286

Rolls royce jet engine

Embed Size (px)

Citation preview

Page 1: Rolls royce jet engine
Page 2: Rolls royce jet engine

ISBN 0 902121 2 35

Page 3: Rolls royce jet engine
Page 4: Rolls royce jet engine

© Rolls-Royce plc 1986Fifth editionReprinted 1996 with revisions.All rights reserved. No part of this publication may bereproduced or transmitted in any form or by any means includingphotocopying and recording or storing in a retrieval system ofany nature without the written permission of the copyright owner.Application for such permission should be addressed to:

The Technical Publications DepartmentRolls-Royce plcDerbyEngland

Colour reproduction by GH Graphics Ltd.

Printed in Great Britain by Renault Printing Co Ltd Birmingham England B44 8BS

For Rolls-Royce plc Derby England

ISBN 0902121 235

Acknowledgements

The following illustrations appear by kind permission of thecompanies listed.

Rolls-Royce/Snecma Olympus page 11 Rolls-Royce Turbomeca Ltd. Adour Mk102 page 45

AdourMk151 page 199 RTM322 Turboshaft page 243

Boeing Commercial Airplane Company page 144 Turbo-Union Ltd. RB199 page 169 IAE International Aero Engines AG V2500 page 251

Page 5: Rolls royce jet engine

Contents1 Basic mechanics 12 Working cycle and airflow 113 Compressors 194 Combustion chambers 355 Turbines 456 Exhaust system 597 Accessory drives 658 Lubrication 739 Internal air system 85

10 Fuel system 9511 Starting and ignition 12112 Controls and instrumentation 13313 Ice protection 14714 Fire protection 15315 Thrust reversal 15916 Afterburning 16917 Water injection 18118 Vertical/short take-off and landing 18719 Noise suppression 19920 Thrust distribution 20721 Performance 21522 Manufacture 22923 Power plant installation 24324 Maintenance 25125 Overhaul 263

Appendix 1; Conversion factors 277

Administrator
文本框
目录 第一章 基本机理 第二章 工作循环和气流 第三章 压气机 第四章 燃烧室 第五章 涡轮 第六章 排气系统 第七章 附件传动 第八章 润滑 第九章 内部空气系统 第十章 燃油系统 第十一章 起动和点火 第十二章 控制与仪表 第十三章 放冰 第十四章 防火 第十五章 推力反向 第十六章 加力燃烧 第十七章 喷水 第十八章 垂直/短距起落 第十九章 噪声抑制 第二十章 推力分布 第二十一章 性能 第二十二章 制造 第二十三章 动力装置安装 第二十四章 维护 第二十五章 翻修 附录一 换算系数
Page 6: Rolls royce jet engine

Rolls-Royce Trent 800

Developed from the RB211, the Trent covers a thrust range of 71,000 lb to 92,000 lb thrust, with the capabilityto grow beyond 100,000 lb. The Trent 800 features a 110 inch diameter wide-chord fan, high flow compressorsand Full Authority Digital Engine Control (FADEC).

Detailed engineering design began in 1988 to meet the propulsion requirements of the Airbus A330 (Trent 700)and Boeing 777 (Trent 800). The Trent first ran in August 1990, and in January 1994 a Trent 800 demonstrateda world record thrust of 106,087 lb.

The engine entered service in March 1995 in the Airbus A330.

Administrator
文本框
遄达 800
Administrator
文本框
遄达发动机是由RB211发动机发展而来,推力范围从71,000磅至92,000磅,其增长潜力可超过100,000磅。遄达 800的风扇为110英寸,叶片为宽弦叶片,其压缩机为高流量压缩机,并配备全权限数字式发动机控制系统(FADEC)。 1988年,为满足空中客车A330(遄达 700)和波音777(遄达 800)推力需求,开始了具体的程设计工作。1990年8月,遄达发动机第一次试车。1994年1月遄达 800的推力创下106,087磅的世界纪录。 1995年3月该发动机装备开展开空中客车A330进入服役。
Page 7: Rolls royce jet engine

IntroductionThis book has been written to provide a simple andself-contained description of the working andunderlying principles of the aero gas turbine engine.The use of complex formulae and the language ofthe specialist have been avoided to allow for a clearand concise presentation of the essential facts. Onlysuch description and formulae, therefore, as arenecessary to the understanding of the function andthe theory of the engine are included.It will be noted that the emphasis in this book is onthe turbo-jet engine and that no special part dealswith the propeller-turbine engine. This is because theworking principles of both engine types areessentially the same. However where differences infunction or application do exist, these are described.The aero gas turbine is being continually developedto provide improved performance for each newgeneration of aircraft; the fourth edition of this bookhas been revised and expanded to include the latestaero gas engine technology.

Page 8: Rolls royce jet engine

Rolls-Royce RB183 Mk 555

On 1 April, 1943, Rolls-Royce assumedresponsibility for the Power Jets W2B which, amonth earlier, had made its first flight in theGloster E28/39 at 1200lb thrust. Later knownas the B23 Welland it was, during April, putthrough a 100 hr test at the design rating of1600 Ib thrust. In June, 1943, it flew in aGloster Meteor at 1400lb thrust. ProductionWelland-Meteors were in action against V-1flying bombs in August 1944.

Rolls-Royce B23 Welland

Page 9: Rolls royce jet engine

1: Basic mechanics

Contents Page

Introduction 1Principles of jet propulsion 2Methods of jet propulsion 3

INTRODUCTION

1. The development of the gas turbine engine as anaircraft power plant has been so rapid that it isdifficult to appreciate that prior to the 1950s very fewpeople had heard of this method of aircraftpropulsion. The possibility of using a reaction jet hadinterested aircraft designers for a long time, butinitially the low speeds of early aircraft and theunsuitably of a piston engine for producing the largehigh velocity airflow necessary for the �jet� presentedmany obstacles.

2. A French engineer, René Lorin, patented a jetpropulsion engine (fig. 1-1) in 1913, but this was anathodyd (para. 11) and was at that period impossibleto manufacture or use, since suitable heat resistingmaterials had not then been developed and, in thesecond place, jet propulsion would have beenextremely inefficient at the low speeds of the aircraftof those days. However, today the modern ram jet isvery similar to Lorin's conception.

3. In 1930 Frank Whittle was granted his first patentfor using a gas turbine to produce a propulsive jet,

but it was eleven years before his engine completedits first flight. The Whittle engine formed the basis ofthe modern gas turbine engine, and from it wasdeveloped the Rolls-Royce Welland, Derwent, Neneand Dart engines. The Derwent and Nene turbo-jetengines had world-wide military applications; theDart turbo-propeller engine became world famous asthe power plant for the Vickers Viscount aircraft.Although other aircraft may be fitted; with laterengines termed twin-spool, triple-spool, by-pass,ducted fan, unducted fan and propfan, these areinevitable developments of Whittle's early engine.

1

Fig. 1-1 Lorin's jet engine.

WWW
文本框
喷气推进原理 喷气推进方式
WWW
附注
“WWW”设置的“Marked”
WWW
文本框
1.燃气涡轮发动机作为飞机的动力装置发展神速,以致很难想象50年代以前还几乎无人听说过这种飞机推进方式。使用反作用喷气的可能性令飞机设计师们向往已久,但在最初存在很多障碍,这是因为早期飞机的速度很低和活塞发动机不适合于产生 “喷气式”所必需的大量高速气流。 2.法国工程师雷因 洛兰1913年获得一项喷气推进发动机(图1-1)的专利。但这是一种冲压式喷气发动机(第11段),但是还无法制造或使用,因为那时还未研制出合适的耐热材料。其次,喷气推进在当时飞机的低速度下效率会极差。然而,今天的现代化冲压喷气与洛兰的构想非常相似。
WWW
文本框
燃烧室
WWW
文本框
进气道
WWW
文本框
推进喷管
WWW
文本框
供油
WWW
文本框
3. 1930年弗兰克 惠特尔取得了他的使用燃气轮机产生推进喷气的第一个专利。但11年后他的发动机才完成首次飞行。惠特尔的这种发动机形成了现代燃气涡轮发动机的基础,并且从它发展出罗尔斯-罗伊斯公司的“维兰德”,“德温特”,“尼恩”和“达特”发动机。“德温特”和“尼恩”涡轮喷气发动机获得了世界性军事应用;“达特”涡轮螺桨发动机作为维克斯公司“子爵”飞机的动力装置而闻名于世。虽然其它飞机可能装用了后来的被称为双轴,三轴,内外涵,涵道风扇,无涵道风扇和螺桨风扇的发动机,但是,这些都是惠特尔的早期发动机的必然发展。
Administrator
附注
“Administrator”设置的“Unmarked”
Page 10: Rolls royce jet engine

4. The jet engine (fig. 1-2), although appearing sodifferent from the piston engine-propellercombination, applies the same basic principles toeffect propulsion. As shown in fig. 1-3, both propeltheir aircraft solely by thrusting a large weight of airbackwards.

5. Although today jet propulsion is popularly linkedwith the gas turbine engine, there are other types ofjet propelled engines, such as the ram jet, the pulsejet, the rocket, the turbo/ram jet, and the turbo-rocket.

PRINCIPLES OF JET PROPULSION

6. Jet propulsion is a practical application of SirIsaac Newton's third law of motion which states that,'for every force acting on a body there is an oppositeand equal reaction'. For aircraft propulsion, the 'body'is atmospheric air that is caused to accelerate as itpasses through the engine. The force required togive this acceleration has an equal effect in theopposite direction acting on the apparatus producingthe acceleration. A jet engine produces thrust in a

similar way to the engine/propeller combination. Bothpropel the aircraft by thrusting a large weight of airbackwards (fig. 1-3), one in the form of a large airslipstream at comparatively low speed and the otherin the form of a jet of gas at very high speed.

7. This same principle of reaction occurs in all formsof movement and has been usefully applied in manyways. The earliest known example of jet reaction isthat of Hero's engine (fig. 1-4) produced as a toy in120 B.C. This toy showed how the momentum ofsteam issuing from a number of jets could impart anequal and opposite reaction to the jets themselves,thus causing the engine to revolve.

8. The familiar whirling garden sprinkler (fig. 1-5) isa more practical example of this principle, for themechanism rotates by virtue of the reaction to thewater jets. The high pressure jets of modern fire-fighting equipment are an example of 'jet reaction',for often, due to the reaction of the water jet, the hosecannot be held or controlled by one fireman. Perhapsthe simplest illustration of this principle is afforded bythe carnival balloon which, when the air or gas isreleased, rushes rapidly away in the directionopposite to the jet.

9. Jet reaction is definitely an internal phenomenonand does not, as is frequently assumed, result fromthe pressure of the jet on the atmosphere. In fact, the

jet propulsion engine, whether rocket, athodyd, orturbo-jet, is a piece of apparatus designed toaccelerate a stream of air or gas and to expel it athigh velocity. There are, of course, a number of ways

Basic mechanics

2

Fig. 1-2 A Whittle-type turbo-jet engine.

Fig. 1-3 Propeller and jet propulsion.

