + ⋅

Non-­‐planar:  interac;on  

1 2 1 2Y a b X c X d X X= + ⋅ + ⋅ + ⋅ ⋅

Page 16: Introduction to doe

16

Page 17: Introduction to doe

17

Page 18: Introduction to doe

18

Page 19: Introduction to doe

19

DrugPS  

Lub%

 

C  

B  

D  

A  

10   40  1  

2  

DrugPS

Lub%

DrugPS Lub%

B D A CMainEffect2 2

A B C DMainEffect2 2

C B A DInteractionEffect2 2×

+ += −

+ += −

+ += −

C  B  D  

A  

C  B  D  

A  C  

B  D  

A  

Trial   DrugPS   Lub%   Disso%  1   10   1   C  2   10   2   A  3   40   1   D  4   40   2   B  

Page 20: Introduction to doe

20

Trial   DrugPS   Lub%  1   10   1  2   10   2  3   40   1  4   40   2  

Trial   DrugPS   Lub%  1   -­‐1   -­‐1  2   -­‐1   +1  3   +1   -­‐1  4   +1   +1  

Uncoded  Units   Coded  Units  

•  Coding  helps  us  evaluate  design  proper;es  •  Some  sta;s;cal  tests  use  coded  factor  units  for  analysis  

(automa;cally  handled  by  sotware)  •  Easy  to  convert  between  coded  (C)  and  uncoded  (U)  factor  levels  

midmax mid mid

max mid

U UC U C(U U ) U

U U−

= ⇔ = − +−

Page 21: Introduction to doe

21

Disso ab Lub%c DrugPSd Lub% DrugPS

=

+ ×

+ ×

+ × ×

DrugPS

Lub%

DrugPS Lub%

a ( A B C D) / 4b ME /2 ( A B C D) / 4

c ME /2 ( A B C D) / 4d IE /2 ( A B C D) / 4×

= + + + +

= = − + − +

= = + + − −

= = − + + −

DrugPS  

Lub%

 

C  

B  

D  

A  

-­‐1   +1  -­‐1  

+1   Trial   DrugPS   Lub%    

DrugPS*Lub%  

Disso%  

1   -­‐1   -­‐1   +1   C  2   -­‐1   +1   -­‐1   A  3   +1   -­‐1   -­‐1   D  4   +1   +1   +1   B  

Page 22: Introduction to doe

22

Disso a b Lub c DrugPS d Lub DrugPS= + × + × + × × + ε

�  It  is  obtained  through  the  “magic”  of  regression.  

�  b  measures  the  “main  effect”  of  Lub  

�  c  measures  the  “main  effect”  of  DrugPS  

�  d  measures  the  “interac;on  effect”  between  Lub  and  DrugPS  

Ø  if  d  =  0,  effects  of  Lub  and  DrugPS  are  addi;ve  

Ø  if  d  ≠  0,  effects  of  Lub  and  DrugPS  are  non-­‐addi;ve  

�  ε  represents  trial  to  trial  random  noise  

Page 23: Introduction to doe

23

Trial   DrugPS   Lub%  1   -­‐1   -­‐1  2   -­‐1   +1  3   +1   -­‐1  4   +1   +1  

DrugPS  

Lub%

 

-­‐1   +1  -­‐1  

+1  

Trial   DrugPS   Lub%  1   -­‐1   -­‐1  2   -­‐1   -­‐1  3   +1   +1  4   +1   +1  

DrugPS  

Lub%

 

-­‐1   +1  -­‐1  

+1  

Inner  product:            +1-­‐1-­‐1+1=0                                                +1+0+0+1=2                                        +1+1+1+1=4  

Trial   DrugPS   Lub%  1   -­‐1   -­‐1  2   -­‐1   0  3   +1   0  4   +1   +1  

DrugPS  

Lub%

 

-­‐1   +1  -­‐1  

+1  

Page 24: Introduction to doe

24

Page 25: Introduction to doe

25

10   40  

DrugPS  

Dissolu;

on  (%

LC)  

2%  Lubricant  

1%  Lubricant  

90  

Page 26: Introduction to doe

26

Number  of  Factors  (k)  

