44
Critical Care Concepts Edward Omron MD, MPH, FCCP Pulmonary and Critical Care

Critical Care Fundamentals

Embed Size (px)

DESCRIPTION

A review of fundamental critical care concepts Edward Omron MD, MPH, FCCP Pulmonary, Critical Care Medicine Morgan Hill, CA 95037

Citation preview

Page 1: Critical Care Fundamentals

Critical Care Concepts

Edward Omron MD, MPH, FCCP

Pulmonary and Critical Care

Page 2: Critical Care Fundamentals

INDICATIONSINDICATIONS

• ABG– Oxygenation– Ventilation– Acid-Base Status

• VBG– Ventilation and Acid-Base Status

– Cardiac Output (venous arterial PCO2 difference)

– Endpoint of resuscitation (ScvO2 and PCO2)

Page 3: Critical Care Fundamentals

Blood Gas Report(Blood Gas Report(ArterialArterial))

• pH (No Units) 7.35-7.45

• PaCO2 (mm Hg) 35-45

• PaO2 (mm Hg) 110 - 0.5(age)

• HCO3- (mmol/L): calc. 22-26

• B.E. (mmol/L) -2 to 2

• O2 saturation: calc. >90%

Page 4: Critical Care Fundamentals

Blood Gas ReportBlood Gas Report(mixed/central venous)(mixed/central venous)

• pH = 7.32-7.42

• PvCO2 = 40 - 50 (mm Hg)

• PvO2 = 36 - 42 (mm Hg)

• Oxygen Saturation > 70%

• Base Excess = -2 to +2

Page 5: Critical Care Fundamentals
Page 6: Critical Care Fundamentals

ANALYSIS OF VENTILATONANALYSIS OF VENTILATON

• PaCO2 = VCO2 x K

VA

Hypercapnea > 45 mm Hg (Hypoventilation)

Respiratory Acidosis

Hypocapnea < 35 mm Hg (Hyperventilation)

Respiratory Alkalosis

Page 7: Critical Care Fundamentals

Respiratory Acid-Base Status

• Respiratory Disturbances– CO2+H20 H2CO3 H+ + HCO3

– Acute changes:• Delta 10 mm Hg PaCO2, pH changes by 0.08• Chronic change: 40 + B.E

– Alveolar Ventilation• VA CO2 pH

• Respiratory Acidosis pCO2 > 45• Respiratory Alkalosis pCO2 < 35

Page 8: Critical Care Fundamentals

BASE EXCESS(B.E.)BASE EXCESS(B.E.)

• Positive value, excess base, metabolic alkalosis

• Negative value, excess acid, metabolic acidosis

• Metabolic component of acid-base status

• PCO2 independent

• Estimated by BE = (Total CO2 – 24)

Page 9: Critical Care Fundamentals

Problem Solving

1. LOOK AT THE pH– Whatever side of pH 7.4 is the primary disorder

2. Look at pH, PCO2 direction

– Both decrease or increase, then metabolic– If move in opposite directions, respiratory

3. Respiration: acute or chronic?– Acute: 10 mm Hg / 0.08 change in pH– Chronic: 40+Base Excess

Page 10: Critical Care Fundamentals

• Calculate the Adjusted Anion Gap– High vs normal ANG differential– Adjusted ANG = ANG + 2.8(4.4 -Albumin)

Page 11: Critical Care Fundamentals

Arterial Draw:• pH = 7.28, PaCO2 = 34, HCO3 = 16

• Na = 153 Cl = 106 Total CO2 = 17

• Alb = 3 g/dL, Saturation = 84%

• Primary Acid-Base Disturbance?

• Adjusted ANG

• Metabolic Acid-Base Status

74 yo male found unresponsive and pulseless

Page 12: Critical Care Fundamentals

• Primary Disorder– Acidosis and acidemia (pH < 7.4)

• pH and PCO2 direction– Both down: Metabolic Acidosis

• Base Excess– 16 – 24 = -8 mmols/L

• Adjusted Anion Gap– ANG + 2.8*(4.4 - 3) or 30 + 4 = 34 – Anion Gap Acidosis

• Compensation? – 40 + BE or 32 mm Hg

Page 13: Critical Care Fundamentals

Venous Draw

• pH = 7.08, pCO2 = 75, HCO3 = 21

• Na = 145, Cl = 103, Total CO2 =22

• Alb = 3 g/dL, Saturation = 20%

• Primary Acid-Base Disorder?

• Adjusted ANG?

• Metabolic Acid-Base Status?