WWW
文本框
压气机
WWW
文本框
燃气室
WWW
文本框
涡轮
WWW
文本框
进气道
WWW
文本框
燃油
WWW
文本框
喷管和推进喷口
WWW
文本框
4. 喷气发动机(图1-2)虽然与活塞发动机-螺旋桨组合貌似大相径庭,但是却采用了同样的基本原理来实现推进。正如图1-3所示,二者纯粹是通过将大量气体向后推而推进它们的飞机。 5.今天,虽然喷气推进与燃气涡轮发动机密切相关,但是,也有其它类型的喷气推进发动机,如冲压喷气、脉冲喷气、火箭、涡轮/冲压喷气和涡轮-火箭发动机等。
Administrator
文本框
喷气推进原理 6.喷气推进是伊萨克·牛顿(Isaac Newton)爵士的运动第三定律的实际应用。该定律表述为,作用在一物体上的每 一个力都有一方向相反大小相等的反作用力。” 就飞机推进而言,“物体”是通过发动机时受到加速的大气中的空气。产生这一加速度所需的力有一大小相等方向相反的反作用力作用在产生这一加速度的装置上。喷气发动机用类似于发动机/螺旋桨组合的方式产生推力。二者均靠将大量气体向后推(图1-3)来推进飞机,一种是以比较低速的大量空气滑流的形式,而另一种是以极高速的燃气喷气流形式。 7.这一同样的反作用原理出现于所有运动形式之中,通常有许多应用方式。喷气反作用最早的著名例子是公元前120年作为一种玩具生产的赫罗的发动机(图1-4)这种玩具表明了从若干喷嘴中喷出的水蒸气的能量能够把大小相等方向相反的反作用力传给这些喷嘴本身,从而引起发动机旋转的道理。 8.类似的旋转式花园喷灌器(图1-5)是这一原理更为实用的 一个例子。这种喷灌器借助于作用于喷水嘴的反作用力旋转。现代灭火设备的高压喷头是“喷流反作用”的一个例子。由于水喷流的反作用力,一个救火员经常握不住或控制不了水管。也许,这一原理的最简单的表演是狂欢节的气球,当它放出空气或气体时,它便沿着与喷气相反的方向急速飞走。
Administrator
文本框
9.喷气反作用绝对是一种内部现象。它不象人们经常想象的那样说成是由于喷气流作用在大气上的压力所造成的。实际上,喷气推进发动机,无论火箭、冲压喷气、或者涡轮喷气,都是设计成加速空气流或者然气流并将其高速排出的一种装置。当然,如第2章中描述的那样,这样做有不同的方式。
Administrator
文本框
图1-2 惠特尔型的一种涡轮喷气发动机
Administrator
文本框
图1-3 螺旋桨和喷气推进
Administrator
文本框
换言之,给大量空气附加一个小速度或者给少量空气一个大速度能提供同样的推力。实用中,人们喜欢前者,因为降低相对于大气的喷气速度能得到更高的推进效率。
Page 11: Rolls royce jet engine

of doing this, as described in Part 2, but in allinstances the resultant reaction or thrust exerted onthe engine is proportional to the mass or weight of airexpelled by the engine and to the velocity changeimparted to it. In other words, the same thrust can beprovided either by giving a large mass of air a littleextra velocity or a small mass of air a large extra

velocity. In practice the former is preferred, since bylowering the jet velocity relative to the atmosphere ahigher propulsive efficiency is obtained.

METHODS OF JET PROPULSION

10. The types of jet engine, whether ram jet, pulsejet, rocket, gas turbine, turbo/ram jet or turbo-rocket,differ only in the way in which the 'thrust provider', orengine, supplies and converts the energy into powerfor flight.

11. The ram jet engine (fig. 1-6) is an athodyd, or'aero-thermodynamic-duct to give it its full name. Ithas no major rotating parts and consists of a ductwith a divergent entry and a convergent or

convergent-divergent exit. When forward motion isimparted to it from an external source, air is forcedinto the air intake where it loses velocity or kineticenergy and increases its pressure energy as itpasses through the diverging duct. The total energyis then increased by the combustion of fuel, and theexpanding gases accelerate to atmosphere throughthe outlet duct. A ram jet is often the power plant formissiles and .target vehicles; but is unsuitable as anaircraft power plant "because it requires forwardmotion imparting to it before any thrust is produced.

12. The pulse jet engine (fig. 1-7) uses the principleof intermittent combustion and unlike the ram jet itcan be run at a static condition. The engine is formedby an aerodynamic duct similar to the ram jet but,due to the higher pressures involved, it is of morerobust construction. The duct inlet has a series ofinlet 'valves' that are spring-loaded into the openposition. Air drawn through the open valves passesinto the combustion chamber and is heated by theburning of fuel injected into the chamber. Theresulting expansion causes a rise in pressure, forcing

Basic mechanics

3

Fig. 1-4 Hero�s engine - probably the earliestform of jet reaction.

Fig. 1-5 A garden sprinkler rotated by thereaction of the water jets.

Fig. 1-6 A ram Jet engine.

Administrator
文本框
图1-4 赫罗的发动机-可能是喷气反作用的最早形式
Administrator
文本框
图1-5 依靠喷水嘴的反作用力旋转的花园洒水器
Administrator
文本框
喷气推进方式
Administrator
文本框
10.不同类型的喷气发动机,无论冲压喷气、脉冲喷气、燃气轮机、涡轮/冲压喷气或者涡轮-火箭,其差别仅在于“推力提供者”即发动机供应能量并将能量转换成发行动力的方式。 11.冲压喷气发动机(图1-6)按其全称是一种气动热力涵道。它没有任何主要形状零件,只包含一个扩张形进气涵道和一个收敛形或者收敛-扩散形出口。当由外部能源强迫其向前运动时,空气被迫进入进气道。当它流过这一扩散形涵道时,其速度或动能降低,而压力能增加。尔后,靠燃油的燃烧来增加其总能量,膨胀的燃气通过出口涵道加速并排入大气。冲压喷气发动机常作为导弹和靶机的动力装置,但不适于作为飞机动力装置,因为在它产生推力前,要求向它施加向前的运动。
Administrator
文本框
12.脉冲喷气发动机(图1-7)采用间歇燃烧原理。与冲压喷气发动机不同,它能在静止状态工作。这种发动机是由类似冲压喷气发动机的一种空气动力涵道构成。但是,由于它的压力较高,其结构比较坚实。进气涵道有许多进气“活门”,在弹簧力作用处于打开位置。通过打开的活门吸入的空气进入燃烧室,并靠燃烧喷入燃烧室中去的燃油得到加热。由此引起的膨胀使压力升高,迫使活门关闭,然后膨胀的燃气向后喷出。排气造成降压,使活门开启。这种过程周而复始。脉冲喷气发动机已设计成直升机旋翼的推进装置,有的还通过精心设计涵道来控制共振循环的压力变化而省去了进气活门。脉冲喷气发动机不适于作为飞机动力装置,因为它的油耗高,又无法达到现代燃气涡轮发动机的性能。
Administrator
文本框
图1-6 冲压式喷气发动机
Administrator
文本框
燃油喷嘴 燃烧室
Administrator
文本框
进气道
Administrator
文本框
推进喷管
Page 12: Rolls royce jet engine

the valves to close, and the expanding gases arethen ejected rearwards. A depression created by theexhausting gases allows the valves to open andrepeat the cycle. Pulse jets have been designed forhelicopter rotor propulsion and some dispense withinlet valves by careful design of the ducting to controlthe changing pressures of the resonating cycle. Thepulse jet is unsuitable as an aircraft power plantbecause it has a high fuel consumption and is unableto equal the performance of the modern gas turbineengine.

13. Although a rocket engine (fig. 1-8) is a jetengine, it has one major difference in that it does notuse atmospheric air as the propulsive fluid stream.Instead, it produces its own propelling fluid by thecombustion of liquid or chemically decomposed fuelwith oxygen, which it carries, thus enabling it tooperate outside the earth's atmosphere. It is,therefore, only suitable for operation over shortperiods.

14. The application of the gas turbine to jetpropulsion has avoided the inherent weakness of therocket and the athodyd, for by the introduction of aturbine-driven compressor a means of producingthrust at low speeds is provided. The turbo-jet engineoperates on the 'working cycle' as described in Part2. It draws air from the atmosphere and aftercompressing and heating it, a process that occurs inall heat engines, the energy and momentum given tothe air forces It out of the propelling nozzle at avelocity of up to 2,000 feet per second or about 1,400miles per hour. On its way through the engine, the airgives up some of its energy and momentum to drivethe turbine that powers the compressor.

15. The mechanical arrangement of the gas turbineengine is simple, for it consists of only two mainrotating parts, a compressor (Part 3) and a turbine(Part 5), and one or a number of combustionchambers (Part 4). The mechanical arrangement ofvarious gas turbine engines is shown in fig. 1 -9. Thissimplicity, however, does not apply to all aspects ofthe engine, for as described in subsequent Parts thethermo and aerodynamic problems are somewhatcomplex. They result from the high operating tem-peratures of the combustion chamber and turbine,the effects of varying flows across the compressor

Basic mechanics

4

Fig. 1-7 A pulse jet engine.

Fig. 1-8 A rocket engine.

Administrator
文本框
充气 (节气活门打开)
Administrator
文本框
节气活门
Administrator
文本框
进气道
Administrator
文本框
供油
Administrator
文本框
点火 (节气活门关闭)
Administrator
文本框
喷管和推进喷口
Administrator
文本框
燃烧室
Administrator
附注
“Administrator”设置的“Accepted”
Administrator
文本框
13.虽然火箭发动机(图1-8)也是喷气发动机,但它们有最大区别。即,火箭发动机不用大气作为推进流体,而用它携带的液态燃料或化学分解而成的燃料与氧气剂的燃烧来产生它自己的推进流体,从而能在地球大气层外工作。因此,它只适用于工作时间很短的情况。
Administrator
文本框
15.燃气涡轮发动机的机械布局很简单,因为它只包含两个主要旋转部分,即压气机(第3章)和涡轮(第5章)。及一个或者若干个燃烧室(第4章)。各种燃气涡轮发动机的机械布局示于图1-9。然而,并非这种发动机的所有方面都具有这种简单性,因 为正象以后几章叙述的那样,热力和气动力问题是比较复杂的。这些问题是由燃烧室和涡轮的高工作温度、通过压气机和涡轮叶片而不断变化着的气流的影响,以及排出燃气并形成推进喷气流的排气系 统的设计工作造成的。
Administrator
文本框
14.应用燃气轮机于喷气推进避免了火箭和冲压喷气发动机固有的弱点,因为通过采用涡轮驱动的压气机提供了低速时产生推力的一种手段。涡轮喷气发动机按照第2章叙述的“工作循环”工作。它从大气中吸进空气,经压缩和加热这一所有热力发动机中的过程之后,得到能量和动量的空气以高达2000英尺/秒或大约1400英里/小时的速度从推进喷管中排出。在空气通过发动机的过程中,它释放一些能量和动量驱动给压气机提供动力的涡轮。
Administrator
文本框
图1-8火箭发动机
Administrator
文本框
Administrator
文本框
液体燃油
Administrator
文本框
燃油喷嘴
Administrator
文本框
推进喷管
Administrator
文本框
Administrator
文本框
燃烧室
Page 13: Rolls royce jet engine

Basic mechanics

5

Fig. 1-9-1 Mechanical arrangement of gas turbine engines.

Administrator
文本框
图1-9-1几种燃气涡轮发动机的机械布局
Administrator
文本框
双面进气单级离心式涡轮喷气发动机
Administrator
文本框
单面进气双级离心式涡轮-螺桨发动机
Administrator
文本框
双轴轴流式涡轮-螺桨发动机
Administrator
文本框
单轴轴流式涡轮-喷气发动机
Administrator
文本框
双轴涡轮轴发动扰(带自自动力涡轮的)
Page 14: Rolls royce jet engine

Basic mechanics

6

Fig. 1-9-2 Mechanical arrangement of gas turbine engines.

Administrator
文本框
图1-9-2 几种燃气涡轮发动机的机械布局
Administrator
文本框
对转风扇方案(高涵道比)
Administrator
文本框
(螺)桨-(风)扇方案
Administrator
文本框
三轴前风扇涡轮-喷气发动机(高涵道比)
Administrator
文本框
双轴内外涵涡轮-喷气发动机(低涵道比)
Page 15: Rolls royce jet engine

and turbine blades, and the design of the exhaustsystem through which the gases are ejected to formthe propulsive jet.

16. At aircraft speeds below approximately 450miles per hour, the pure jet engine is less efficientthan a propeller-type engine, since its propulsiveefficiency depends largely on its forward speed; thepure turbo-jet engine is, therefore, most suitable forhigh forward speeds. The propeller efficiency does,however, decrease rapidly above 350 miles per hourdue to the disturbance of the airflow caused by thehigh blade-tip speeds of the propeller. These charac-

teristics have led to some departure from the use ofpure turbo-jet propulsion where aircraft operate atmedium speeds by the introduction of a combinationof propeller and gas turbine engine.

17. The advantages of the propeller/turbinecombination have to some extent been offset by theintroduction of the by-pass, ducted fan and propfanengines. These engines deal with larger comparativeairflows and lower jet velocities than the pure jetengine, thus giving a propulsive efficiency (Part 21)which is comparable to that of the turbo-prop andexceeds that of the pure jet engine (fig. 1-10).

Basic mechanics

7

Fig. 1-10 Comparative propulsive efficiencies.

