41
Reactive Transport Modeling – Column Tests – OXIRED II Jana Nicolai, Harald Kalka – Mar 2011 Umwelt- und Ingenieurtechnik GmbH Dresden Project financed by:

Reactive Transport in Columns (OXIRED 2)

Embed Size (px)

Citation preview

Page 1: Reactive Transport in Columns (OXIRED 2)

Reactive Transport Modeling – Column Tests –

OXIRED II

Jana Nicolai, Harald Kalka – Mar 2011Umwelt- und Ingenieurtechnik GmbH Dresden

Project financed by:

Page 2: Reactive Transport in Columns (OXIRED 2)

Hydraulics1

Ion Exchange2

Redox Reactions4

Mineral Phases3

increasing complexity

Page 3: Reactive Transport in Columns (OXIRED 2)

Geometry & Hydraulics1

Page 4: Reactive Transport in Columns (OXIRED 2)

Experimental Data (TU Berlin)

Porosity

Dispersion

CEC

dried at 200°C

dried at 200°C

500 to 600 °C

Col 3

Col 4

Col 5

yes

yes

no

sediment

Fe coated sand

hydraulics

no

yes

yes

µ biology

naturalCol 2 yes no

Col 1 provisional test

Page 5: Reactive Transport in Columns (OXIRED 2)

inflo

w Q

Fe-coated

sand

35 cm

Q = 1.0 mL / min

porosity: = 0.35

dispersion: αL = 0.003 m

Column Setup (35 cells)

pure sand

Bromide breakthrough

Page 6: Reactive Transport in Columns (OXIRED 2)

35 cm

Column Setup (35 cells)

pure sand

Col 1Col 2Col 3

Col 4

Col 5

Fe-coatedsand

mono-layer

anaerob.zone

aerob.zone

Page 7: Reactive Transport in Columns (OXIRED 2)

0

5

10

15

20

25

30

35

40

45

5 6 7 8 9 10 11time [days]

Bro

mid

e [m

g/L]

pure ADV

DISP = 0.3 cm DISP = 0.6 cm

DISP = 1.2 cm

Longitudinal Dispersion

Note: There is no numerical dispersion (blue curve).

Bromide

Col 3

Page 8: Reactive Transport in Columns (OXIRED 2)

Ion Exchange2

Page 9: Reactive Transport in Columns (OXIRED 2)

without Ion Exchange

Li

Br

Hydraulics (Retardation of Li)

Li

Br

with Ion Exchange

Col 2

scre

en sh

ots

of T

RN

Page 10: Reactive Transport in Columns (OXIRED 2)

Q = 1.3 mL/min

Fe-coated / dried sediment 200°C

Fe-coated / 500 to 600 °C

Br Li

Br

Br

Li

Li

Li

Col 3

Col 4

Col 5

retarded ?adsorbed ?

Li

CTOT = 5 meq/L

dried sediment 200°C

Q = 1.0 mL/min

Q = 1.1 mL/min

CTOT = 20 meq/L

Page 11: Reactive Transport in Columns (OXIRED 2)

Col 1 Col 2 Col 3 Col 4 Col 5

flow Q mL / min provi-sional

1.3 1.3 1.0 1.1

time T days 14 11 19 13

sediment natural natural 200 °C 200 °C 550 °C

CTOT meq / L 20 20 20 20 5

µ biology yes yes yes yes (no)

Fe coated sand no no no yes yes

shrinks due to 550 °C

Column Parameters

Page 12: Reactive Transport in Columns (OXIRED 2)

other0%

NaX2%

KX1%

HX0%

MgX212%

CaX285%

HXKXNaXCaX2

MgX2other

Ion Exchange

time [days]

Mg [mg/L]

Ca [mg/L]

K [mg/L]

CEC = 20 mmol/L

Page 13: Reactive Transport in Columns (OXIRED 2)

Cation Exchange

H+ + X- = HX log K = 1.0 K+ + X- = KX log K = 0.7

Na+ + X- = NaX log K = 0.0 Li+ + X- = LiX log K = -0.08

Ca+2 + 2X- = CaX2 log K = 0.8 Mg+2 + 2X- = MgX2 log K = 0.6 NH4

+ + X- = NH4X log K = 0.6 Fe+2 + 2X- = FeX2 log K = 0.44 Al+3 + 3X- = AlX3 log K = 0.36

Carbam+ + X- = CarbamX log K = 0.0

new species added

Page 14: Reactive Transport in Columns (OXIRED 2)