Page 14: Critical Care Fundamentals

• Primary Disorder– pH < 7.4, acidosis and acidemia

• pH and PCO2 direction– Opposite therefore RESPIRATORY acidosis

• Base Excess

– 22 – 24 = -2 mmol/L

• Adjusted Anion Gap– ANG + 2.8(4.4 -3) = 20+4 =24– Anion Gap Acidosis

• 40 + BE rule Comp in VBG

Page 15: Critical Care Fundamentals

74 yo male found unresponsive and pulseless

• Why a metabolic acidosis in arterial bed and respiratory acidosis in venous bed?– Venous arterial PCO2 difference?– PvCO2 (75) - PaCO2 (34) = 41– PvCO2 – PaCO2 1 / cardiac index– Normal ≤ 6 mm Hg

• Venous vs Arterial saturation difference?– PaO2 = 50 mm Hg, saturation = 84%– PvO2 =18, Venous Saturation = 20%– Increased oxygen extraction from circulatory

failure

Page 16: Critical Care Fundamentals

PaO2 vs PvO2 in Cardiogenic Shock

Arterial Venous Saturation Difference

SHOCK

Page 17: Critical Care Fundamentals

Effects of Cardiac Output on Arterio-venous Difference

• VO2 = 1.34*Hgn*10*C.O.*(SaO2 –SvO2)

• VO2 = 1.34*Hgn*10* C.O.* (SaO2 –SvO2)

– A decrement in C.O. must be accompanied by an increase in the arteriovenous difference at constant oxygen consumption

Page 18: Critical Care Fundamentals

A fall in venous saturation from 70% to 50% represents A fall in cardiac index of 42%

Page 19: Critical Care Fundamentals

Paradoxical Respiratory Acidosis of Cardiopulmonary Arrest

Venous Arterial CO2 Difference

Page 20: Critical Care Fundamentals

Central Venous-Arterial PCO2 Gradient

Page 21: Critical Care Fundamentals

Fick Equation for CO2 production

• VCO2 =Carbon dioxide production (200 mL/min)

• VCO2 = 10*C.O.*(PvCO2 – PaCO2)

• If cardiac output decreases and VCO2 remains constant, what must happen to venous-arterial CO2 difference?

• VCO2 = 10* C.O.* (PvCO2 – PaCO2)

• Respiratory Quotient VCO2/VO2 = 200/250 = 0.8

Page 22: Critical Care Fundamentals

Venous Arterial CO2 Difference

• Circulatory Failure– Associated with Tissue Hypercarbic Acidosis– Hypovolemia, sepsis, shock …

• Cardiac Index = e (1.787 – 0.151(v-a CO2))

– Endpoint of Resuscitation

• PvO2 or SvO2 from VBG– Enpoint of Resuscitation

Page 23: Critical Care Fundamentals

Cardinal Rules of Critical Care– GOLDEN HOUR GOLDEN HOUR

• Time dependent functionTime dependent function

– Maximize Oxygen Delivery• Improve Cardiac Performance

– Maintain MAP > 65 mm Hg (arbitrary)

» Preload Augmentation (crystalloid/colloid)

» Inotropes (norepinephrine)

» Peripheral vasoconstrictor (vasopressin)

• Transfuse Packed Red Blood Cells

• Assume control of ventilation/oxygenation– FIO2 factors

Page 24: Critical Care Fundamentals

Cardinal Rules of Critical Care

– Minimize oxygen consumption• Sedation, analgesia, rarely neuromuscular

blockade

• Work of breathing

• Fever

• Rigors

• Pain

• Anxiety

Page 25: Critical Care Fundamentals

Endpoint of Resuscitation

• Conventional Endpoints are lagging indicators of inadequate oxygen delivery– Blood Pressure– Heart Rate– Urine Output– Mental Status Changes– Central Venous Pressure (poor surrogate of

filling pressures)

Page 26: Critical Care Fundamentals

• More effective endpoints of resuscitation

• Continuous Cardiac Index– Pulse pressure variation

– Systolic pressure variation

• SvO2 or ScvO2

• Serum lactate (Tissue hypoxia

• Venous – arterial PCO2– Directly correlates with cardiac index

• Metabolic acid-base status (SBE)

Page 27: Critical Care Fundamentals

Resuscitation Endpoints

• A single set of data points is useless– C.I., SvO2, PaCO2-PvCO2, SBE, Lactate

• Construct multiple data points to assess trends and response to interventions!