Administrator
文本框
16.飞机速度低于大约450英里/小时时,纯喷气发 动机的效率低于螺旋桨型发动机的效率,因为它的 推进效率在很大程度上取决于它的飞行速度;因而,纯涡轮喷气发动机最适合高的飞行速度。然而,由于螺旋桨的高叶尖速度造成的气流扰动,在350英里/小时以上时螺旋桨效率迅速降低。这些特性使得中等速度飞行的飞机不用纯涡轮喷气推进装置而采用螺旋桨和燃气涡轮发动机的组合。 17.螺旋桨/涡轮组合的优越性在一定程度上被内 外涵发动机、涵道风扇发动机和浆扇发动机的引八 所抵消。这些发动机比纯喷气发动机流量大而喷气 速度低。因而,其推进效率(第21章)与涡轮螺旋桨 的相当,超过了纯喷气发动机的推进效率(图1-lO)。
Administrator
文本框
图1-1O 推进效率的比较
Page 16: Rolls royce jet engine

18. The turbo/ram jet engine (fig. 1-11) combinesthe turbo-jet engine (which is used for speeds up toMach 3) with the ram jet engine, which has goodperformance at high Mach numbers.

19. The engine is surrounded by a duct that has avariable intake at the front and an afterburning jetpipe with a variable nozzle at the rear. During take-off and acceleration, the engine functions as a con-

ventional turbo-jet with the afterburner lit; at otherflight conditions up to Mach 3, the afterburner isinoperative. As the aircraft accelerates through Mach3, the turbo-jet is shut down and the intake air isdiverted from the compressor, by guide vanes, andducted straight into the afterburning jet pipe, whichbecomes a ram jet combustion chamber. This engineis suitable for an aircraft requiring high speed and

Basic mechanics

8

Fig. 1-12 A turbo-rocket engine.

Fig. 1-11 A turbo/ram jet engine.

Administrator
文本框
可调进气道(大面积)
Administrator
文本框
进口导流叶片 (打开)
Administrator
文本框
低马赫数
Administrator
文本框
图1-11 一种涡轮/冲压喷气发动机
Administrator
文本框
可调喷口(大面积)
Administrator
文本框
18.涡轮/冲压喷气发动机(图1-11)将涡轮喷气发 动机(它用于马赫数高达3的各种速度)与冲压喷气 发动机结合起来,在高马赫数时具有良好的性能。
Administrator
文本框
图1-12 一种涡轮-火箭发动机
Administrator
文本框
19.这种发动机的周围是涵道,前部具有可调进气道,后部是带可调喷口的加力喷管。起飞和加速期间,其加力燃烧室工作,该发动机起常规涡轮-喷气发动机的作用;在马赫数3以下的其它飞行状态,加力燃烧室不工作。当飞机加速通过马赫数3时,涡轮-喷气发动机关闭,进气道空气借助于导向叶片绕过压气机,直接流入加力喷管。该加力喷管成为冲压喷气发动机的燃烧室。这种发动机适合要求高速飞行并且维持高马赫数巡航状态的飞机,在这些状态下,该发动机是以冲压喷气发动机方式工作的。
Administrator
文本框
Administrator
文本框
可调进气道(小面积)
Administrator
文本框
进口导流叶片 (关闭)
Administrator
文本框
可调喷口(小面积)
Administrator
文本框
高马赫数
Administrator
文本框
可调进气道
Administrator
文本框
加力燃油喷嘴
Administrator
文本框
燃烧室
Administrator
文本框
供氧和供油
Administrator
文本框
可调喷口
Page 17: Rolls royce jet engine

sustained high Mach number cruise conditionswhere the engine operates in the ram jet mode.

20. The turbo-rocket engine (fig. 1-12) could beconsidered as an alternative engine to the turbo/ramjet; however, it has one major difference in that itcarries its own oxygen to provide combustion,

21. The engine has a low pressure compressordriven by a multi-stage turbine; the power to drive theturbine is derived from combustion of kerosine andliquid oxygen in a rocket-type combustion chamber.Since the gas temperature will be in the order of3,500 deg. C, additional fuel is sprayed into the

combustion chamber for cooling purposes before thegas enters the turbine. This fuel-rich mixture (gas) isthen diluted with air from the compressor and thesurplus fuel burnt in a conventional afterburningsystem.

22. Although the engine is smaller and lighter thanthe turbo/ram jet, it has a higher fuel consumption.This tends to make it more suitable for an interceptoror space-launcher type of aircraft that requires highspeed, high altitude performance and normally has aflight plan that is entirely accelerative and of shortduration.

Basic mechanics

9

Administrator
文本框
20.涡轮-火箭发动机(图1-12)可视为涡轮/冲压喷气发动机的代用发动机;然而,一个重要的差异在于它自备燃烧用的氧。 21.这种发动机有一多级涡轮驱动的低压压气机;而驱动涡轮的功率是在火箭型燃烧室中燃烧煤油和液氧产生的。因为燃气温度将在3500℃的量级,在燃气进入涡轮前额外的燃油喷入燃烧室以供冷却。然后,这种富油混合气(燃气)用压气机流来的空气稀释,残余的燃油在常规加力系统中燃烧。 22.虽然这种发动机比涡轮/冲压喷气发动机小而且轻,但是,其耗油更高。这种趋势使它比较适合截击机或者空间发射器型飞机。这些飞机要求高空高速性能,通常具有完全加速和续航时间很短的发行计划。
Page 18: Rolls royce jet engine

Rolls-Royce/Snecma Olympus

Rolls-Royce RB37 Derwent 1

A straight-through version of the reverse-flowPower Jets W2B, known as the W2B/26, wasdeveloped by the Rover Company from 1941to 1943. Taken over by Rolls-Royce in April1943 and renamed the Derwent, it passed a100hr. test at 2000 lb thrust in November 1943and was flown at that rating in April 1944. Theengine powered the Gloster Meteor III whichentered service in 1945.

Administrator
文本框
回流式动力喷气(Power Jet)W2B的通流型称为W2B/26,是由Rover Company于1941至l943的。罗尔斯-罗伊斯公司于1943年接管,重新命名为“德温特”(Derwent)。1943年11月通过了2000磅推力100小时试验,并于1944年4月以同等推力飞行。该发动机作为格洛(Gloster)公司的“流星III”(Meteor III)的动力,1945年投入使用。
Administrator
文本框
罗尔斯-罗伊斯/法国国营航空发动机研究制造公司的“奥林普斯”(Olympus)发动机
Administrator
文本框
罗尔斯-罗伊斯公司RB37“德温特l”发动机
Page 19: Rolls royce jet engine

2: Working cycle and airflow

Contents Page

Introduction 11 Working cycle 11The relations between pressure,volume and temperature 13 Changes in velocity and pressure 14Airflow 17

INTRODUCTION

1. The gas turbine engine is essentially a heatengine using air as a working fluid to provide thrust.To achieve this, the air passing through the enginehas to be accelerated; this means that the velocity orkinetic energy of the air is increased. To obtain thisincrease, the pressure energy is first of all increased,followed by the addition of heat energy, before finalconversion back to kinetic Energy in the form of ahigh velocity jet efflux.

WORKING CYCLE

2. The working cycle of the gas turbine engine issimilar to that of the four-stroke piston engine.However, in the gas turbine engine, combustionoccurs at a constant pressure, whereas in the pistonengine it occurs at a constant volume. Both enginecycles (fig. 2-1) show that in each instance there isinduction, compression, combustion and exhaust.These processes are intermittent in the case of the

piston engine whilst they occur continuously in thegas turbine. In the piston engine only one stroke isutilized in the production of power, the others beinginvolved in the charging, compressing andexhausting of the working fluid. In contrast, theturbine engine eliminates the three 'idle' strokes, thusenabling more fuel to be burnt in a shorter time;hence it produces a greater power output for a givensize of engine.

3. Due to the continuous action of the turbineengine and the fact that the combustion chamber isnot an enclosed space, the pressure of the air doesnot rise, like that of the piston engine, duringcombustion but its volume does increase. Thisprocess is known as heating at constant pressure.Under these conditions there are no peak orfluctuating pressures to be withstood, as is the casewith the piston engine with its peak pressures inexcess of 1,000 lb. per sq. in. It is these peakpressures which make it necessary for the pistonengine to employ cylinders of heavy construction and

11

Administrator
文本框
第二章 工作循环和气流
Administrator
文本框
目录 页码 绪言 11 工作循环 11 压力、体积和温度间的关系 l3 速度和压力变化 14 气流 17
Administrator
文本框
1.燃气涡轮发动机本质上是一种热力发动机,用空气作为提供推力的工作流体。为达此目的,必须将通过发动机的空气加速;这意味着增加空气的速度即动能。为了达到这种增加,首先要增加压力能,继之加入热能,最后,再以高速喷气流的形式转变成动能。
Administrator
文本框
绪言
Administrator
文本框
工作循环 2.燃气涡轮发动机的工作循环类似于4冲程活塞发动机。然而,在燃气涡轮发动机中,燃烧在等压下进行,而在活塞发动机中,燃烧时体积不变。这两种发动机循环(图2-1)表明每一种循环里都有进气、压缩、燃烧和排气。这些过程在活塞发动机中是间歇性的,而在燃气涡轮中是连续进行的。活塞发动机只有一个冲程用于产生功率,其余冲程用于工作流体的充填、压缩和排放。相反,涡轮发动机取消了三个“不做功”冲程,因而能在更短时间内燃烧更多的燃油;所以,就一给定尺寸的发动机而言,它产生更大的功率输出。
Administrator
文本框
3.由于涡轮发动机的连续作用和燃烧室不是一个封闭空间这一事实,在燃烧过程中,空气压力不象在活塞发动机中那样上升,而其体积却要增加。这种过程称之为等压加热。在这些状态下,没有峰值压力或波动压力要承受。而活塞发动机的峰值压力超过1000磅/平方英寸。就是这些峰值压力使活塞发动机必须采用结构笨重的气缸和高辛烷值燃油。相反,低辛烷值燃油和轻结构的燃烧室用于涡轮发动机。
Page 20: Rolls royce jet engine

to use high octane fuels, in contrast to the low octanefuels and the light fabricated combustion chambersused on the turbine engine.

4. The working cycle upon which the gas turbineengine functions is, in its simplest form, representedby the cycle shown on the pressure volume diagramin fig. 2-2. Point A represents air at atmosphericpressure that is compressed along the line AB. FromB to C heat is added to the air by introducing andburning fuel at constant pressure, thereby consider-ably increasing the volume of air. Pressure losses inthe combustion chambers (Part 4) are indicated bythe drop between B and C. From C to D the gasesresulting from combustion expand through theturbine and jet pipe back to atmosphere. During thispart of the cycle, some of the energy in theexpanding gases is turned into mechanical power by

Working cycle and airflow

12

Fig. 2-1 A comparison between the working cycle of a turbo-jet engine and a piston engine.

Fig. 2-2 The working cycle on a pressure-volume diagram.

Administrator
文本框
4.图2-2用最简单的形式表示了燃气涡轮发动机运行的工作循环。也即在压力-体积图上画出来的循环。点A表示大气压下的空气,它沿AB线得到压缩。从B到C靠引入燃油并在等压下燃烧向空气加热,因而空气的体积增加很多。燃烧室(第4章)中的压力损失用B和C间的压降表示。从C到 D表示燃烧产生的燃气通过涡轮和喷管膨胀并且排入大气。在循环的这 一部分,膨胀燃气中的部分能量靠涡轮转变成机械功率;其余的能量,在它排入大气时提供推进喷气流。
Administrator
文本框
工作循环和气流
Administrator
文本框
图2-1涡轮喷气发动机和活塞发动机工作循环比较
Administrator
文本框
图2-2 压力体积图上的工作循环
Administrator
文本框
进气道
Administrator
文本框
压缩
Administrator
文本框
燃烧
Administrator
文本框
连续的
Administrator
文本框
排气
Administrator
文本框
空气/燃油进入 压缩
Administrator
文本框
间歇的
Administrator
文本框
燃烧
Administrator
文本框
排气
Administrator
文本框
压力
Administrator
文本框
容积
Administrator
文本框
压缩(增加压力能)
Administrator
文本框
外部空气
Administrator
文本框
燃烧(增加热能)
Administrator
文本框
膨胀(通过涡轮和喷管)
Page 21: Rolls royce jet engine

the turbine; the remainder, on its discharge toatmosphere, provides a propulsive jet.