Number  of  Trials  (df  =  

2k)  0   1  1   2  2   4  3   8  4   16  5   32  6   64  

•  Average  •  Main  Effects  •  2-­‐way  interac;ons  •  Higher  order  

interac;ons  (or  es;mates  of  noise)  

y a bA cB dC eAB fAC gBC hABC= + + + + + + + + ε

Page 27: Introduction to doe

27

Trial   I   A   B   C   D=AB   E=AC   F=BC   ABC  1   +   -­‐   -­‐   -­‐   +   +   +   -­‐  2   +   +   -­‐   -­‐   -­‐   -­‐   +   +  3   +   -­‐   +   -­‐   -­‐   +   -­‐   +  4   +   +   +   -­‐   +   -­‐   -­‐   -­‐  5   +   -­‐   -­‐   +   +   -­‐   -­‐   +  6   +   +   -­‐   +   -­‐   +   -­‐   -­‐  7   +   -­‐   +   +   -­‐   -­‐   +   -­‐  8   +   +   +   +   +   +   +   +  

y a bA cB dC eD fE gF= + + + + + + + ε

Main Effects

•  Can  include  addi;onal  variables  in  our  experiment  by  aliasing  with  interac;on  columns.  

•  Leave  some  columns  to  es;mate  residual  error  for  sta;s;cal  tests  

Page 28: Introduction to doe

28

A

B

C

-1 +1 -1

+1

+1

-1

y a bA cB dC= + + +

Trial   I   A   B   C   AB   AC   BC   ABC  1   +   -­‐   -­‐   -­‐   +   +   +   -­‐  2   +   +   -­‐   -­‐   -­‐   -­‐   +   +  3   +   -­‐   +   -­‐   -­‐   +   -­‐   +  4   +   +   +   -­‐   +   -­‐   -­‐   -­‐  5   +   -­‐   -­‐   +   +   -­‐   -­‐   +  6   +   +   -­‐   +   -­‐   +   -­‐   -­‐  7   +   -­‐   +   +   -­‐   -­‐   +   -­‐  8   +   +   +   +   +   +   +   +  

•  Create  a  half  frac;on  by  running  only  the  ABC  =  +1  trials  •  Note  confounding  between  main  effects  and  interac;ons  •  Compromise:  must  assume  interac;ons  are  negligible  •  In  this  case  (not  always)  design  is  “saturated”  (no  df  for  sta;s;cal  

tests).  

Page 29: Introduction to doe

29

• “I=ABC”  for  this  23-­‐1  half  frac;on  is  called  the  “Defining  Rela;on”  • Note  that  “I=ABC”  implies  that  “A=BC”,  “B=AC”,  and  “C=AB”.  

• 3-­‐way  interac;ons  are  confounded  with  the  intercept  • Main  effects  are  confounded  with  2-­‐way  interac;ons  • The  number  of  factors  in  a  defining  rela;on  is  called  the  “Resolu;on”  

• This  23-­‐1  half  frac;on  has  resolu;on  III  • We  denote  this  frac;onal  factorial  design  as  2III3-­‐1  

Page 30: Introduction to doe

30

We  like  our  screening  designs  to  be  at  least  resolu;on  IV  (I=ABCD)  

•  I=ABCD  for  this  24-­‐1  half  frac;on  is  called  the  Defining  Rela;on  • Note  that  I=ABCD  implies  

•   A=BCD,  B=ACD,  C=ABD,  and  D=ABC.  •   AB=CD,  AC=BD,  AD=BC  

•   Main  effects  are  confounded  with  3-­‐way  interac;ons  •   Some  2-­‐way  interac;ons  are  confounded  with  others.  