Pharmaceutically Active CompoundsChemicalFormula Structure Molar

Weight

Primidone C12H14N2O2 218.25

Carbamazepine(CBZ) C15H12N2O 236.26

Sulfamethoxazole(SMX) C10H11N3O3S 253.28

Page 15: Reactive Transport in Columns (OXIRED 2)

0

1

2

3

4

5

6

7

8

9

10

11

10 11 12 13 14 15 16 17 18 19time [days]

Car

bam

azep

ine

[µg/

L] experiment

model without IX model with IX

retardation

Carbamazepine

degradation due to ozonation

Retardation of CBZC

ol 4

Page 16: Reactive Transport in Columns (OXIRED 2)

PhACsBromide [mg/L]

CBZ [mg/L]

SMX [mg/L]

Primidone [mg/L]

Bromide [mg/L]

CBZ [mg/L]

SMX [mg/L]

Primidone [mg/L]

time [days] time [days]

Col 4 Col 5

Mod

el R

esul

ts

Page 17: Reactive Transport in Columns (OXIRED 2)

Mineral Phases3

Page 18: Reactive Transport in Columns (OXIRED 2)

Mineral Phases

gypsum CaSO4H2O

ferrihydrite Fe(OH)3

aluminum hydroxide Al(OH)3

amorphous SiO2 SiO2

calcite CaCO3

as equilibrium phases (based on log K values)

as kinetic reaction

Lake Tegel water: SI > 0

Page 19: Reactive Transport in Columns (OXIRED 2)

Calcite Kinetics

Column 3

0SIformm101rrate

0

SIdiss

s/mM103r 8diss

Ca [mg/L] DIC [mg/L]

mM5m0 ?

Page 20: Reactive Transport in Columns (OXIRED 2)

Redox Reactions4

Page 21: Reactive Transport in Columns (OXIRED 2)

-5,0

-2,5

0,0

2,5

5,0

7,5

10,0

12,5

15,0

0 2 4 6 8 10 12 14 16 18 20

Time in days

pE

-300

-150

0

150

300

450

600

750

900E

h in mV

Col 2Col 3Col 4Col 5

Experimental Fact (Redox Potential)

microbial activity (Col 2 to 4)

no activity (Col 5)

Page 22: Reactive Transport in Columns (OXIRED 2)

Microbe

e-Do

nor

e-Ac

cept

or

Ox Ox + e-

Red + e- Red

e- Energy (ATP)

+

Electron Transfer

oxidation (loss of e-)

reduction (gain of e-)

Page 23: Reactive Transport in Columns (OXIRED 2)

0 10 20-20 -10

0 10 20-20 -10

O2 reduction

denitrification

MnO2 → Mn+2

Fe(3) oxide → Fe+2

SO4-2 reduction

CH4 fermentation

reductions

oxidation of Corg

Sulfide → SO4-2

Fe+2 oxidation

nitrification

Mn+2 oxidationoxidations

pe

half-reactions relevant in Col 2, Col 3, and Col 4

Biodegradation of Organic Matter

Page 24: Reactive Transport in Columns (OXIRED 2)

Degradation of Organic Matter (CH2O)

CH2O + H2O = CO2 + 4H+ + 4e- oxidation: C(0) C(IV)

O2 + 4H+ + 4e- = 2H2O reduction: O(-II) O(0)

NO3- + 2H+ + 2e- = NO2

- + H2O reduction: N(V) N(III)NO2

- + 8H+ + 6e- = NH4+ + H2O reduction: N(III) N(-III)

SO4-2 + 10H+ + 8e- = H2S + 4H2O reduction: S(VI) S(-II)

electron donors

electron acceptors

less important

Page 25: Reactive Transport in Columns (OXIRED 2)

Sequential Reduction of Nitrate

no measured data

NO3- NO2

- NOx N2 PON DON NH4+

GW / columns: closed systembioreactor: open system

Page 26: Reactive Transport in Columns (OXIRED 2)

CH2O Degradation – Enzyme Kinetics

From simple to complex:

1st order kinetics

Michaelis-Menten

Michaelis-Menten e Acceptors

Michaelis-Menten e Acceptors Population Dynamics

Page 27: Reactive Transport in Columns (OXIRED 2)

d[P]/dt

[S] KS

vmax

½ vmax

PEESSE k

k

k

]S[K]S[v

dt]P[d

S

max

]E[kv 0max

]ES[]E[]E[ 0

kkkKS

steady state

+

+

E

S

ES E

P

Michaelis-Menten Kinetics

Page 28: Reactive Transport in Columns (OXIRED 2)

Two Principal Approaches

Enzyme Kinetics Population DynamicsMichaelis, Menten 1913 Monod 1942

dynamical variable: substrate [S] biomass or cell density B

deduced from well-defined assumptions about the catalytic mechanism empirical equation

]S[K]S[v

dt]S[d

Smax

]E[kv Tmax

]S[K]S[

Smax

B)(dtdB

Page 29: Reactive Transport in Columns (OXIRED 2)

]S[K]S[v

dt]S[d

S

max

Mixed-Order Kinetics

]S[Kv

dt]S[d

S

max

maxvdt

]S[d

1st order

zero order

S << KS

S >> KS

S0 = 80 mMKS = 8 mMμeff = 410-7 M/s

Michaelis-Menten

used model parameters

Page 30: Reactive Transport in Columns (OXIRED 2)

Combination of both Approaches

Number of Enzymes and Biomass amount are correlated.