5. Because the turbo-jet engine is a heat engine,the higher the temperature of combustion the greateris the expansion of the gases. The combustiontemperature, however, must not exceed a value thatgives a turbine gas entry temperature suitable for thedesign and materials of the turbine assembly.

6. The use of air-cooled blades in the turbineassembly permits a higher gas temperature and aconsequently higher thermal efficiency.

THE RELATIONS BETWEEN PRESSURE,VOLUME AND TEMPERATURE

7. During the working cycle of the turbine engine,the airflow or 'working fluid' receives and gives upheat, so producing changes in its pressure, volumeand temperature. These changes as they occur areclosely related, for they follow a common principlethat is embodied in a combination of the laws ofBoyle and Charles. Briefly, this means that theproduct of the pressure and the volume of the air atthe various stages in the working cycle is proportion-al to the absolute temperature of the air at those

Working cycle and airflow

13

Fig. 2-3 An airflow through divergent and convergent ducts.

Administrator
文本框
5.因为涡轮喷气发动机是热力发动机,燃烧温度愈高,燃气膨胀得愈多。然而,燃烧温度必须不超过涡轮部件的设计和材料所适合的涡轮燃气进口温度值。 6.在涡轮部件中使用气冷工作叶片允许更高的燃气温度,从而得到更高的热效率。
Administrator
文本框
图2-3通过扩散和收敛涵道的空气流
Administrator
文本框
原理
Administrator
文本框
原理
Administrator
文本框
例子-气流通过涡轮导向器叶片
Administrator
文本框
例子-典型轴流压气机出口机匣
Administrator
文本框
旋转方向
Administrator
文本框
工作循环和气流
Administrator
文本框
速度-减少 压力-增加 温度-增加
Administrator
文本框
速度-增加 压力-减少 温度-减少
Administrator
文本框
7.在涡轮发动机的工作循环过程中,空气流或“工作介质”接受并放出热量,从而引起其压力、体积和温度变化。这些变化在其发生时密切相关,因为它们遵循在波伊尔和查里斯组合定律中所阐述的一项共同的原理。简言之,它意指,工作循环各阶段中空气的压力和体积之乘积与这些阶段中空气的绝对温度成正比。不论用什么方式来改变空气的状态,这一关系都能适用。例如,无论是通过燃烧或者压缩来加入能量,或者通过涡轮来抽取能量,热能的变化总是与加入到燃气或者从燃气中抽取的功成正比。
Administrator
文本框
压力、体积和温度间的关系
Administrator
文本框
8.在发动机工作循环中有三个主要状态会发生上述变化。在压缩过程中,通过做功来增加空气的压力和减小其体积,温度相应上升。燃烧期间,当燃油加入空气并燃烧以提高其温度时,体积相应增大,而压力保持几乎不变。膨胀时,当涡轮部件从燃气流中将功抽出来时,温度和压力减小,而体积相应增大。
Page 22: Rolls royce jet engine

stages. This relationship applies for whatever meansare used to change the state of the air. For example,whether energy is added by combustion or bycompression, or is extracted by the turbine, the heatchange is directly proportional to the work added ortaken from the gas.

8. There are three main conditions in the engineworking cycle during which these changes occur.During compression, when work is done to increasethe pressure and decrease the volume of the air,there is a corresponding rise in the temperature.During combustion, when fuel is added to the air andburnt to increase the temperature, there is a corre-sponding increase in volume whilst the pressureremains almost constant. During expansion, whenwork is taken from the gas stream by the turbineassembly, there is a decrease in temperature andpressure with a corresponding increase in volume.

9. Changes in the temperature and pressure of theair can be traced through an engine by using theairflow diagram in fig. 2-5. With the airflow beingcontinuous, volume changes are shown up aschanges in velocity.

10. The efficiency with which these changes aremade will determine to what extent the desiredrelations between the pressure, volume andtemperature are attained. For the more efficient thecompressor, the higher the pressure generated for agiven work input; that is, for a given temperature riseof the air. Conversely, the more efficiently the turbineuses the expanding gas, the greater the output ofwork for a given pressure drop in the gas.

11. When the air is compressed or expanded at 100per cent efficiency, the process is said to beadiabatic. Since such a change means there is noenergy losses in the process, either by friction,conduction or turbulence, it is obviously impossibleto achieve in practice; 90 per cent is a good adiabaticefficiency for the compressor and turbine.

CHANGES IN VELOCITY AND PRESSURE

12. During the passage of the air through theengine, aerodynamic and energy requirementsdemand changes in its velocity and pressure. Forinstance: during compression, a rise in the pressureof the air is required and not an increase in itsvelocity. After the air has been heated and its internalenergy increased by combustion, an increase in thevelocity of the gases is necessary to force the turbineto rotate. At the propelling nozzle a high exit velocityis required, for it is the change in the momentum of

the air that provides the thrust on the aircraft. Localdecelerations of airflow are also required, as forinstance, in the combustion chambers to provide alow velocity zone for the flame to burn.

13. These various changes are effected by meansof the size and shape of the ducts through which theair passes on its way through the engine. Where aconversion from velocity (kinetic) energy to pressureis required, the passages are divergent in shape.Conversely, where it is required to convert the energystored in the combustion gases to velocity energy, aconvergent passage or nozzle (fig. 2-3) is used.These shapes apply to the gas turbine engine wherethe airflow velocity is subsonic or sonic, i.e. at thelocal speed of sound. Where supersonic speeds areencountered, such as in the propelling nozzle of therocket, athodyd and some jet engines (Part 6), aconvergent-divergent nozzle or venturi (fig. 2-4) isused to obtain the maximum conversion of theenergy in the combustion gases to kinetic energy.

14. The design of the passages and nozzles is ofgreat importance, for upon their good design willdepend the efficiency with which the energy changesare effected. Any interference with the smooth airflowcreates a loss in efficiency and could result incomponent failure due to vibration caused by eddiesor turbulence of the airflow.

Working cycle and airflow

14

Fig. 2-4 Supersonic airflow through aconvergent-divergent nozzle orventuri.

Administrator
文本框
9.从图2-5中的气流图可以看出空气的温度和压力在一台发动机中的变化。由于气流是连续的,速度变化时就出现体积的变化。
Administrator
文本框
11.当空气在100%的效率下受到压缩或膨胀时,此过程称之为绝热过程。因为这种变化意味着过程中没有能量损失,既无摩擦、无传导或者紊流损失,这显然实际上是无法实现的。压气机和涡轮有90%的绝热效率就满好了。
Administrator
文本框
速度和压力的变化 12.在空气流过发动机的过程中,从气动力和能量的要求来看需要空气的速度和压力发生变化。例如在压缩过程中,只要求空气的压力升高,并不要求其速度增加。在燃烧后,空气已经受热并且其内部能量增加,就需要燃气的速度增加来驱动涡轮旋转。在推进喷管处,要求高的出口速度,因为就是空气动量的这种变化为飞机提供了推力。气流的局部减速也是需要的,例如,在燃烧室中,要提供一个低速区供火焰燃烧。
Administrator
文本框
圈2-4通过收敛-扩散喷管或文氏管的超音速气流
Administrator
文本框
气流在喉道处增加到音速
Administrator
文本框
10.发生这些变化时的效率将决定压力、体积和温度间所要求的关系能达到何等程度。就一效率较高的压气机而言,输入给定的功,即在空气的温度升高一定的条件下产生的压力就比较高。反之,涡轮利用膨胀燃气的效率愈高,在给定的燃气压降下输出的功也就愈多。
Administrator
文本框
高压
Administrator
文本框
大气压力
Administrator
文本框
马赫1 喷管杜塞
Administrator
文本框
速度增大 压力减小
Administrator
文本框
压力减小
Administrator
文本框
速度增大
Page 23: Rolls royce jet engine

Working cycle and airflow

15

Fig. 2-5-1 Airflow systems.

Administrator
文本框
回流燃烧系统 自由动力涡轮
Administrator
文本框
推进喷管
Administrator
文本框
进气道
Administrator
文本框
压缩 燃烧 膨胀 排出
Administrator
文本框
典型单轴辅流式涡轮喷气发动机
Administrator
文本框
低压压气机
Administrator
文本框
高压压气机
Administrator
文本框
双级离心式涡轮螺桨发动机
Administrator
文本框
双轴轴流式涡轮螺桨发功机
Administrator
标注
低压压气机
Administrator
文本框
高压压气机
Administrator
文本框
图2-5-1 几种气流系统
Administrator
文本框
双轴涡轮轴发动机(带自自动力涡轮的)
Administrator
文本框
低压压气机
Administrator
文本框
高压压气机
Administrator
文本框
13.这些不同的变化受空气流过发动机时的涵道尺寸和形状的影响。在要求速度(动)能转换成压力的地方,通道呈扩张形。反之,在要求将燃气中储存的能量转换成速度能的场合,便采用收敛通道或喷管工作循环和气流(图2-3)。这些形状适用于气流速度是亚音速或音速(即当地声速)的燃气涡轮发动机。在遇到超音速的场合,如火箭的推进喷管,冲压式空气喷气发动机和某些喷气发动机(第6章)。便采用收敛-扩散喷管即文氏管(图2-4),以便将燃气中的能量最大限度地转换成动能。
Administrator
文本框
14.通道和喷管的设计至关重要,因为能量转换时的效率就取决于它们的良好设计。对平滑气流的扰动会使效率损失,并且,由于气流涡流或紊流引起振动,还可能导致部件发生故障。
Page 24: Rolls royce jet engine

Working cycle and airflow

16

Fig, 2-5-2 Airflow systems.

Administrator
文本框
对转风扇
Administrator
文本框
低压压气机
Administrator
文本框
中压压气机
Administrator
文本框
双轴轴流式内外涵涡轮发动机动(低涵道比)
Administrator
文本框
三轴轴流式前风扇涡轮喷气发动机(高涵道比)
Administrator
文本框
低压压气机 高压压气机 外涵道气流
Administrator
文本框
与排出的燃气流 混合的外涵道气流
Administrator
文本框
高压压气机
Administrator
文本框
对转螺桨风扇
Administrator
文本框
压气机
Administrator
文本框
双轴轴流式对转后风扇 (带自自功率涡轮)
Administrator
文本框
轴流式对转螺桨风扇 (带自自功率涡轮)
Administrator
文本框
图2-5-2 几种气流系统
Page 25: Rolls royce jet engine

AIRFLOW

15. The path of the air through a gas turbine enginevaries according to the design of the engine. Astraight-through flow system (fig. 2-5) is the basicdesign, as it provides for an engine with a relativelysmall frontal area and is also suitable for use of theby-pass principle. In contrast, the reverse flowsystem gives an engine with greater frontal area, butwith a reduced overall length. The operation,however, of all engines is similar. The variations dueto the different designs are described in thesubsequent paragraphs.

16. The major difference of a turbo-propeller engineis the conversion of gas energy into mechanicalpower to drive the propeller. Only a small amount of'jet thrust' is available from the exhaust system. Themajority of the energy in the gas stream is absorbedby additional turbine stages, which drive the propellerthrough internal shafts (Part 5).

17. As can be seen in fig. 2-5, the by-pass principleinvolves a division of the airflow. Conventionally, allthe air taken in is given an initial low compressionand a percentage is then ducted to by-pass, theremainder being delivered to the combustion systemin the usual manner. As described in Part 21, this

principle is conducive to improved propulsiveefficiency and specific fuel consumption.

18. An important design feature of the by-passengine is the by-pass ratio; that is, the ratio of cool airby-passed through the duct to the flow of air passedthrough the high pressure system. With low by-passratios, i.e. in the order of 1:1, the two streams areusually mixed before being exhausted from theengine. The fan engine may be regarded as anextension of the by-pass principle, and therequirement for high by-pass ratios of up to 5:1 islargely met by using the front fan in a twin or triple-spool configuration (on which the fan is, in fact, thelow pressure compressor) both with and withoutmixing of the airflows. Very high by-pass ratios, in theorder of 15:1, are achieved using propfans. Theseare a variation on the turbo-propeller theme but withadvanced technology propellers capable of operatingwith high efficiency at high aircraft speeds.