Page 31: Introduction to doe

31

Number  of  Factors  

2   3   4   5   6   7   8   9   10   11   12   13   14   15  

Num

ber  o

f  Design  Po

ints  

4   Full   III                                                  

6       IV                                                  

8       Full   IV   III   III   III                                  

12           V   IV   IV   III   III   III   III   III                  

16           Full   V   IV   IV   IV   III   III   III   III   III   III   III  

20                                       III   III   III   III   III  

24                               IV   IV   IV   IV   III   III   III  

32               Full   VI   IV   IV   IV   IV   IV   IV   IV   IV   IV  

48                       V   V                              

64                   Full   VII   V   IV   IV   IV   IV   IV   IV   IV  

96                               V   V   V                  

128                       Full   VIII   VI   V   V   IV   IV   IV   IV  

Page 32: Introduction to doe

32

Trial   DrugPS   Lub%  

Disso%  

1   10   1   76  2   10   2   98  3   40   1   73  4   40   2   82  5   10   1   84  6   10   2   102  7   40   1   77  8   40   2   88  

DrugPS

Lub%

76,84

88,82

73,77

98,102

10 40 1

2

FiKed  model  is  based  on  averages  individual

averageSD

SDnumber of replicates

=

Page 33: Introduction to doe

33

Repeated  measurement   1  batch  

3  measurements  per    batch  

ReplicaKng  batch  producKon  

3  batches  1  measurement  

per    batch  

Page 34: Introduction to doe

34

ReplicaKon  1.   Every  operaKon  that  

contributes  to  variaKon  is  redone  with  each  trial.  

2.  Measurements  are  independent.  

3.   Individual  responses  are  analyzed.  

RepeKKon  1.   Some  operaKons  that  

contribute  variaKon  are  not  redone.  

2.  Measurements  are  correlated.  3.   The  averages  of  the  repeats  

should  be  analyzed  (usually).  

Trial   DrugPS   Lub%  

Disso%  

1   10   1   76  2   10   2   98  3   40   1   73  4   40   2   82  5   10   1   84  6   10   2   102  7   40   1   77  8   40   2   88  

Trial   DrugPS   Lub%  

Disso%  

1   10   1   76, 84  2   10   2   98, 102  3   40   1   73, 77  4   40   2   82, 88  

Page 35: Introduction to doe

35

� Frac;onal  factorial  designs  are  generally  used  for  “screening”  

� Sta;s;cal  tests  (e.g.,  t-­‐test)  are  used  to  “detect”  an  effect.  

� The  power  of  a  sta;s;cal  test  to  detect  an  effect  depends  on  the  total  number  of  replicates  =  (trials/design)  x  (replicates/trial)  

�  If  our  experiment  is  under  powered,  we  will  miss  important  effects.  

�  If  our  experiment  is  over-­‐powered,  we  will  waste  resources.  

� Prior  to  experimen;ng,  we  need  to  assess  the  need  for  replica;on.  

Page 36: Introduction to doe

36

( )22

11 2N (#points  in  design)(replicates/point) 4 z zα −β−

σ⎛ ⎞= ≅ + ⎜ ⎟δ⎝ ⎠

•  While  not  exact,  this  ROT  is  easy  to  apply  and  useful.  

•  Commercial  sotware  will  have  more  accurate  formulas.  

α z1-­‐α/2  0.01   2.58  0.05   1.96  0.10   1.65  

β z1-­‐β 0.1   1.28  0.2   0.85  0.5   0.00  

σ  =  replicate  SD  δ    =  size  of  effect  (high  –  low)  to  be  detected.  α  =  probability  of  false  detec;on  β  =  probability  of  failure  to  detect  an  effect  of  size  δ

2

N 16 σ⎛ ⎞≅ ⎜ ⎟δ⎝ ⎠

Page 37: Introduction to doe

37

Disso%   WtRSD  Replicate  SD   σ 1.3   0.1  

Difference  to  detect   δ 2.0   0.2  False  detecKon  probability   α 0.05   0.05  

z1-­‐α/2   1.96   1.96  DetecKon  failure  probability   β 0.2   0.2  

z1-­‐β 0.85   0.85  Required  number  of  trials   N   13.3   8  

( )22

11 2N (#points  in  design)(replicates/point) 4 z zα −β−

σ⎛ ⎞= ≅ + ⎜ ⎟δ⎝ ⎠

Page 38: Introduction to doe

38

Run A B C D E 1 - - - - + 2 + - - - - 3 - + - - - 4 + + - - + 5 - - + - - 6 + - + - + 7 - + + - + 8 + + + - - 9 - - - + - 10 + - - + + 11 - + - + + 12 + + - + - 13 - - + + + 14 + - + + - 15 - + + + - 16 + + + + +

