39
Référence Présentation Générale - Confidentiel 1 - 26/05/2016 Co-micronization: innovative technology to enhance oral bioavailability of poorly water soluble APIs APGI Day – MERCK and GATTEFOSSE CNAM – Paris 24/05/2016 Jerome HECQ, Pharm.D, Ph.D.

Conference on Co- micronization by PH.D. Jérôme Hecq

Embed Size (px)

Citation preview

Page 1: Conference on Co- micronization by PH.D. Jérôme Hecq

Réfé

rence

Pré

senta

tion G

énéra

le -

Confidentiel

1 - 26/05/2016

Co-micronization: innovative technology to enhance oral bioavailability of poorly water soluble APIs

APGI Day – MERCK and GATTEFOSSE

CNAM – Paris

24/05/2016

Jerome HECQ, Pharm.D, Ph.D.

Page 2: Conference on Co- micronization by PH.D. Jérôme Hecq

Réfé

rence

Pré

senta

tion G

énéra

le -

Confidentiel

2 - 26/05/2016

OVERVIEW

�Introduction� Factors influencing solubility and dissolution

�Micronization / Co-micronization�Benefits and drawbacks

� From preformulation to industrial manufacturing

�Case studies

�Conclusion

Page 3: Conference on Co- micronization by PH.D. Jérôme Hecq

Réfé

rence

Pré

senta

tion G

énéra

le -

Confidentiel

3 - 26/05/2016

INTRODUCTION

�Formulation strategies used to enhance solubility / dissolution rate / oral bioavailability

� Formulation strategy selection: Consider multiple variables

- API- Excipients- Drug load (vs. dose)- Manufacturing process

Composition Performance

- Solubility- Dissolution- Bioavailability- Food effect- Chemical stability (compatibility)- Physical stability- Safety

Page 4: Conference on Co- micronization by PH.D. Jérôme Hecq

Réfé

rence

Pré

senta

tion G

énéra

le -

Confidentiel

4 - 26/05/2016

INTRODUCTION

�Factors influencing solubility� Molecular structure (molecular weight / size, polarity / functional

groups)

� Temperature

� pKa and GIT pH profile

� Surfactants

� Solid state (crystalline state: polymorphs, pseudopolymorphs, amorphous)

� Particle size (influence: size<100nm - Ostwald)

Illustration of the calculated effect of particle diameter on Cs/C∞for a particle having a

molecular weight of 708, a density of 1g/ml and an interfacial surface tension of 50 (blue), 75 (green) and 100 (red) dyn cm-1. (Kipp, 2004. Int. J. Pharm., 284 (1-2), 109-122)

Page 5: Conference on Co- micronization by PH.D. Jérôme Hecq

Réfé

rence

Pré

senta

tion G

énéra

le -

Confidentiel

5 - 26/05/2016

INTRODUCTION

�Factors influencing dissolution

�Noyes-Whitney

Parameter Definition Physicochemical characteristic in vivo factor

D Diffusion coefficient (solute) Molecular size of solute particle GIT fluids viscosity

A Specific surface area of dispersed particles Particle size Presence of surfactants

h Thickness of diffusion layer - GIT motility

S Saturation solubility of API Solid state, polarity,… pH, surfactants

CbSolute concentration in the dissolution media at time t - GIT fluids volume

Page 6: Conference on Co- micronization by PH.D. Jérôme Hecq

Réfé

rence

Pré

senta

tion G

énéra

le -

Confidentiel

6 - 26/05/2016

MICRONIZATION

�Micronization

�Most straightforward approach to enhance API dissolution rate: increase of the surface area of the particles in contact of the dissolution media

Page 7: Conference on Co- micronization by PH.D. Jérôme Hecq

Réfé

rence

Pré

senta

tion G

énéra

le -

Confidentiel

7 - 26/05/2016

MICRONIZATION

�Micronization

�« Universal » formulation strategy applicable to most APIs independently of their physicochemical properties:

− Molecular weight / size / structure

− Log P

− pKa

− Solubility in organic solvents or excipients

− Chemical stability (temperature, compatibility issues)

− Melting point: Low MP APIs may have a tendency to show agglomeration during the micronization process (ball milling > jet milling) => cryomilling