19. On some front fan engines, the by-passairstream is ducted overboard either directly behindthe fan through short ducts or at the rear of theengine through longer ducts; hence the term 'ductedfan'. Another, though seldom used, variation is that ofthe aft fan.

Working cycle and airflow

17

Administrator
文本框
气流 15.流过燃气涡轮发动机的气流通道按照该发动机的设计变化。直流气流系统(图2-5)是基本设计,因为它为发动机提供比较小的迎风面积,并且对于应用内外涵原理的气流系统也同样适用。相反,回流系统使发动机具有较大的迎风面积,但总长度较小。然而,所有发动机的工作都是类似的。下面几段介绍了不同设计带来的变化。 16.涡轮螺桨发动机的主要区别是将燃气的能量转换成机械功以驱动螺旋桨。从排气系统得到的只是少量的“喷气推力”。燃气流中的大部分能量被额外几级涡轮吸收,并通过内轴(第5章)来驱动螺旋桨。 17.正如从图2-5所能看到的那样,内外涵原理涉及到气流的分流。通常,所有吸入的气流经过最初的低压压缩,然后,一定百分比的气流流入外涵道,其余部分以常规方式流入燃烧系统。正如第21章所述,这一原理有益于改善推进效率和耗油率。
Administrator
文本框
18.内外涵发动机的一个重要设计特点是涵道比,即通过外涵道的冷空气流量与通过高压系统的空气流量之比。涵道比低,比如在1:1的量级时,这二股气流通常在从发动机排出之前混合在一起。风扇发动机可视为内外涵原理的扩展。高达5:1的高涵道比的要求大多是用双轴或三轴结构中的前风扇求满足(风扇就装于轴上,实际上成为低压压气机)。两股气流可以混合。也可以不混合。很高的涵道比(在15:1的量级)是用螺桨风扇来实现。它是涡轮螺桨理论的演变,但具有能在高飞行速度下高效率工作的先进技术螺旋桨。 19在某些前风扇发动机中,外涵道气流可以直接在风扇后边通过短涵道排出机外,也可以通过较长的涵道在发动机后部排出,并因而称为“涵道风扇”。另一种是后风扇方案,但极少采用。
Page 26: Rolls royce jet engine

De Havilland H1 Goblin

Development of the de Havilland Goblinbegan in 1941 with the Halford H1 with adesign thrust of 3000 lb. The engine passed a25 hr special category test in September 1942and was cleared for flight at 2000 lb thrust.This took place in a Gloster Meteor on 5March 1943 and was also the first flight of thataircraft type. In September 1943 the first flightof a de Havilland DH100 Vampire was madewith a Goblin of 2300 lb thrust.

Rolls-Royce RB211-22B

Administrator
文本框
德 哈维兰公司的“妖魔”(Goblin)发动机于1941年开始和设计推力3000磅的“哈尔福德”H1(Halford H1)一起发展。该发动机于1942年9月通过了25小时的特种等级试车,并获准以2000磅推力飞行。1943年3月5日在格洛斯特公司的“流星”(Gloster Meteor)飞机上进行了飞行,这也是这种飞机的首次飞行。1943年9月,德哈维兰公司的DH100“吸血鬼”(DH100 Vampire)装用2300磅推力的一台“妖魔”发动机进行了首次飞行。
Administrator
文本框
罗尔斯-罗伊斯公司 RB211-228 发动机
Administrator
文本框
德·哈维兰公司H1“妖魔”发动机
Page 27: Rolls royce jet engine

3: Compressors

INTRODUCTION

1. In the gas turbine engine, compression of the airbefore expansion through the turbine is effected byone of two basic types of compressor, one givingcentrifugal flow and the other axial flow. Both typesare driven by the engine turbine and are usuallycoupled direct to the turbine shaft.

2. The centrifugal flow compressor (fig. 3-1) is asingle or two stage unit employing an impeller to

accelerate the air and a diffuser to produce therequired pressure rise. The axial flow compressor(fig. 3-7 and fig. 3-8) is a multi-stage unit employingalternate .rows of rotating (rotor) blades andstationary (stator) vanes, to accelerate and diffusethe air until the required pressure rise is obtained. Insome cases, particularly on small engines, an axialcompressor is used to boost the inlet pressure to thecentrifugal.

3. With regard to the advantages and disadvan-tages of the two types, the centrifugal compressor isusually more robust than the axial compressor and isalso easier to develop and manufacture. The axialcompressor however consumes far more air than a

Contents Page

Introduction 19The centrifugal flow compressor 21

Principles of operation Construction Impellers Diffusers

The axial flow compressor 22Principles of operation Construction RotorsRotor blades Stator vanes

Operating conditions 28Airflow control 29Materials 29Balancing 33

19

Administrator
文本框
轴流式压气机 工作原理 结构 转子 转子叶片 静子叶片
Administrator
文本框
第三章 压气机
Administrator
文本框
绪言 1.在燃气涡轮发动机中,空气在通过涡轮膨胀以前,它的压缩可由两种压气机中的一种进行的,一种产生离心气流,另一种产生轴向气流。这两种压气机均由发动机涡轮驱动,通常直接与涡轮轴相连。
Administrator
文本框
目录 页码
Administrator
文本框
绪言 离心式压气机 工作原理 结构 叶轮 扩压器
Administrator
文本框
工作状态 空气流量控制 材料 平衡
Administrator
文本框
2.离心式压气机(图3-1)是一个单级或二级装置,用叶轮加速空气,用扩压器产生要求的压力升高。轴流压气机(图3-7和图3-8)是一多级装置,用交替布置的排排旋转的(转子)叶片和静止的(静于)叶片来加速空气并使之扩压,直到达到要求的压力提高。在某些情况下,尤其是小发动机上,用一个轴流压气机来给离心压气机的进口气流增压。
Administrator
文本框
3.就这两种压气机的优缺点而言,离心压气机通常比轴流压气机更结实,也比较容易发展和制造。
Page 28: Rolls royce jet engine

centrifugal compressor of the same frontal area andcan be designed to attain much higher pressureratios. Since the air flow is an important factor indetermining the amount of thrust, this means theaxial compressor engine will also give more thrust forthe same frontal area. This, plus the ability toincrease the pressure ratio by addition of extrastages, has led to the adoption of axial compressorsin most engine designs. However, the centrifugalcompressor is still favoured for smaller engineswhere its simplicity and ruggedness outweigh anyother disadvantages.

4. The trend to high pressure ratios which hasfavoured the adoption of axial compressors isbecause of the improved efficiency that results,

which in turn leads to improved specific fuelconsumption for a given thrust, ref. fig. 3-2.

Compressors

20

Fig. 3-1 A typical centrifugal flow compressor.

Fig. 3-2 Specific fuel consumption andpressure ratio.

Administrator
文本框
3.就这两种压气机的优缺点而言,离心压气机通常比轴流压气机更结实,也比较容易发展和制造。然而,轴流压气机比同样迎风面积的离心压气机吸入的空气多得多,并能从设计上得到高得多的增压比。因为空气流量是决定推力大小的一项重要因素,这就意味着,在同样的迎风面积条件下,轴流压气机发动机将产生更大的推力。再加上通过额外增加级数就能增加压比的这种能力,使得大多数发动机设计采用轴流压气机。然而,离心压气机仍然为较小型发动机所喜爱采用,因为在这种情况下,离心压气机的简单和结实压倒了它的所有缺点。
Administrator
文本框
图3-2 耗油率随增压比的变化
Administrator
文本框
压气机空气出口机匣
Administrator
文本框
图3-1 典型的离心气流压气机
Administrator
文本框
4.高增压比趋势有利于采用轴流压气机,这足因为它改善了效率,并进而改善了给定推力下的耗油率,参见图3-2。
Administrator
文本框
增压比
Administrator
文本框
耗油率
Administrator
文本框
前进气机匣
Administrator
文本框
叶轮
Administrator
文本框
旋转的导向叶片
Administrator
文本框
漩涡叶片 压气机
Administrator
文本框
叶轮的轴直接和涡轮连接
Administrator
文本框
进气槽
Administrator
文本框
后进气机匣
Page 29: Rolls royce jet engine

THE CENTRIFUGAL FLOW COMPRESSOR

5. Centrifugal flow compressors have a single ordouble-sided impeller and occasionally a two-stage,single sided impeller is used, as on the Rolls-RoyceDart. The impeller is supported in a casing that alsocontains a ring of diffuser vanes. If a double-entryimpeller is used, the airflow to the _rear side isreversed in direction and a plenum chamber isrequired.

Principles of operation6. The impeller is rotated at high speed by theturbine and air is continuously induced into thecentre of the impeller. Centrifugal action causes it toflow radially outwards along the vanes to the impellertip, thus accelerating the air and also causing a risein pressure to occur. The engine intake duct maycontain vanes that provide an initial swirl to the airentering the compressor.

7. The air, on leaving the impeller, passes into thediffuser section where the passages form divergentnozzles that convert most of the kinetic energy intopressure energy, as illustrated in fig. 3-3. In practice,it is usual to design the compressor so that about halfof the pressure rise occurs in the impeller and half inthe diffuser.

8. To maximize the airflow and pressure risethrough the compressor requires the impeller to berotated at high speed, therefore impellers aredesigned to operate at tip speeds of up to 1,600 ft.

per sec. By operating at such high tip speeds the airvelocity from the impeller is increased so that greaterenergy is available for conversion to pressure.

9. To maintain the efficiency of the compressor, it isnecessary to prevent excessive air leakage betweenthe impeller and the casing; this is achieved bykeeping their clearances as small as possible (fig. 3-4).

Construction10. The construction of the compressor centresaround the impeller, diffuser and air intake system.The impeller shaft rotates in ball and roller bearingsand is either common to the turbine shaft or split inthe centre and connected by a coupling, which isusually designed for ease of detachment.

Impellers11. The impeller consists of a .forged, disc withintegral, radially disposed vanes on one or both sides(fig. 3-5) forming convergent passages in conjunctionwith the compressor casing. The vanes may beswept back, but for ease of manufacture straight

Compressors

21

Fig. 3-3 Pressure and velocity changesthrough a centrifugal compressor.

Fig. 3-4 Impeller working clearance andair leakage.

Administrator
文本框
离心式压气机 5.离心式压气机有单面或双面叶轮。有时采用双级单面叶轮,如罗尔斯-罗伊斯公司的“达特”(Dart)发动机。叶轮支承于机匣里面,机匣还包容一圈扩压器导向叶片。如果采用了双面进气叶轮,流向后侧面的空气流要逆向进入叶轮,并需要个稳压室。 工作原理 6.叶轮由涡轮驱动高速旋转,空气连续地吸入叶轮的中心。离心力的作用使空气沿导向叶片径向向外流向叶轮尖部。从而使空气加速,并造成压力升高。发动机进气道上也可装导向叶片,用以给进入压气机的空气提供初始漩流。
Administrator
文本框
7.空气离开叶轮后进入扩压器段,那里的通道呈扩张形,将大部分动能转化成压力能,如图3-3所示。实际上,通常将这种压气机设计得大约一半压力升高发生在叶轮中,另一半在扩压器中。 8.为了尽量提高通过压气机的空气流量和压力升高,要求叶轮高速旋转。因此,叶轮被设计成在高达1600英尺/秒的叶尖速度下工作。通过在这样高的叶尖速度下工作,增大了从叶轮流出的气流速度,于足得到的可转换成压压力的能量就更多。 9.为了保持压气机的效率,必须防止叶轮和机匣之间漏气过多;将它们之间的间隙保持尽量小即可达此目的(图3-4)。 结构 10.压气机结构主要是叶轮、扩压器和进气系统。叶轮轴在球轴承和滚棒轴承中旋转,或者与涡轮轴共用一轴,或者在中间分开,用联轴节相连,这一般是从易于分解角度设计的。
Administrator
文本框
叶轮 11.叶轮含有一锻造的盘,在一侧或两侧上有整体式径向配置的导向叶片(图3-5),与压气机机匣一起形成了收敛通道。导向叶片可以是后掠的。但为了易于制造,通常采用径向平直导向叶片。为了使空气从进气道中的轴向气流易于进入旋转的叶轮。叶轮中心部分的导向叶片做成向旋转方向弯曲。弯曲部分可以与径向导向叶片为一整体,或者单独制成,以使制造更加容易并且制造得更为精确
Administrator
文本框
图3-3离心压气机中的压力和速度变化
Administrator
文本框
图3-4叶轮工作间隙和漏气
Administrator
文本框
进口
Administrator
文本框
速度
Administrator
文本框
压力
Administrator
文本框
出口
Administrator
文本框
扩压器
Administrator
文本框
叶轮
Page 30: Rolls royce jet engine

radial vanes are usually employed. To ease the airfrom axial flow in the entry duct on to the rotatingimpeller, the vanes in the centre of the impeller arecurved in the direction of rotation. The curvedsections may be integral with the radial vanes orformed separately for easier and more accuratemanufacture.