BY

Ek maxT

)t(BY

)t(dt

]S[d

)t(B)t(dtdB

]S[K]S[)t(

Smax

Yield

ODE System

Page 31: Reactive Transport in Columns (OXIRED 2)

Applied Model (with e Acceptors)

electron flow

max2S

20

2

B)t(B

]OCH[K]OCH[

dt]OCH[d

maxmax

eff BY

)t(f)t( accepteff0

)t(NOa)t(NOa)t(Oaf)t(f 2231200accept

A non-linear system.

Ther

mod

ynam

ics

Enzyme Kinetics

Page 32: Reactive Transport in Columns (OXIRED 2)

+

E

H

EH

+

E

2S ESS

+

E

S ESG

+

G

]S[IK]S[v

1S

max

11 K

]H[1I

2S

max

I]S[K]S[v

22 K

]S[1I

3S

max

I1

]S[K]S[v

33 K

]G[1I

competitive inhibition

self-inhibition(HALDANE)

non-competitive inhibition

What About Inhibition ?

Page 33: Reactive Transport in Columns (OXIRED 2)

B

t Lag Exp Stationary Death

Individual Cell(Cell Growth)

Populations of Cells

Increase in Cellular Mass

and Size

Increase in Total Number of Cells

Difficult to Measure

Bacterial Growth

Page 34: Reactive Transport in Columns (OXIRED 2)

strain a

enzyme A

enzyme B

strain b

strain cXA ≠ Xa

Population vs. Enzyme Density

Page 35: Reactive Transport in Columns (OXIRED 2)

pH & pe

time [days]

time [days] time [days]

Col 2 Col 2

Col 3 Col 3

Col 4 Col 4

Col 5

Col 5

pH pe

pH pe

pH pe

pH

pe

Redo

x Dy

nam

ics

Page 36: Reactive Transport in Columns (OXIRED 2)

time [days]

Redox Dynamic

0,00

0,02

0,04

0,06

0,08

0,10

0,12

0,14

0,16

0 1 2 3 4 5 6 7 8time [days]

Oxygen [mM]

Nitrate [mM]

Nitrite [mM]

Ammonium [mM]

Col 3mass

balance

Page 37: Reactive Transport in Columns (OXIRED 2)

time [days]

Redox Zonation inside Col 3

0,00

0,02

0,04

0,06

0,08

0,10

0,12

0,14

0,16

0,18

0,00 0,05 0,10 0,15 0,20 0,25 0,30 0,35

Nitrate [mM]

Nitrite [mM]

Ammonium [mM]

Oxygen [mM]initial state

0,00

0,02

0,04

0,06

0,08

0,10

0,12

0,14

0,00 0,05 0,10 0,15 0,20 0,25 0,30 0,35

after 20 hours

0,00

0,02

0,04

0,06

0,08

0,10

0,12

0,00 0,05 0,10 0,15 0,20 0,25 0,30 0,35

after 45 hours

0,00

0,02

0,04

0,06

0,08

0,10

0,12

0,00 0,05 0,10 0,15 0,20 0,25 0,30 0,35

distance inside the column [m]

Nitrate [mM]

Nitrite [mM]

Ammonium [mM]

Oxygen [mM]

after 70 hours

Page 38: Reactive Transport in Columns (OXIRED 2)

Conclusions5

Page 39: Reactive Transport in Columns (OXIRED 2)

Conclusion 1

“simple” sand-filled columns

surprisingly complex redox dynamics

Most things are unseen in raw data.

Page 40: Reactive Transport in Columns (OXIRED 2)

Conclusion 2

Intro

model

A sound combination of

experimentQC

(always) reveal details about a system that you didn’t think of beforehand.

data

Page 41: Reactive Transport in Columns (OXIRED 2)

Conclusion 3

IntroOnce a model is calibrated by real datascenarios can be simulated:

variation of flow velocity

natural sediments w/o µbiology and/or technical sandlarger columns (upscaling)

column systems (and reactors)