• REAL time bedside interventions

Page 28: Critical Care Fundamentals

Pulse Pressure Variation

Page 29: Critical Care Fundamentals

Systolic Pressure Variation

Page 30: Critical Care Fundamentals

Preload Augmentation

RVEDV or LVEDV

Stroke Volume

Normal

Abnormal (Cardiogenic or septic shock)

50 mL 100 mL 150 mL

Page 31: Critical Care Fundamentals

Preload Augmentations/p fluid bolus

RVEDV or LVEDV

Stroke Volume

Normal

Abnormal (Cardiogenic or septic shock)

50 mL 100 mL 150 mL 200 mL

Page 32: Critical Care Fundamentals

Stroke Volume

Ventricular preload

preload-dependencepreload-dependence

preload-independencepreload-independence

The lower the ventricular preload, The lower the ventricular preload, the more likely the preload-dependency the more likely the preload-dependency

Page 33: Critical Care Fundamentals

.

Stroke volume

Ventricular preload

normal heart normal heart

failing heart failing heart

preload-dependencepreload-dependence

preload-independencepreload-independence

Page 34: Critical Care Fundamentals

Preload Augmentation

• DO2 (oxygen delivery in mL O2/min)

• DO2 = CO x CaO2 x 10

• DO2 = HR x SV x CaO2 x 10

• DO2 = HR x SV x Hb x SaO2 x 13.8

Page 35: Critical Care Fundamentals

Central Venous Oxygen Saturation ScvO2

• Allows separation of early and late shock

• Easily measured with venous blood gas

• Surrogate measurement of mixed venous oxygen sat.– 5-18% higher– A low ScvO2 always means a low SvO2!

• Normal ScvO2 68-76%

– 25% extraction coefficient of normal physiology

Page 36: Critical Care Fundamentals
Page 37: Critical Care Fundamentals

Fick Equation for Oxygen Consumption

• VO2= Oxygen Consumption (250 mL/min)

• VO2 = 10*C.O.*(CaO2 –CvO2)

• VO2 = 10 * C.O. * (1.34*Hgn*SaO2 -1.34*Hgn*SvO2)

• VO2 = 1.34*Hgn*10*C.O.*(SaO2 –SvO2)

• Solve for SvO2?

Page 38: Critical Care Fundamentals

Four Determinants of Central Venous Oximetry

ScvOScvO22 SvO SvO22 = SaO = SaO2 2 - (VO - (VO22 / C.O. x Hgb x 1.34) / C.O. x Hgb x 1.34)

ScvO2 = Central venous saturation (%)

SvO2 = Mixed venous saturation (%)

SaO2 = Arterial oxygen saturation (%)

VO2 = Oxygen consumption mL (O2/min)

Hgb = Hemoglobin concentration (g/dL)Cardiac Output (C.O.) = dL/min

Page 39: Critical Care Fundamentals

Master EquationMaster Equation

ScvO2ScvO2 SvO2 = SaO2 - (VO2 / C.O. x Hgb x SvO2 = SaO2 - (VO2 / C.O. x Hgb x 1.34)1.34)

• Acute Illness or Post-op Surgery– SaO2, VO2, Cardiac Output, and Hgb are

dynamically changing concurrently

– Optimize each parameter then recheck ScvO2 to assess response to intervention

Page 40: Critical Care Fundamentals

Effect of changes in PaO2 on SvO2

600200

10080

60

40

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 100 200 300 400 500 600 700

PaO2 (mm Hg)

SvO

2

SvO2

Page 41: Critical Care Fundamentals

Effect of changes in Hgn on SvO2

13

10

7.5

5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 2 4 6 8 10 12 14

Hemoglobin (g/dL)

Sv

O2

SvO2

Page 42: Critical Care Fundamentals

The Effects of Cardiac Output on SvO2

0.870.83

0.73

0.66

0.55

0.31

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 2 4 6 8 10 12

Cardiac Output (L/min)

Sv

O2

SvO2

Page 43: Critical Care Fundamentals

Effect of Oxygen Consumption (VO2) on SvO2

0.850.79

0.74

0.68

0.57

0.46

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 100 200 300 400 500 600

Oxygen Consumption (VO2)

Sv

O2

SvO2

Page 44: Critical Care Fundamentals

REFERENCES

• Current Opinion Critical Care 2001; 7: 204-211• NEJM 2001; 345: 1368-1377• Critical Care Medicine 2002; 30: 1686-1692• Circulation 1969; 40: 165• Thorax 2002; 57: 170-177• Academic Emer Med 1999; 6: 421