Diffusers12. The diffuser assembly may be an integral part ofthe compressor casing or a separately attachedassembly. In each instance it consists of a number ofvanes formed tangential to the impeller. The vanepassages are divergent to convert the kinetic energyinto pressure energy and the inner edges of the

vanes are in line with the direction of the resultantairflow from the impeller (fig. 3-6). The clearancebetween the impeller and the diffuser is an importantfactor, as too small a clearance will set upaerodynamic buffeting impulses that could betransferred to the impeller and create an unsteadyairflow and vibration.

THE AXIAL FLOW COMPRESSOR

13. An axial flow compressor (fig. 3-7 and fig. 3-8)consists of one or more rotor assemblies that carryblades of airfoil section. These assemblies aremounted between bearings in the casings whichincorporate the stator vanes. The compressor is amulti-stage unit as the amount of pressure increaseby each stage is small; a stage consists of a row ofrotating blades followed by a row of stator vanes.Where several stages of compression operate inseries on one shaft it becomes necessary to vary thestator vane angle to enable the compressor tooperate effectively at speeds below the designcondition. As the pressure ratio is increased theincorporation of variable stator vanes ensures thatthe airflow is directed onto the succeeding stage ofrotor blades at an acceptable angle, ref. para. 30,Airflow Control.

14. From the front to the rear of the compressor, i.e.from the low to the high pressure end, there is agradual reduction of the air annulus area between

Compressors

22

Fig. 3-5 Typical impellers for centrifugalcompressors.

Fig. 3-6 Airflow at entry to diffuser.

Administrator
文本框
12.扩压器组件可以和压气机机匣是整体件,或者是一单独连接的组件。不管是整体件还是连接组件,它都有许多导向叶片,这些叶片作成与叶轮相切。导向叶片通道呈扩张形,以便将动能转换成压力能,而且,导向叶片的内边缘与从叶轮流出的合成空气流的与向相一致(图3-6)。叶轮和扩压器之间的间隙是一个重要参数,因为此间隙太小会形成空气动力抖动冲击,此冲击会传给叶轮。造成不稳定的气流以及振动。
Administrator
文本框
13.轴流压气机(图3-7和图3-8)由带许多翼型 截面叶片的一个或多个转子组件组成。这些组件装在机匣里的轴承之间,机匣里还包含静于叶片。这种压气机是一个多级装置。因为每一级的压力升高 量很小。每级包含一排旋转叶片和随后的一排静 子叶片。在同一根轴上有数级压缩串连工作的情况下,在低于设计状态的转速时必须改变静子叶片的角度,以使压气机有效地工作。当增压比提高时,可调静子叶片的采用可确保将气流以满意的角度引向后一级的转子叶片上去,请参阅第30段气流控制。 14.压气机从前往后,即从低压端向高压端,转子与静止机匣之间的气流的环形通道面积逐渐减小。这是随着空气密度沿压气机长度增加而要保持一个接近恒定的轴向气流速度所必须的。气流环形通道的收敛是通过机匣或者转子作成斜的来实现的。二者综合使用也是可能的,因为这里的安排要受制造问 题及其它机械设计因素的影响。
Administrator
文本框
图3-6 扩压器进口处的气流
Administrator
文本框
轴流式压气机
Administrator
文本框
扩压器
Administrator
文本框
图3-5 典型的离心压气机的叶轮
Administrator
文本框
扩压器叶片
Administrator
文本框
叶尖间隙
Administrator
文本框
叶轮
Page 31: Rolls royce jet engine

Compressors

23

Fig. 3-7 Typical axial flow compressors.

Administrator
文本框
进气机匣 静子叶片 转子叶片
Administrator
文本框
来自涡轮的主轴传动
Administrator
文本框
燃烧系统 安装边
Administrator
文本框
单转子压气机
Administrator
文本框
附件传动
Administrator
文本框
图3-7 两种典型的轴流压气机
Administrator
文本框
双转子压气机
Administrator
标注
来自涡轮的高压轴传动
Administrator
文本框
低压压气机
Administrator
文本框
高压压气机
Administrator
标注
来自涡轮的低压轴传动
Administrator
文本框
附近传动
Administrator
文本框
燃烧系统 安装边
Page 32: Rolls royce jet engine

the rotor shaft and the stator casing. This isnecessary to maintain a near constant air axialvelocity as the density increases through the lengthof the compressor. The convergence of the airannulus is achieved by the tapering of the casing orrotor. A combination of both is also possible, with thearrangement being influenced by manufacturingproblems and other mechanical design factors.

15. A single-spool compressor (fig. 3-7) consists ofone rotor assembly and stators with as many stagesas necessary to achieve the desired pressure ratioand all the airflow from the intake passes through thecompressor.

16. The multi-spool compressor consists of two ormore rotor assemblies, each driven by their own

turbine at an optimum speed to achieve higherpressure ratios and to give greater operatingflexibility.

17. Although a twin-spool compressor (fig. 3-7) canbe used for a pure jet engine, it is most suitable forthe by-pass type of engine where the front or lowpressure compressor is designed to handle a largerairflow than the high pressure compressor. Only apercentage of the air from the low pressurecompressor passes into the high pressurecompressor; the remainder of the air, the by-passflow, is ducted around the high pressure compressor.Both flows mix in the exhaust system before passingto the propelling nozzle (Part 6). This arrangementmatches the velocity of the jet nearer to the optimumrequirements of the aircraft and results in higher

Compressors

24

Fig. 3-8 Typical triple spool compressor.

Administrator
文本框
15.单转子压气机(图3-7)由一转子组件和一些静子组成,其级数的多寡必须满足所要求的增压比,所有进气道来的气流都将通过压气机。 16.多转子压气机由二个或多个转于组件组成,每一转子由各自的涡轮以最佳转速驱动,以达到更高的增压比和提供更大的工作灵活性。
Administrator
文本框
17.虽然双转于压气机(图3-7)可以用于纯喷气发动机,但是,它最适合内外涵式发动机。在内外涵发动机中,前压气机或低压压气机是设计来处理比高压压气机更多的空气流量。只有一定百分比的低压压气机气流流入高压压气机;其余的空气是外涵气流,被引入高压压气机周围的涵道。这两股气流在排气系统中混合,然后流入推进喷管(第6章)。这种安排将喷气速度匹配得更加接近飞机要求的最佳速度,并导致更高的推进效率,因而得到更低的燃油 消耗。为此,所有气流流过整个压缩过程的纯喷气发动机目前已为除最高速飞机以外的所有飞机废弃不用了。
Administrator
文本框
图3-8 典型的三转子压气机
Administrator
文本框
中压压气机
Administrator
文本框
高压压气机
Administrator
文本框
燃烧机匣安装边
Administrator
文本框
来自涡轮的中压轴传动
Administrator
标注
来自涡轮的低压轴传动
Administrator
文本框
来自涡轮的高压传动
Administrator
文本框
低压压气机
Page 33: Rolls royce jet engine

propulsive efficiency, hence lower fuel consumption.For this reason the pure jet engine where all theairflow passes through the full compression cycle isnow obsolete for all but the highest speed aircraft.

18. With the high by-pass ratio turbo-fan this trendis taken a stage further. The intake air undergoesonly one stage of compression in the fan beforebeing split between the core or gas generator systemand the by-pass duct in the ratio of approximatelyone to five (fig. 3-8). This results in the optimumarrangement for passenger and/or transport aircraftflying at just below the speed of sound. The fan maybe coupled to the front of a number of corecompression stages (two shaft engine) or a separateshaft driven by its own turbine (three shaft engine).

Principles of operation19. During operation the rotor is turned at highspeed by the turbine so that air is continuouslyinduced into the compressor, which is thenaccelerated by the rotating blades and sweptrearwards onto the adjacent row of stator vanes. Thepressure rise results from the energy imparted to theair in the rotor which increases the air velocity. Theair is then decelerated (diffused) in the following

stator passage and the kinetic energy translated intopressure. Stator vanes also serve to correct thedeflection given to the air by the rotor blades and topresent the air at the correct angle to the next stageof rotor blades. The last row of stator vanes usuallyact as air straighteners to remove swirl from the airprior to entry into the combustion system at areasonably uniform axial velocity. Changes inpressure and velocity that occur in the airflowthrough the compressor are shown diagrammaticallyin fig. 3-9. The changes are accompanied by aprogressive increase in air temperature as thepressure increases.

20. Across each stage the ratio of total pressures ofoutgoing air and inlet air is quite small, beingbetween 1:1 and 1:2. The reason for the smallpressure increase through each stage is that the rateof diffusion and the deflection angle of the .bladesmust be limited if losses due to air breakaway at theblades and subsequent blade stall are to be avoided.Although the pressure ratio of each stage is small,every stage increases the exit pressure of the stagethat precedes it. So whilst this first stage of acompressor may only increase the pressure by 3 to4 lb. per sq. in., at the rear of a thirty to onecompression system the stage pressure rise can beup to 80 lb, per sq. in, The ability to design multi-stage axial compressors with controlled air velocitiesand straight through flow, minimizes losses andresults in a high efficiency and hence low fuelconsumption. This gives it a further advantage overthe centrifugal compressor where these conditionsare fundamentally not so easily achieved.

21. The more the pressure ratio of a compressor isincreased the more difficult it becomes to ensure thatit will operate efficiently over the full speed range.This is because the requirement for the ratio of inletarea to exit area, at the high speed case, results inan inlet area that becomes progressively too largerelative to the exit area as the compressor speed andhence pressure ratio is reduced. The axial velocity ofthe inlet air in the front stages thus becomes lowrelative to the blade speed, this changes theincidence of the air onto the blades and a conditionis reached where the flow separates and thecompressor flow breaks down. Where high pressureratios are required from a single compressor thisproblem can be overcome by introducing variablestator vanes in the front stages of the system. Thiscorrects the incidence of air onto the rotor blades toangles which they can tolerate. An alternative is theincorporation of interstage bleeds, where aproportion of air after entering the compressor is

Compressors

25

Fig. 3-9 Pressure and velocity changesthrough an axial compressor.

Administrator
文本框
工作原理 19.工作期间,转子由涡轮带动高速旋转,于是空气被连续不断地引入压气机。尔后,旋转着的叶片使空气加速,并将其推向后排相邻的一排静子叶片。转子传给空气的能量使压力升高,并提高了空气的速度。然后,空气在随后的静子通道中减速(扩压)并将动能转换成压力。静干叶片还将转子叶片加于空气的偏斜起矫正的作用,并将空气以正确的角度送到下一级转子叶片上去。最后一排静子叶片通常起空气矫直器的作用,除去空气的漩流,然后使之以比较均匀的轴向速度进入燃烧系统。气流通过压气机时压力和速度的变化图示于图3-9。随着压力提高,这些变化又伴之以空气温度的逐渐升高。
Administrator
文本框
图3-9 轴流压气机中压力和速度的变化
Administrator
文本框
20.每一级中进出口空气的总增压比很小。仅在1:1和1:2之间。每一级的压力升高这样小的原因是,如果要避免空气在转子叶片上的分离和在随后的转子叶片上的失速引起损失的话,扩压度和转子叶片的偏转角必须是很有限的。虽然每一级的压比很小,但是,每一级的出口压力都比它前面一级提高。所以,尽管一台压气机的第一级只能使压力提高3至4磅/平方英寸,但在一个30:1的压缩系统的后面级中,级压力升高可以高达80磅/平方英寸。由于已有能力设计出这样一些多级轴流式压气机,它们的空气速度是可以控制的,气体是直通流动的,因此可将压气机的损失减至最低限度,并导致高的效率,从而得到低的燃油消耗。这使它进一步优于离心式压气机。这些状态是离心压气机根本不容易达到的。
Administrator
文本框
前面数级中进口空气的轴向速度相对于转子叶片速度因此变得较低,这就改变了空气流到叶片上的迎角,并达到气流分离和压气机流量下降的程度。要求单转子压气机达到高增压比时,可在该系统的前几级中采用可调静子叶片来解决这个问题。它把空气流到转子叶片上去的迎角矫正到这些叶片能够容忍的程度。另外的办法是采用级间放气,将进入压气机的一部分空气从中间级放走并泄入外涵气流中。虽然这种方法矫正了通过前几缎的轴向速度,但是浪费了能量。所以,人们更喜欢采用可调静子。
Administrator
标注
转子叶片 静子叶片
Administrator
文本框
21.一台压气机的增压比增加得越多,保证它在整个转速范围内有效地工作就变得越困难。这是因为对于压气机进出口面积比的要求,在高转速隋况下,当压气机转速也即增压比降低时,使进口面积逐渐变得与出口面积相对而言太大。
Page 34: Rolls royce jet engine

removed at an intermediate stage and .dumped intothe bypass flow. While this method corrects the axialvelocity through the preceding stages, energy iswasted and incorporation of variable stators ispreferred.