Confounding Table I = ABCDE A = BCDE B = ACDE C = ABDE D = ABCE E = ABCD AB = CDE AC = BDE AD = BCE AE = BCD BC = ADE BD = ACE BE = ACD CD = ABE CE = ABD DE = ABC

Page 39: Introduction to doe

39

�  Sta;s;cal    test  for  presence  of  curvature  (lack  of  fit)  �  Addi;onal  degrees  of  freedom  for  sta;s;cal  tests  

� May  be  process  “target”  secngs  

�  Used  as  “controls”  in  sequen;al  experiments.  

�  Spaced  out  in  run  order  as  a  check  for  drit.  

Page 40: Introduction to doe

40

Complete  RandomizaKon:    •  Is  the  cornerstone  of  sta;s;cal  analysis  •  Insures  observa;ons  are  independent    •  Protects  against  “lurking  variables”  •  Requires  a  process    (e.g.,  draw  from  a  hat)  •  May  be  costly/  imprac;cal  

Restricted  RandomizaKon:  •  “Difficult  to  change  factors  (e.g.,  bath  temperature)  are  “batched”  •  Analysis  requires  special  approaches  (split  plot  analysis)  

Blocking:  •  Include  uncontrollable  random  variable  (e.g.,  day)  in  design.  •  Assume  no  interac;on  between  block  variable  and  other  factors  •  Excellent  way  to  reduce  varia;on.  •  Rule  of  thumb:  “Block  when  you  can.  Randomize  when  you  can’t  block”.  

Page 41: Introduction to doe

41

Page 42: Introduction to doe

42

Confounding Table I = ABCDE Blk = AB = CDE A = BCDE B = ACDE C = ABDE D = ABCE E = ABCD AC = BDE AD = BCE AE = BCD BC = ADE BD = ACE BE = ACD CD = ABE CE = ABD DE = ABC

Page 43: Introduction to doe

43

StdOrder  RunOrder  CenterPt  Blocks  Disint  Drug%  Disint%  DrugPS  Lub%  11  1  1  2  A  5  1.0  10  2.0  13  2  1  2  A  5  4.0  10  1.0  19  3  0  2  A  10  2.5  25  1.5  15  4  1  2  A  5  1.0  40  1.0  18  5  1  2  B  15  4.0  40  2.0  14  6  1  2  B  15  4.0  10  1.0  20  7  0  2  B  10  2.5  25  1.5  16  8  1  2  B  15  1.0  40  1.0  17  9  1  2  A  5  4.0  40  2.0  12  10  1  2  B  15  1.0  10  2.0  9  11  0  1  A  10  2.5  25  1.5  7  12  1  1  B  5  4.0  40  1.0  1  13  1  1  B  5  1.0  10  1.0  2  14  1  1  A  15  1.0  10  1.0  4  15  1  1  A  15  4.0  10  2.0  3  16  1  1  B  5  4.0  10  2.0  10  17  0  1  B  10  2.5  25  1.5  5  18  1  1  B  5  1.0  40  2.0  8  19  1  1  A  15  4.0  40  1.0  6  20  1  1  A  15  1.0  40  2.0  