�No use of excipients, solvents

Page 8: Conference on Co- micronization by PH.D. Jérôme Hecq

Réfé

rence

Pré

senta

tion G

énéra

le -

Confidentiel

8 - 26/05/2016

MICRONIZATION

�Micronization vs. oral bioavailability

� For drugs showing poor oral bioavailability due to low solubility and not exclusively due to their poor dissolution behavior, micronization may have a low or no impact on bioavailability

=> Nanomilling (PSD: 50-500nm)

=> Co-micronization with pharmaceutical excipients allowing to increase solubility (i.e. surfactants, pH modifying agents)

Page 9: Conference on Co- micronization by PH.D. Jérôme Hecq

Réfé

rence

Pré

senta

tion G

énéra

le -

Confidentiel

9 - 26/05/2016

MICRONIZATION

�Micronization vs. oral bioavailability

�A micronized powder will generally be presenting particle surfacesthat are highly cohesive (VDW interactions, electrostaticattraction) due to the high energy brought during the sizereduction process and that will lead to particle agglomeration andsubsequent problems:

>Poor flowability

>Low bulk density

>Increased poor wettability characteristics

>Reduced effective surface area with potential negative impact on drug dissolution rate

=> Co-micronization of the drug with selected pharmaceutical excipients allows to reduce these inter-particular attractions and thus agglomeration

Page 10: Conference on Co- micronization by PH.D. Jérôme Hecq

Réfé

rence

Pré

senta

tion G

énéra

le -

Confidentiel

10 - 26/05/2016

MICRONIZATION

�Co-micronization vs. Micronization

�Modification of surface properties of the drug particles

- Decrease of agglomeration phenomenon

Micronization Co-micronization

+

Han et al., 2011. Int. J. Pharm., 415 , 185-195

Ibuprofen / silica (99/1 w/w)

Page 11: Conference on Co- micronization by PH.D. Jérôme Hecq

Réfé

rence

Pré

senta

tion G

énéra

le -

Confidentiel

11 - 26/05/2016

MICRONIZATION

�Co-micronization vs. Micronization

�Modification of surface properties of the drug particles

- Decrease of agglomeration phenomenon

Micronization Co-micronization

Spence et al., 2005. Pharm. Dev. Tech., 10, 451-460

Pfizer CI-1040 / MCC (90/10 w/w)Solubility < 1µg/mlLog D: 3.55 (pH 7.4)

F(%) rats Micronized: 68.2Co-micronized: 85.3

Page 12: Conference on Co- micronization by PH.D. Jérôme Hecq

Réfé

rence

Pré

senta

tion G

énéra

le -

Confidentiel

12 - 26/05/2016

MICRONIZATION

�Co-micronization vs. Micronization

�Modification of surface properties of the drug particles

- Enhancement of hydrophilic character of micronized particle surface (surfactant, water soluble excipients): Impact on wettability and solubilization properties

Micronisation Co-micronisation Physical blend (µized API + exc)

Page 13: Conference on Co- micronization by PH.D. Jérôme Hecq

Réfé

rence

Pré

senta

tion G

énéra

le -

Confidentiel

13 - 26/05/2016

MICRONIZATION

�Co-micronization vs. Micronization

�Promote specific interactions between the API and the selected pharmaceutical excipient

- Impact on solubility / dissolution

Povidone

Page 14: Conference on Co- micronization by PH.D. Jérôme Hecq

Réfé

rence

Pré

senta

tion G

énéra

le -

Confidentiel

14 - 26/05/2016

MICRONIZATION

�Co-micronization vs. Micronization

�Promote specific interactions between the API and the selected pharmaceutical excipient

- Amorphous form formation & stabilization

Maclean et al., 2011. J. Pharm. Sci., 100 (8), 3332-3344

Sulindac

Sulindac : Neusilin 1:1 w:w

→Stable > 4 months 40°C/75%RH

vs. immediate crystallization (24h at 25°C/60%RH) for amorphous sulindac (no Neusilin) obtained by quench-cooling

→ Amorphous form of Sulindac stabilized through interactions with Neusilin

Page 15: Conference on Co- micronization by PH.D. Jérôme Hecq

Réfé

rence

Pré

senta

tion G

énéra

le -

Confidentiel

15 - 26/05/2016

MICRONIZATION

�Co-micronization vs. Micronization

�Promote specific interactions between the API and the selected pharmaceutical excipient

- Amorphous form formation & stabilization

Maclean et al., 2011. J. Pharm. Sci., 100 (8), 3332-3344

Sulindac

Sulindac : Neusilin 1:1 w:w

Acidic drugs: reported interactions with Neusilin or other silicates:

Hydrogen bonding with silanol groups / ringsIon Dipole-Dipole interactions with metal ions (Mg, Al)

⇒ Complex formation - salt formation?

www.neusilin.com

Page 16: Conference on Co- micronization by PH.D. Jérôme Hecq

Réfé

rence

Pré

senta

tion G

énéra

le -

Confidentiel

16 - 26/05/2016

MICRONIZATION

�Co-micronization vs. Micronization

�Promote specific interactions between the API and the selected pharmaceutical excipient

Gupta et al., 2003. J. Pharm. Sci., 92, 536-551

Ketoprofen : Neusilin 1:5 w:w

Decrease of the CO stretching peak at 1697cm-1 as function of milling time

⇒ dissociation of the ketoprofen dimer

Amorphous state created during milling different than for the melt-quenched amorphous ketoprofen

⇒ Preferred interaction (H bonding) with NeusilinHypothesis of salt formation (carboxylate formation)

Free acid carboxylic CO stretch

H-Bonding phenomenon with silicates reported for other acidic drugs such as indomethacin and Naproxen but also for drugs not having proton-donating groups (ex Progesterone)

Page 17: Conference on Co- micronization by PH.D. Jérôme Hecq

Réfé

rence

Pré

senta

tion G

énéra

le -

Confidentiel

17 - 26/05/2016

MICRONIZATION

�Co-micronization vs. Micronization

�Promote specific interactions between the API and the selected pharmaceutical excipient

- Solid dispersion preparation could also be achieved through co-micronization using organic polymers such as Povidone (complete amorphisation) and poloxamers (partial amorphisation)

Yang et al., 2012. Chem. Pharm. Bull., 60 (7), 837-845

Dipfluzine

Povidone

Dipfluzine

PVP

Dipfluzine:PVP 1:3 w:w physical blend

Dipfluzine:PVP 1:3 w:w co-grinding 30 min

Dipfluzine:PVP 1:3 w:w co-grinding 1 hour

Dipfluzine:PVP 1:3 w:w co-grinding 2 hours

Dipfluzine:PVP 1:3 w:w co-grinding 3 hours

⇒ Chemical shift of API CO stretch

Page 18: Conference on Co- micronization by PH.D. Jérôme Hecq

Réfé

rence

Pré

senta

tion G

énéra

le -

Confidentiel

18 - 26/05/2016

CO-MICRONIZATION

�Selection of the pharmaceutical excipient

�Physicochemical properties of the excipient

>Melting point: Low melting point excipient may be an issue (material agglomeration → product properties / process jamming)

− Difference between ball milling and jet milling: process/product temperature

Pluronic F68 (poloxamer): MP: 52°C

Pluronic F68 (bulk product) Pluronic F68 (Jet-mill) Pluronic F68 (Cryo Ball-mill)

Saleem and Smith, 2010. AAPS PharmSciTech, 11 (4) , 1642-1649

50µm 50µm

Page 19: Conference on Co- micronization by PH.D. Jérôme Hecq

Réfé

rence

Pré

senta

tion G

énéra

le -

Confidentiel

19 - 26/05/2016

CO-MICRONIZATION

�Selection of the pharmaceutical excipient

�Physicochemical properties of the excipient

>Extent of particle size reduction dependent on the mechanical properties of the material which determine the resistance to breaking and the propagation of fracture

Mechanical properties (determined by nanoindentation):− Hardness: determines the resistance of a material to plastic deformation

− Elasticity: determines the resistance of a material to elastic deformation. Defined by Young’s modulus.

⇒ Hard and elastic material will require more energy for particle breakage

⇒ Process energy and time may be higher/longer during co-micronization with soft materials in order to decrease API particle size (vs. micronization)

Page 20: Conference on Co- micronization by PH.D. Jérôme Hecq

Réfé

rence

Pré

senta

tion G

énéra

le -

Confidentiel

20 - 26/05/2016

CO-MICRONIZATION

�Selection of the pharmaceutical excipient

�Physicochemical properties of the excipient

>Particle size distribution vs. API PSD

− blend homogeneity before co-micronization

>Density vs. API density

− homogeneity during co-micronization (when considering jet-milling / particle acceleration (Venturi) – classification)