22. The fan of the high by-pass ratio turbo-fan is anexample of an axial compressor which has beenoptimized to meet the specific requirements of thiscycle. While similar in principle to the corecompressor stage, the proportions of design aresuch that the inner gas path is similar to that of thecore compressor that follows it, while the tip diameteris considerably larger. The mass flow passed by thefan is typically six times that required by the core, theremaining five sixths by-pass the core and isexpanded through its own coaxial nozzle, or may bemixed with the flow at exit from the core in a commonnozzle. To optimize the cycle the by-pass flow has tobe raised to a pressure of approximately 1.6 timesthe inlet pressure. This is achieved in the fan byutilizing very high tip speeds (1500 ft. per sec.) andairflow such that the by-pass section of the bladesoperate with a supersonic inlet air velocity of up toMach 1.5 at the tip. The pressure that results isgraded from a high value at the tip where relativevelocities are highest to the more normal values of1.3 to 1.4 at the inner radius which supercharges thecore where aerodynamic design is more akin to thatof a conventional compressor stage. The capabilityof this type of compressor stage achieves the cyclerequirement of high flow per unit of frontal area, highefficiency and high pressure ratio in a single rotatingblade row without inlet guide vanes within anacceptable engine diameter. Thus keeping weightand mechanical complexity at an acceptable level.

Construction23. The construction of the compressor centresaround the rotor assembly and casings. The rotorshaft is supported in ball and roller bearings andcoupled to the turbine shaft in a manner that allowsfor any slight variation of alignment. The cylindricalcasing assembly may consist of a number ofcylindrical casings with a bolted axial joint betweeneach stage or the casing may be in two halves with abolted centre line joint. One or other of these con-struction methods is required in order that the casingcan be assembled around the rotor.

Rotors24. In compressor designs (fig. 3-10) the rotationalspeed is such that a disc is required to support thecentrifugal blade load. Where a number of discs arefitted onto one shaft they may be coupled andsecured together by a mechanical fixing but

generally the discs are assembled and weldedtogether, close to their periphery, thus forming anintegral drum.

25. Typical methods of securing rotor blades to thedisc are shown in fig. 3-11, fixing may be circumfer-ential or axial to suit special requirements of thestage. In general the aim is to design a securingfeature that imparts the lightest possible load on thesupporting disc thus minimizing disc weight. Whilstmost compressor designs have separate blades formanufacturing and maintainability requirements, itbecomes more difficult on the smallest engines todesign a practical fixing. However this may beovercome by producing blades integral with the disc;the so called 'blisk'.

Compressors

26

Fig. 3-10 Rotors of drum and discconstruction.

Administrator
文本框
22.高涵道比涡轮风扇发动机的风扇是一个例子,说明轴流压气机已经优化到能满足这种循环的各种特殊要求。虽然从原理上与核心压气机的级相类似,但是,设计的比例是,气体通道内径类似于它后面的核心压气机的通道内径。而叶尖直径则大得多。通过风扇的质量流量典型地6倍于核心通道要求的流量,其余的六分之五从核心外旁路出去,通过它自己的同轴心喷管膨胀,或者在一个共同的喷管里与核心出口气流混合。为了优化这一循环,外涵气流必须将压力提高到进气道压力的1.6倍左右。
Administrator
文本框
23.压气机结构的核心是转子组件和机匣。转子轴支持在球轴承和滚棒轴承中,并与涡轮轴相连,连接方式允许两者间稍有不同心度。园筒形机匣组件可以由若干园简形机匣组成,在每一级之间用螺栓轴向连接,或者机匣由二半组成,用螺栓沿中心线连接。必需有上述的这种或那种结构方式,以便将机匣围绕转子装配起来。 24.在压气机设计中(图3-10),旋转速度要考虑盘是要承受叶片离心载荷的。在许多盘装在同一根轴上时,可以用机械固定方法将它们连接并固定到一起,但是,一般地,几个盘是先装配起来,并在靠近其外圆处焊接在一起,从而形成一个整体鼓筒。
Administrator
文本框
结构
Administrator
文本框
转子
Administrator
文本框
图3-10 鼓筒和盘式转子结构
Administrator
文本框
25.转子叶片固定到盘上的典型方法示于图3-11。固定可以是沿周向或者轴向,以适应级的具体要求。一般而言,目的是设计一种固定方法,它加于支持它的盘上的载荷尽量小,从而尽量减轻盘的重量。虽然大多数压气机设计具有分开的叶片,以满足制造和可维护性要求,但是。在最小发动机上设计出可行的固定方法却变得更加困难。然而,这一困难可以用生产和盘为一整体的叶片,即所谓的 “整体式叶盘”来克服。
Administrator
文本框
在风扇中达到这一点是通过利用很高的叶尖速度(1500英尺/秒),以及风扇叶片的外涵道部分流过的气流用叶尖处高达马赫数为1.5的超音速进口空气速度工作。得到的压力从叶尖到内径处是逐渐变小的,相对速度最高的叶尖处值很高,在向核心增压的内径处降到较正常的1.3到1.4间的值,那里的气动力设计更类似于常规压气机的级。这种压气机级的能力实现了单位迎风面积的流量高、效率高和一排旋转叶片内的增压比高等循环要求,而且没有进口导向叶片和发动机直径适中的条件下实现的,从而使重量和机械复杂性均保持在良好的水平。
Page 35: Rolls royce jet engine

Rotor blades26. The rotor blades are of airfoil section (fig. 3-12)and usually designed to give a pressure gradientalong their length to ensure that the air maintains areasonably uniform axial velocity. The higherpressure towards the tip balances out the centrifugalaction of the rotor on the airstream. To obtain theseconditions, it is necessary to 'twist' the blade fromroot to tip to give the correct angle of incidence ateach point. Air flowing through a compressor createstwo boundary layers of slow to stagnant air on theinner and outer walls. In order to compensate for theslow air in the boundary layer a localized increase inblade camber both at the blade tip and root has been

introduced. The blade extremities appear as ifformed by bending over each corner, hence the term'end-bend'.

Stator vanes27. The stator vanes are again of airfoil section andare secured into the compressor casing or into statorvane retaining rings, which are themselves securedto the casing (fig. 3-13). The vanes are oftenassembled in segments in the front stages and maybe shrouded at their inner ends to minimize thevibrational effect of flow variations on the longervanes. It is also necessary to lock the stator vanes insuch a manner that they will not rotate around thecasing.

Compressors

27

Fig. 3-11 Methods of securing blades to disc.

Administrator
文本框
转子叶片 26.转子叶片呈翼型截面形状(图3-12),通常设计成沿其长度有一压力梯度,以保证空气维持一个比较均匀的轴向速度。向叶尖方向遂渐变高的压力抵消转子作用在气流上的离心作用。为了获得这些状态,必须将叶片从叶根向尖部“扭转”,以便在每一点都具有正确的迎角。流过压气机的空气在其内外壁面处产生二个边界层,一直将气流减慢到滞止的程度。为了补偿边界层中的缓慢气流,在叶片的尖部和根部局部增加了叶片的弯度。叶片最终的形状看来象是将其每个角都扳弯形成的,因而叫做“端部弯曲”。
Administrator
文本框
图3-11 叶片固定到盘上的各种方法
Administrator
文本框
静子叶片 27.静子叶片也呈翼形截面形状,固定在压气机机匣中,或者固定到静子叶片保持环中,再将这些环本身固定到机匣上(图3-13)。在前几级中,静子叶片常常成组地装配,并在其小半径一端加有凸台,以尽量减轻气流变化对较长叶片产生的振动影响。对静子叶片还必须锁定,不让它们沿机匣转动。
Page 36: Rolls royce jet engine

OPERATING CONDITIONS

28. Each stage of a multi-stage compressorpossesses certain airflow characteristics that aredissimilar from those of its neighbour; thus to designa workable and efficient compressor, the characteris-tics of each stage must be carefully matched. This isa relatively simple process to implement for one setof conditions (design mass flow, pressure ratio androtational speed), but is much more difficult whenreasonable matching is to be retained with thecompressor operating over a wide range ofconditions such as an aircraft engine encounters.

29. If the operating conditions imposed upon thecompressor blade departs too far from the designintention, breakdown of airflow and/or aerodynami-cally induced vibration will occur. These phenomenamay take one of two forms; the blades may stallbecause the angle of incidence of the air relative tothe blade is too high (positive incidence stall) or toolow (negative incidence stall). The former is a frontstage problem at low speeds and the latter usuallyaffects the rear stages at high speed, either can leadto blade vibration which can induce rapid destruction.If the engine demands a pressure rise from thecompressor, which is higher than the blading cansustain, 'surge' occurs. In this case there is an instan-taneous breakdown of flow through the machine andthe high pressure air in the combustion system isexpelled forward through the compressor with a loud'bang' and a resultant loss of engine thrust.

Compressors

28

Fig. 3-12 A typical rotor blade showingtwisted contour.

Fig. 3-13 Methods of securing vanes to compressor casing.

Administrator
文本框
29.如果加于压气机叶片的工作状态偏离设计状态过多,气流分离和/或者空气动力诱导的振动就会发生。这些现象通常具有下述两种形式之一。转子叶片可能因为空气相对叶片的迎角太高(正迎角失速)或者太低(负迎角失速)而失速。前者是前面的级在低速下发生的问题,而后者通常在高速下影响后面的级发生问题,每一种都可以导致叶片振动,振动又会诱发迅速的破坏。如果发动机要求从压气机得到的压力升高高于叶片能够保持的压力升高,“喘振”就出现了。在这种情况下,通过压气机的气流出现瞬时分离,燃烧系统中的高压空气被拥推向前而穿过压气机,并伴有“砰”的一声巨响和发动机推力的损失。压气机的设计要留有适当的裕度,以确保避免这一区域的不稳定性(图3-14)。
Administrator
文本框
图3-12 表示扭转外形的典型转子叶片
Administrator
文本框
图3-13 静子叶片在压气机机匣上的固定方法
Administrator
文本框
带外环的静子叶片
Administrator
文本框
工作状态 28.多级压气机的每一级部具有一定的流量特性,而且与其相邻级的各不相同。因此,要设计一台有效工作的压气机,每级的特性都必须经过精心的匹配。这对于一套状态(设计质量流量、增压比和旋转速度)执行起来是比较简单的过程,但是,要在飞机发动机遇到的大范围状态下保持压气机工作的合理匹配就困难得多了。
Administrator
文本框
定位保持螺钉
Administrator
文本框
静子叶片保持环
Administrator
文本框
安装角
Administrator
文本框
气流方向
Administrator
文本框
旋转方向
Administrator
文本框
端部弯曲
Administrator
文本框
安装角
Page 37: Rolls royce jet engine

Compressors are designed with adequate margin toensure that this area of instability (fig. 3-14) isavoided.

AIRFLOW CONTROL

30. Where high pressure ratios on a single shaft arerequired it becomes necessary to introduce airflowcontrol into the compressor design. This may take

the form of variable inlet guide vanes for the firststage plus a number of stages incorporating variablestator vanes for the succeeding stages as the shaftpressure ratio is increased (fig. 3-15). As thecompressor speed is reduced from its design valuethese static vanes are progressively closed in orderto maintain an acceptable air angle value onto thefollowing rotor blades. Additionally interstage bleedmay be provided but its use in design is now usuallylimited to the provision of extra margin while theengine is being accelerated, because use at steadyoperating conditions is inefficient and wasteful offuel. Three types of air bleed systems are illustratedas follows: fig. 3-16 hydraulic, fig. 3-17 pneumaticand fig. 3-18 electronic.