Page 44: Introduction to doe

44

RunOrder  CenterPt  Blocks  Disint  Drug%  Disint%  DrugPS  Lub%  Disso%  WtRSD  1  1  2  A  5  1.0  10  2.0  100.4  1.6  2  1  2  A  5  4.0  10  1.0  103.0  2.1  3  0  2  A  10  2.5  25  1.5  88.8  1.6  4  1  2  A  5  1.0  40  1.0  94.3  2.3  5  1  2  B  15  4.0  40  2.0  78.9  1.6  6  1  2  B  15  4.0  10  1.0  102.9  2.0  7  0  2  B  10  2.5  25  1.5  90.9  1.4  8  1  2  B  15  1.0  40  1.0  91.8  2.2  9  1  2  A  5  4.0  40  2.0  76.3  1.4  10  1  2  B  15  1.0  10  2.0  103.4  1.6  11  0  1  A  10  2.5  25  1.5  89.9  1.8  12  1  1  B  5  4.0  40  1.0  91.8  2.2  13  1  1  B  5  1.0  10  1.0  101.2  2.2  14  1  1  A  15  1.0  10  1.0  101.8  2.6  15  1  1  A  15  4.0  10  2.0  102.5  1.4  16  1  1  B  5  4.0  10  2.0  100.3  1.5  17  0  1  B  10  2.5  25  1.5  91.2  1.6  18  1  1  B  5  1.0  40  2.0  76.3  1.3  19  1  1  A  15  4.0  40  1.0  92.4  2.1  20  1  1  A  15  1.0  40  2.0  76.8  1.6  

Page 45: Introduction to doe

45

Page 46: Introduction to doe

46

Page 47: Introduction to doe

47

Page 48: Introduction to doe

48

Page 49: Introduction to doe

49

Page 50: Introduction to doe

50

Source DF Adj MS F P Blocks 1 2.21 0.11 0.745 Disint 1 0.30 0.01 0.905 Drug% 1 2.94 0.15 0.707 Disint% 1 0.30 0.01 0.905 DrugPS 1 1174.45 58.93 0.000 Lub% 1 258.61 12.98 0.004 Curvature 1 32.68 1.64 0.225 Res Error 12 19.93

2.179  is  the  1-­‐α/2  th  quan;le  of  the  t-­‐distribu;on  having  12  df.  

Page 51: Introduction to doe

51

Source DF Adj MS F P Blocks 1 0.01090 0.51 0.487 Disint 1 0.03751 1.77 0.208 Drug% 1 0.00847 0.40 0.539 Disint% 1 0.08282 3.91 0.071 DrugPS 1 0.00189 0.09 0.770 Lub% 1 2.10586 99.46 0.000 Curvature 1 0.21198 10.01 0.008 Res Error 12 0.02117

Page 52: Introduction to doe

52

Disso%  •  Only  DrugPS  and  Lub%  show  significant  main  effects  •  Plot  of  Disso%  residuals  vs  predicted  Disso%  shows  systema;c  paKern.  

•  The  residual  SD  (4.5)  is  considerably  larger  than  expected  (1.3)  WtRSD  •  Only  Lub%  shows  a  sta;s;cally  significant  main  effect  •  Curvature  is  significant  for  WtRSD  Therefore  •  Only  DrugPS  and  Lub%  need  to  be  considered  further  •  The  other  3  factors  can  fixed  at  nominal  levels.  •  The  predic;on  model  is  inadequate.  Addi;onal  experimenta;on  is  needed.  

Page 53: Introduction to doe

53

Disso a b Lub% c DrugPS d Lub% DrugPS= + × + × + × × + ε

DrugPS  

Lub%

 

C  

B  

D  

A  

10   40  1  

2  

Trial   DrugPS   Lub%   Disso%  1   10   1   C  2   10   2   A  3   40   1   D  4   40   2   B  

E  

F  

H  G  5   25   1   E  6   25   2   F  7   10   1.5   G  8   40   1.5   H  

2 2Disso a b Lub% c DrugPS d Lub% DrugPS e Lub% f DrugPS= + × + × + × × + × + × + ε

I  

9   25   1.5   I  

Page 54: Introduction to doe

54

Respon

se  

Factor  

Page 55: Introduction to doe

55

Factorial or fractional factorial screening design

Response surface design

Page 56: Introduction to doe

56

Page 57: Introduction to doe

57

•     “Cube  Oriented”  •       3  or  5  levels  for  each  factor    In  3  factors  