− Particles with higher porosity may break easier

Page 21: Conference on Co- micronization by PH.D. Jérôme Hecq

Réfé

rence

Pré

senta

tion G

énéra

le -

Confidentiel

21 - 26/05/2016

CO-MICRONIZATION

�Selection of the pharmaceutical excipient

�Chemical compatibility with API

>Enhanced interactions between API and excipient

�Toxicity (surfactants)

>Dependent of API/excipient ratio selected

Page 22: Conference on Co- micronization by PH.D. Jérôme Hecq

Réfé

rence

Pré

senta

tion G

énéra

le -

Confidentiel

22 - 26/05/2016

CO-MICRONIZATION

�Selection of the pharmaceutical excipient

�Surfactants:>Sodium Lauryl sulfate

>Poloxamer (polyoxyde propylene/ polyoxyde ethylene copolymer)

�Polymers:>Povidone (polyvinylpyrrolidone)

>Copovidone (vinyl pyrrolidone / vinyl acetate copolymer)

>Crospovidone (cross-linked polyvinylpyrrolidone)

>Polyvinyl alcohol

>Vinyl alcohol / polyethylene glycol copolymer (Kollicoat IR)

>Sodium croscarmelose

>Starch

>Hydroxypropylmethylcellulose, hydroxyethylcellulose

Page 23: Conference on Co- micronization by PH.D. Jérôme Hecq

Réfé

rence

Pré

senta

tion G

énéra

le -

Confidentiel

23 - 26/05/2016

CO-MICRONIZATION

�Selection of the pharmaceutical excipient

�Diluents:

>Lactose

>Cellulose

>Maltodextrins

>Polyols (mannitol, sorbitol, isomalt,…)

�Others:

>Buffering agents (succinic acid, fumaric acid, citric acid, phosphates,…) –Micro-environnemental pH modification (weak acid/ weak base)

>Silicates

Page 24: Conference on Co- micronization by PH.D. Jérôme Hecq

Réfé

rence

Pré

senta

tion G

énéra

le -

Confidentiel

24 - 26/05/2016

CO-MICRONIZATION

�Controls on produced samples

�Particle size distribution analysis>Diffraction laser, scanning electronic microscopy (+ morphology / API-excipient

association)

�Specific surface area> BET (Brunauer–Emmett–Teller)

�Solid state (polymorphic/ crystalline modifications)>X-ray diffraction, differential scanning calorimetry

�API / excipient interactions>Infra-Red (FTIR) spectroscopy, differential scanning calorimetry

Page 25: Conference on Co- micronization by PH.D. Jérôme Hecq

Réfé

rence

Pré

senta

tion G

énéra

le -

Confidentiel

25 - 26/05/2016

CO-MICRONIZATION

�Controls on produced samples

�Blend uniformity (API)>Before and after co-micronization

� In vitro dissolution (SINK conditions) and dynamic solubility test (non SINK conditions – evaluation of supersaturation/precipitation phenomenon)

�Pharmacokinetic study - oral bioavailability study (rodent/ non rodent species)

Page 26: Conference on Co- micronization by PH.D. Jérôme Hecq

Réfé

rence

Pré

senta

tion G

énéra

le -

Confidentiel

26 - 26/05/2016

CO-MICRONIZATION

�Development: from preformulation to industrial manufacturing

Page 27: Conference on Co- micronization by PH.D. Jérôme Hecq

Réfé

rence

Pré

senta

tion G

énéra

le -

Confidentiel

27 - 26/05/2016

CO-MICRONIZATION

�Precellys®: Innovative technology and high performance preformulation tool�High throughput ball milling technology developed and patented by

Bertin Technologies allowing to produce a specific 3D (precession) movement of tubes and beads

�Stainless steel or ceramic (stabilized zirconium oxyde) beads

Page 28: Conference on Co- micronization by PH.D. Jérôme Hecq

Réfé

rence

Pré

senta

tion G

énéra

le -

Confidentiel

28 - 26/05/2016

CO-MICRONIZATION

�Precellys®: Innovative technology and high performance preformulation tool�4 available tube size: 0,5ml / 2ml / 7ml / 15ml

>Allowing to work on very small sample size (20mg - 1000mg)

�Small milling time: 30 to 90 seconds cycles (hold time of 20 to 120 seconds between cycles)

�High milling speed: 4500rpm – 10000rpm

�Milling chamber temperature monitoring and control possible (range 10-20°C) in order to limit product temperature increase during the milling operation – patented cooling system (Cryolis®)