Factorial  or                FracKonal  Factorial                

Central  Composite  Design  

+        +  

=  

         Axial  Points                      Center  Points  

Page 58: Introduction to doe

58

Page 59: Introduction to doe

59

Page 60: Introduction to doe

60

Page 61: Introduction to doe

61

Std  Run  Center  Block  Disint  Drug%  Disint%  DrugPS  Lub%  Disso%  WtRSD  Order  Order  Point  11  1  1  2  A  5  1.0  10  2.0  100.4  1.6  13  2  1  2  A  5  4.0  10  1.0  103.0  2.1  19  3  0  2  A  10  2.5  25  1.5  88.8  1.6  15  4  1  2  A  5  1.0  40  1.0  94.3  2.3  18  5  1  2  B  15  4.0  40  2.0  78.9  1.6  …  10  17  0  1  B  10  2.5  25  1.5  91.2  1.6  5  18  1  1  B  5  1.0  40  2.0  76.3  1.3  8  19  1  1  A  15  4.0  40  1.0  92.4  2.1  6  20  1  1  A  15  1.0  40  2.0  76.8  1.6  21  21  -­‐1  3  A  10  2.5  10  1.5      22  22  -­‐1  3  A  10  2.5  40  1.5      23  23  -­‐1  3  A  10  2.5  25  1.0      24  24  -­‐1  3  A  10  2.5  25  2.0      25  25  0  3  A  10  2.5  25  1.5      26  26  0  3  A  10  2.5  25  1.5      

Page 62: Introduction to doe

62

Std  Run  Center  Block  Disint  Drug%  Disint%  DrugPS  Lub%  Disso%  WtRSD  Order  Order  Point  11  1  1  2  A  5  1.0  10  2.0  100.4  1.6  13  2  1  2  A  5  4.0  10  1.0  103.0  2.1  19  3  0  2  A  10  2.5  25  1.5  88.8  1.6  15  4  1  2  A  5  1.0  40  1.0  94.3  2.3  18  5  1  2  B  15  4.0  40  2.0  78.9  1.6  …  10  17  0  1  B  10  2.5  25  1.5  91.2  1.6  5  18  1  1  B  5  1.0  40  2.0  76.3  1.3  8  19  1  1  A  15  4.0  40  1.0  92.4  2.1  6  20  1  1  A  15  1.0  40  2.0  76.8  1.6  21  21  -­‐1  3  A  10  2.5  10  1.5  101.8  1.7  22  22  -­‐1  3  A  10  2.5  40  1.5  84.0  1.7  23  23  -­‐1  3  A  10  2.5  25  1.0  96.7  2.1  24  24  -­‐1  3  A  10  2.5  25  2.0  82.8  1.4  25  25  0  3  A  10  2.5  25  1.5  92.3  1.5  26  26  0  3  A  10  2.5  25  1.5  91.9  1.2  

Page 63: Introduction to doe

63

Page 64: Introduction to doe

64

2 2Y a b DrugPS c Lub% d DrugPS e Lub% f Drug PSLub%= + ⋅ + ⋅ + ⋅ + ⋅ + ⋅ ⋅ + ε

Page 65: Introduction to doe

65

Page 66: Introduction to doe

66

Page 67: Introduction to doe

67

Page 68: Introduction to doe

68

Source DF Adj SS Adj MS F P Blocks 2 2.27 1.13 0.48 0.625 Regression Linear DrugPS 1 1331.87 1331.87 567.73 0.000 Lub% 1 340.61 340.61 145.19 0.000 Square DrugPS*DrugPS 1 27.39 27.39 11.68 0.003 Lub%*Lub% 1 0.14 0.14 0.06 0.811 Interaction DrugPS*Lub% 1 222.98 222.98 95.05 0.000 Residual Error 18 42.23 2.35 Lack-of-Fit 7 25.15 3.59 2.32 0.103 Pure Error 11 17.07 1.55

Page 69: Introduction to doe

69

Source DF Adj SS Adj MS F P Blocks 2 0.02341 0.01171 0.41 0.671 Regression Linear DrugPS 1 0.00118 0.00118 0.04 0.842 Lub% 1 2.31351 2.31351 80.72 0.000 Square DrugPS*DrugPS 1 0.04980 0.04980 1.74 0.204 Lub%*Lub% 1 0.09743 0.09743 3.40 0.082 Interaction DrugPS*Lub% 1 0.00234 0.00234 0.08 0.778 Residual Error 18 0.51589 0.02866 Lack-of-Fit 7 0.28587 0.04084 1.95 0.154 Pure Error 11 0.23003 0.02091

Page 70: Introduction to doe

70

StaKsKcal  Significance?  Model  Term   Disso%   WtRSD  

DrugPS   P   P  Lub%   P   P  

DrugPS2   P   P  Lub%2   ?  

DrugPS  ×  Lub%   P   P  Lack  of  Fit  

2 2Y a b DrugPS c Lub% d DrugPS e Lub% f Drug PSLub%= + ⋅ + ⋅ + ⋅ + ⋅ + ⋅ ⋅ + ε?  

Page 71: Introduction to doe

71

•  The  simplest  model  that  explains  the  data  is  best  (Occam’s  razor,  rule  of  parsimony)  

•  Eliminate  “least  significant”  terms  one  at  a  ;me  followed  by  re-­‐analysis  

•  Always  eliminate  highest  order  terms  first  

•  Don’t  eliminate  lower  order  terms  which  are  contained  in  significant  higher  order  terms  

•  Any  exis;ng  theory  or  prior  knowledge  trumps  these  rules.  

2 2Y a b DrugPS c Lub% d DrugPS e Lub% f Drug PSLub%= + ⋅ + ⋅ + ⋅ + ⋅ + ⋅ ⋅ + ε?  

Page 72: Introduction to doe

72

Estimated Regression Coefficients for Disso% using data in uncoded units Term Coef Constant 105.321 DrugPS -0.478970 Lub% 6.62343 DrugPS*DrugPS 0.0130426 Lub%*Lub% -0.959956 DrugPS*Lub% -0.497745

S = 1.49153 PRESS = 83.4051 R-Sq = 97.76% R-Sq(pred) = 95.79% R-Sq(adj) = 97.20%

Page 73: Introduction to doe

73

Estimated Regression Coefficients for WtRSD using data in uncoded units Term Coef Constant 4.66698 DrugPS -0.0293187 Lub% -2.96608 DrugPS*DrugPS 0.000623945 Lub%*Lub% 0.763118 DrugPS*Lub% -0.00161165

S = 0.164211 PRESS = 0.850996 R-Sq = 83.93% R-Sq(pred) = 74.65% R-Sq(adj) = 79.92%

Page 74: Introduction to doe

74

Acceptable performance more likely

•  Difficult  to  do  with  >  2  factors  •  Does  not  take  into  account    

•  es;ma;on  uncertainty  •  correla;on  among  responses  •  variability  in  control  of  factor  levels  

•  variability  in  the  underlying  true  model  over  ;me  

Page 75: Introduction to doe

75

Page 76: Introduction to doe

76

Page 77: Introduction to doe

77

Global Solution DrugPS = 11.2121 Lub% = 1.93939 Predicted Responses Disso% = 100.002 , desirability = 1.000 WtRSD = 1.500 , desirability = 0.117927 Composite Desirability = 0.343404

Page 78: Introduction to doe

78

Predicted Response for New Design Points Using Model for Disso% Point Fit SE Fit 95% CI 95% PI 1 100.002 0.621070 (98.7063, 101.297) (96.6316, 103.372) Predicted Response for New Design Points Using Model for WtRSD Point Fit SE Fit 95% CI 95% PI 1 1.49952 0.0683772 (1.35689, 1.64216) (1.12848, 1.87057)

Page 79: Introduction to doe

79

1.  Number  of  trials  ≥  Number  of  model  coefficients  

2.  Each  coded  column  adds  to  0  (balance)  

3.  Inner  product  of  any  2  coded  columns  =  0  (orthogonality)  

4.  Use  resolu;on  V  (or  at  least  IV)  for  screening  designs  5.  Factor  ranges  are  bold  (but  not  too  bold)  6.  Incorporate  process  knowledge  &  sequen;al  strategies  7.  Assure  adequate  sample  size  (power)  