Page 29: Conference on Co- micronization by PH.D. Jérôme Hecq

Réfé

rence

Pré

senta

tion G

énéra

le -

Confidentiel

29 - 26/05/2016

CO-MICRONIZATION

�Micronization / co-micronization : available industrial manufacturing equipment and process

�Mechanical milling:

>Ball milling

− Stainless steel (316L), ceramic (ZrO2),…

− Particle size reduction by friction and attrition (bead/bead or bead/wall) and little or no impact of particle/particle collision

− Non negligible risk of product contamination (bead/wall and abrasive API)

− Batch size (few grams – 100kg)

− Long milling process time (product temperature increase vs. API stability and particle agglomeration for soft materials ><cryomilling)

− Process parameters influencing particle size distribution: bead type, bead number, milling time, rotation/milling speed

Page 30: Conference on Co- micronization by PH.D. Jérôme Hecq

Réfé

rence

Pré

senta

tion G

énéra

le -

Confidentiel

30 - 26/05/2016

CO-MICRONIZATION

�Micronization / co-micronization : available industrial manufacturing equipment and process

�Air jet milling:

>Characteristics:

− Particle size reduction through particle/particle collisions (particle speed : 300-500m/s)

− Particle classification system as function of size

− Low risk of product contamination

− Batch size (10g – tons) – continuous manufacturing process

− Short milling process time (limited product temperature increase: product temperature ∼ process gas temperature)

− Particle size distribution span: jet-mill < ball mill

Page 31: Conference on Co- micronization by PH.D. Jérôme Hecq

Réfé

rence

Pré

senta

tion G

énéra

le -

Confidentiel

31 - 26/05/2016

CO-MICRONIZATION

�Micronization / co-micronization : available industrial manufacturing equipment and process

�Air jet milling:

>Equipments:

− Spiral jet mill (fluid energy mill)

- Particle acceleration by Venturi effect

- Classification (size) par centrifugal force

- Process parameters influencing particle size distribution: Feed size, Feeding pressure, Grinding pressure, Feed rate (⇒ specific energy J/g)

⇒ Possibility to align the discharging point of 2 screw feeders in the center of the Venturi feeding cone

http://www.sreenex.com/html/bulk_airjetmill.htm

Page 32: Conference on Co- micronization by PH.D. Jérôme Hecq

Réfé

rence

Pré

senta

tion G

énéra

le -

Confidentiel

32 - 26/05/2016

CO-MICRONIZATION

�Micronization / co-micronization : available industrial manufacturing equipment and process

�Air jet milling:

>Equipments:

− Fluidized-bed jet mill

- Particle acceleration by radial fluidized air jets

- Classification (size) par centrifugal force and dynamic rotors

- No limitations in feed size (vs spiral jet-mill: blockage of feed hopper)

www.hmicronpowder.com/products/product/alpine-afg-fluidized-bed-jet-mill

Page 33: Conference on Co- micronization by PH.D. Jérôme Hecq

Réfé

rence

Pré

senta

tion G

énéra

le -

Confidentiel

33 - 26/05/2016

CASE STUDY(1)

�Ketoprofen (BCS class 2)

�Solubility: 0.2mg/ml (pH2.0)

� LogP: 3.12

� Initial particle size: d(v,0.5): 50µm

�Tested pharmaceutical excipients: SLS, poloxamer (Kolliphor ®

P407), crospovidone (Kollidon® CLF), PVP co-PEG (Kollicoat ® IR)

>Ratio Ketoprofen / excipient: 7/3 w/w

�Precellys® milling protocol: 3 cycles of 60 sec at 5500rpm (10 sec pause between cycles)

Page 34: Conference on Co- micronization by PH.D. Jérôme Hecq

Réfé

rence

Pré

senta

tion G

énéra

le -

Confidentiel

34 - 26/05/2016

CASE STUDY(1)

�Ketoprofen (BCS class 2)�Particle size / morphology

�Dissolution (HCl 0.1N)

d(v,0.5): 50 µm d(v,0.5): 2-10 µm

SLS - Ketoprofen Poloxamer - Ketoprofen Crospovidone - K etoprofen PVP co-PEG - Ketoprofen