8.  Randomize  processing  order  

9.  Block  when  you  cannot  randomize  

10.   Incorporate  tests  for  model  adequacy  (e.g.,  center  points)  

11.   Avoid  PARC  (Planning  Ater  Research  is  Complete)  

Page 80: Introduction to doe

80

1.  Use  graphics  (picture  =  1,000  words)  2.  Always  verify  model  assump;ons  (normality,  independence,  

variance  homogeneity)  

3.  In  model  reduc;on,  follow  rules  of  hierarchy  tempered  by  prior  process  knowledge    

4.  Use  coded  factor  levels  in  judging  sta;s;cal  significance  of  model  coefficients.  

5.  Consider  predic;on  uncertainty  when  iden;fying  op;mal  factor  secngs  

6.  Take  advantage  of  curvature  &  interac;ons  when  choosing  op;mal  factor  secngs  

7.  Always  perform  independent  trials  to  confirm  predic;ons.  

Page 81: Introduction to doe

81

Minitab  • General  purpose  stat  package  • User  friendly  • Good  learning  tool    JMP  • General  purpose  stat  package  • Excellent  for  DOE  &  SPC  • Very  advanced  features  

• Monte-­‐Carlo  simula;on  of  DOE  models  • Good  D-­‐op;mal  design  features  

• May  need  sta;s;cal  support  for  some  features    Design  Expert  • Exclusive  focus  on  DOE  (may  want  addnl  tools)  • I  have  not  used  but  my  impression  is  very  good  

5

5

10

15

Hard%RSD

MixTime(min)5 7 9 11 13 15MixTime(min)5 7 9

15

20

2.015 17

3.02.5 Water(L)

2.0

3.0

Water(L)

Surface Plot of Hard%RSD

6 11 16

2.0

2.5

3.0

MixTime(min)

Wat

er(L

)

Overlaid Contour Plot of Hardness...Hard%RSD

Hardness

Hard%RSD

19.520.5

07

Lower BoundUpper Bound

White area: feasible region

Page 82: Introduction to doe

82

Contour  Profiling  and  overlay  for    design  space  idenKficaKon  

Monte-­‐Carlo  SimulaKon  to  determine  effect  of  poor  factor  control  on  future  batch  failure  rate  

67

Page 83: Introduction to doe

83

• Robust  design  &  Taguchi  designs  • Mixture  (e.g.,gasoline  blend)  and  constrained  designs  

• D-­‐op;mal  designs  and  custom  augmenta;on    

• Bayesian  approaches  • Probability  of  mee;ng  specifica;ons  • mul;ple  correlated  responses  • incorpora;on  of  prior  knowledge  

• Variance  component  analysis  &  Gage  R&R  

• Split-­‐plot  experiments  

Page 84: Introduction to doe

84

1.  Box, G. E. P.; Hunter, W. G., and Hunter, J. S. (1978). Statistics for Experimenters: An Introduction to Design, Data Analysis, and Model Building. John Wiley and Sons.

2.  Montgomery D (2005) Design and analysis of experiments, 6th edition, Wiley.

3.  Myers R, Montgomery D, and Anderson-Cook C (2009) Response surface methodology, Wiley.

4.  Diamond W (1981) Practical Experiment Designs, Wadsworth, Belmont CA

5.  Altan S, et al (2010) Statistical Considerations in Design Space Development (Parts I-III) PharmTech Nov 2, 2010. Available on line at http://www.pharmtech.com/pharmtech/author/authorInfo.jsp?id=53118

6.  Conformia CMC-IM Working Group (2008) Pharmaceutical Development case study: “ACE Tablets”. Available from the following web site: http://www.pharmaqbd.com/files/articles/QBD_ACE_Case_History.pdf

7.  ICH Expert Working Group (2008) GUIDELINE on PHARMACEUTICAL DEVELOPMENT Q8(R1) Step 4 version dated 13 November 2008

8.  ICH Expert Working Group (2005) Guideline on QUALITY RISK MANAGEMENT Q9 Step 4 version dated 9 November 2005

9.  FDA CDER/CBER/CVM (November 2008) Draft Guidance for Industry Process Validation: General Principles and Practices (CGMP)

Thank You!!