0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

80.00

90.00

100.00

0 20 40 60 80 100 120

0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

80.00

90.00

100.00

0 20 40 60 80 100 120

0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

80.00

90.00

100.00

0 20 40 60 80 100 120

0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

80.00

90.00

100.00

0 20 40 60 80 100 120

Page 35: Conference on Co- micronization by PH.D. Jérôme Hecq

Réfé

rence

Pré

senta

tion G

énéra

le -

Confidentiel

35 - 26/05/2016

CASE STUDY(1)

�Ketoprofen (BCS class 2)�X-ray diffraction

Poloxamer

0

10000

20000

30000

40000

50000

60000

8.02

9.34

10.7 12

13.3

14.6

15.9

17.3

18.6

19.9

21.2

22.5

23.9

25.2

26.5

27.8

29.1

30.5

31.8

33.1

34.4

35.7

2 Theta (°)

Inte

nsity

(a.

u)Crospovidone

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

50000

8.02

9.34

10.7 12

13.3

14.6

15.9

17.3

18.6

19.9

21.2

22.5

23.9

25.2

26.5

27.8

29.1

30.5

31.8

33.1

34.4

35.7

2 Theta (°)

Inte

nsity

(a.

u)

PVP co-PEG

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

8.02

9.32

10.6

11.9

13.2

14.5

15.8

17.1

18.4

19.7 21

22.3

23.6

24.9

26.2

27.5

28.8

30.1

31.4

32.7 34

35.3

36.6

2 Theta (°)

Inte

nsity

(a.

u)

Sodium lauryl sulfate

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

8.02

9.36

10.7 12

13.4

14.7

16.1

17.4

18.7

20.1

21.4

22.8

24.1

25.4

26.8

28.1

29.5

30.8

32.1

33.5

34.8

36.2

2 Theta (°)

Inte

nsity

(a.

u)

Non microniséCo-micronisatMélange physique

Page 36: Conference on Co- micronization by PH.D. Jérôme Hecq

Réfé

rence

Pré

senta

tion G

énéra

le -

Confidentiel

36 - 26/05/2016

CASE STUDY(2)

�BP002945 (BCS class 2)�Solubility: 0.007mg/ml (pH4.6) – 1.8mg/ml (pH2.0)

� Initial particle size: d(v,0.5): 150µm

�Tested pharmaceutical excipient: surfactant

>Ratio BP002945 / excipient: 5/5 w/w

�Milling protocol >Precellys® : 3 cycles of 60 sec at 6500 rpm (120 sec pause between cycles)

>Spiral jet mill: Feeding pressure: 8 bar / Grinding pressure: 8 bar / Feed rate: 1,2 kg/h (theoretical energy: 2900J/g)

Page 37: Conference on Co- micronization by PH.D. Jérôme Hecq

Réfé

rence

Pré

senta

tion G

énéra

le -

Confidentiel

37 - 26/05/2016

CASE STUDY(2)

�BP002945 (BCS class 2)�Particle size / morphology

Non micronized API: d(v,0.5): 150 µm

Precellys® : d(v,0.5): 10 µm

Jet-Mill: d(v,0.5): 2 µm

Page 38: Conference on Co- micronization by PH.D. Jérôme Hecq

Réfé

rence

Pré

senta

tion G

énéra

le -

Confidentiel

38 - 26/05/2016

CASE STUDY(2)

�BP002945 (BCS class 2)�Dissolution (pH 4.6, 0.1% SLS)

�Oral bioavailability (rat)>BP002945 micronized (F 43,1%) / co-micronized (F 58.6%)

Page 39: Conference on Co- micronization by PH.D. Jérôme Hecq

Réfé

rence

Pré

senta

tion G

énéra

le -

Confidentiel

39 - 26/05/2016

CONCLUSION

Co-micronization: Formulation strategy defining innovative API/excipient associations in order to enhance oral bioavailability of poorly water soluble APIs

Impact on physical properties of API (particle surface modification ⇒ flowability, agglomeration, wettability, dissolution) + creation of specific API/excipient interactions

Allows to work in favorable API / excipient ratio (highly dosed APIs – final dosage form development)

Easily accessible at industrial manufacturing scale using well established manufacturing process

Precellys®: High performance innovative preformulation tool to evaluate the potential benefits of co-micronization

Work on very low amount of API (NCE)

High throughput screening capabilities: test of diverse range of pharmaceutical excipients in one single run

Results predictive of prototypes obtained using conventional micronization equipments (ball milling, jet milling)