MATERIALS

31. Materials are chosen to achieve the most costeffective design for the components in question, inpractice for aero engine design this need is usuallybest satisfied by the lightest design that technologyallows for the given loads and temperaturesprevailing.

Compressors

29

Fig. 3-14 Limits of stable airflow.

Fig. 3-15 Typical variable stator vanes.

Administrator
文本框
材料 31.选择材料是要为研究中的各部件实现最为成本有效的设计。实际上,对航空发动机设计而言,重量方面最轻的设汁通常能最好地满足这种要求。这种设计在技术上应能承受给定载荷和当前的温度工艺。
Administrator
文本框
空气流量控制 30.当要求在单轴上实现高增压比时,就必须在压气机设计中采用流量控制。控制形式可以是在第一级上安装可调进气导向叶片,此外,随着该轴上的压比的提高,在随后的一些级中也采用可调静子叶片(图3-15)。当压气机转速从其设计值往下降低时,这些静子叶片逐渐关小,以使空气流到后面的转子叶片上的角度合适。额外的级间放气也可设置,但是,目前它在设计中的使用通常限于在发动机加速时提供额外的裕度,因为在稳定工作状态使用效率不高,是对燃油的浪费。有二种放气系统图示如下:图3-16液压式,图3-17气压式和图3-18电子式。
Administrator
文本框
图3-14 稳定流量的限制
Administrator
文本框
图3-15 典型的可调静子叶片
Administrator
文本框
可调静子叶片
Administrator
文本框
增压比增加
Administrator
文本框
流量增加
Administrator
文本框
安全裕度
Administrator
文本框
不稳定区
Administrator
标注
喘振区
Administrator
标注
工作线
Administrator
标注
恒定转速线
Page 38: Rolls royce jet engine

Compressors

30

Fig. 3-16 A hydraulically operated bleed valve and inlet guide vane airflow control system.

Administrator
文本框
来自温度计
Administrator
文本框
进口导向叶片关闭(最小流量位置)
Administrator
文本框
参考压力 减压活门
Administrator
文本框
放气活门(打开)
Administrator
文本框
可调孔
Administrator
文本框
配重活门
Administrator
文本框
连续放气
Administrator
标注
空气流量控制 调节器和作动筒
Administrator
文本框
低压燃油 高压燃油
Administrator
标注
伺服压力 高压转速 压力信号
Administrator
标注
参考压力 感测流体
Administrator
文本框
压气机放气
Administrator
文本框
进口导向叶片打开(最大流量位置)
Administrator
文本框
放气活门(关闭)
Administrator
文本框
伺服节流活门
Administrator
文本框
膜片
Administrator
文本框
膜片
Administrator
文本框
推杆
Administrator
标注
活塞
Administrator
文本框
来自高压燃油泵 空气流量控制 转速信号传感器
Administrator
文本框
图3-16 一种液压驱动的放气活门和进气导向叶片流量控制系统
Page 39: Rolls royce jet engine

32. For casing designs the need is for a light butrigid construction enabling blade tip clearances to beaccurately maintained ensuring the highest possibleefficiency. These needs are achieved by usingaluminium at the front of the compression systemfollowed by .alloy steel as compression temperatureincreases. Whilst for the final stages of thecompression system, where temperature require-ments possibly exceed the capability of the beststeel, nickel based alloys may be required. The useof titanium in .preference to aluminium and steel isnow more common; particularly in military engineswhere its high rigidity to density ratio can result insignificant weight reduction. With the development ofnew manufacturing methods component costs cannow be maintained at a more acceptable level inspite of high initial material costs.

33. Stator vanes are normally produced from steelor nickel based alloys, a prime requirement being ahigh fatigue strength when "notched" by ingestion

damage. Earlier designs specified aluminium alloysbut because of its inferior ability to withstand damageits use has declined. Titanium may be used for statorvanes in the low pressure area but is unsuitable forthe smaller stator vanes further rearwards in thecompression system because of the higherpressures and temperatures encountered. Anyexcessive rub which may occur between rotating andstatic components as a result of other mechanicalfailures, can generate sufficient heat from friction toignite the titanium. This in turn can lead to expensiverepair costs and a possible airworthiness hazard.

34. In the design of rotor discs, drums and blades,centrifugal forces dominate and the requirement isfor metal with the highest ratio of strength to density.This results in the lightest possible rotor assemblywhich in turn reduces the forces on the enginestructure enabling a further reduction in weight to beobtained. For this reason, titanium even with its highinitial cost is the preferred material and has replaced

Compressors

31

Fig. 3-17 A pneumatically operated bleed valve system.

Administrator
文本框
32.就机匣设计而言,要求是重量轻而刚性好的结构,能保持精确的转子叶片尖部间隙,以保证尽可能高的效率。为达到这些要求,在压缩系统的前部使用铝合金。因为压缩温度提高,后面使用合金钢。压缩系统的最后数级在温度方面提出的要求可能超过最好钢材的承受能力,故可能需要镍基合金。目前,钛合金比铝合金和钢更为人们所喜用,尤其在军用发动机中,钛合金的高的刚性密度比可以大大减轻重量。尽管初始材料成本很高,随着新的制造方式的开发,部件成本目前可以保持在较为满意的水平。
Administrator
文本框
图3-17 一种气压驱动的放气活门系统
Administrator
文本框
33.静子叶片通常用钢或者镍基合金制造,主要要求是在受到吸入物击伤而出现“沟槽”时仍具有高的疲劳强度。较早的设计规定用铝合金,但是,因为它承受击伤的能力不够,其使用量已经减少。钛合金可用于低压区的静子叶片,但是,不适合压缩系统后部较小的静子叶片,因为那里的压力和温度较高。其它机械故障可能在转动和静止部件之间引起过多的摩擦,摩擦热能足以使钛合金起火,进而导致昂贵的修理费用和可能的适航性灾难。 34.在转子盘、鼓筒和叶片设计方面,离心力是主要的,要求是具有最高强度密度比的金属。这能导致可能最轻的转子组件,进而减小对发动机结构的作用力,再进一步减轻重量。为此,尽管钛合金初始成本高,但仍是人们垂青的材料,并已经取代了早期设计中喜爱采用的钢合金。随着更高温度的钛合金被研制和生产出来,它们正在逐渐取代镍基合金而用于压缩系统后部的盘和叶片上。
Administrator
文本框
高压空气 中压空气 低压(外涵)空气 大气
Administrator
文本框
作动筒
Administrator
文本框
放气活门
Administrator
文本框
去外涵道
Administrator
文本框
放气活门关闭
Administrator
文本框
压气机空气流
Administrator
标注
放气活门打开
Page 40: Rolls royce jet engine

the steel alloys that were favoured in earlier designs.As higher temperature titanium alloys are developedand produced they are progressively displacing thenickel alloys for the disc and blades at the rear of thesystem.

35. The high by-pass ratio fan blade (fig. 3-19) onlybecame a design possibility with the availability oftitanium, conventional designs being machined fromsolid forgings. A low weight fan blade is necessarybecause the front structure of the engine must beable to withstand the large out of balance forces thatwould result from a fan blade failure. To achieve asufficiently light solid fan blade, even with titanium,requires a short axial length (or chord). However,with this design, the special feature of a mid-spansupport ('snubber' or 'clapper') is required to preventaerodynamic instability. This design concept has thedisadvantage of the snubber being situated in thesupersonic flow where pressure losses are greatest,resulting in inefficiency and a reduction in airflow.This disadvantage has been overcome with theintroduction of the Rolls-Royce designed wide chordfan blade; stability is provided by the increased chordof the blade thus avoiding the need for snubbers.The weight is maintained at a low level by fabricating

Compressors

32

Fig. 3-18 An electronically operated bleed valve system.

Fig. 3-19 Typical types of fan blades.

Administrator
文本框
35.只有在钛合金得到应用后,高涵道比风扇叶片图3-19)的设计才成为可能;用实心锻件机械加工成叶片是常规设计。重量轻的风扇叶片是必要的,因为发动机的前部结构必须能够承受由于风扇叶片故障引起的巨大不平衡力。为了得到一种足够轻的实心风扇叶片,即使是用钛合金制造的,要求短的轴向长度(即弦长)。然而,采用这种设计就要求叶展中部有支持(“阻尼器”或“阻屁凸台”)的特殊结构来防止空气动力不稳定性。这种设计方案的缺点是阻尼器位于超音速气流中,压力损失极高,使效率降低,流量减少。这种缺点已经用罗尔斯-罗伊斯公司设计的宽弦风扇叶片克服了。叶片弦长的增加提供了叶片的稳定性,阻尼凸台也就没有必要了。用钛合金蒙皮加蜂窝结构的核心来制造叶片亦使其重量保持在低水平。
Administrator
文本框
图3-12 一种电子控制的放气活门系统
Administrator
文本框
图3-19 典型的风扇叶片类型
Administrator
文本框
线圈
Administrator
文本框
高压第三级放弃活门
Administrator
文本框
中压第六级放气活门
Administrator
文本框
Administrator
文本框
高压第三级 放气活门
Administrator
文本框
Administrator
标注
活门
Administrator
文本框
通风
Administrator
文本框
电磁阀
Administrator
标注
通电关闭中压放气活门
Administrator
标注
断电关闭高压放气活门
Administrator
标注
高压第三级
Administrator
标注
中压第六级
Administrator
文本框
高压第三级空气
Administrator
文本框
典型的高压放气活门和电磁阀
Administrator
标注
左侧中压电磁阀 (调高的放气活门组2、4、6)
Page 41: Rolls royce jet engine

the blade from skins of titanium incorporating ahoneycomb core.

36. Centrifugal impeller material requirements aresimilar to those for the axial compressor rotors.Titanium is thus normally specified though aluminiummay still be employed on the largest low pressureratio designs where robust sections give adequateingestion capability and temperatures are acceptablylow.

BALANCING

37. The balancing of a compressor rotor or impelleris an extremely important operation in itsmanufacture. In view of the high rotational speedsand the mass of materials any unbalance wouldaffect the rotating assembly bearings and engineoperation. Balancing on these parts is effected on aspecial balancing machine, the principles of whichare briefly described in Part 25.

Compressors

33

Administrator
文本框
36.离心叶轮对材料的各种要求类似于对轴流压气机转子材料的要求,因此,通常要求采用钛合金,虽然铝合金仍然可用在最大的低压比设计中。在这样的设计中,各坚实的部分具有足够的抗吸入物的能力,温度也比较低。
Administrator
文本框
平衡 37.压气机转子或叶轮的平衡是其制造中一项极为重要的工作。鉴于高的旋转速度和材料的质量,任何不平衡都会影响旋转组件的轴承和发动机的工作。对这些部分的平衡在一专门的平衡机上进行,平衡原理在第25章中简要介绍。
Page 42: Rolls royce jet engine

Rolls-Royce RB211 Trent

Rolls-Royce RB41 Nene

On 17 March 1944 Rolls-Royce commencedwork on the RB40 as the result of aGovernment request for a turbo-jet of 4200 lbthrust. After discussions with Supermarine,the airframe designers, the engine was scaleddown to produce 3400 lb. The resulting Nenewas eventually rated at 5000 lb and poweredthe Hawker Sea Hawk and SupermarineAttacker.

Administrator
文本框
罗尔斯-罗伊斯公司 RB211 “遄达”(Trent)发动机
Administrator
文本框
由于政府要求一种4200磅推力的涡轮喷气发动机,罗尔斯-罗伊斯公司于1944年3月17日开始了RB40的工作。在和“超海军”(Supermarine)飞机机体的设计师讨论之后,该发动机被缩小到要产生3400磅推力。但是,“尼恩”(Nene)最终的推力定到5000磅并装用到霍克公司的 海鹞”(Hawker Sea Hawk)和“超海军”攻击机上。
Administrator
文本框
罗尔斯-罗伊斯公司 RB41“尼恩”(Nene)发动机
Page 43: Rolls royce jet engine

4: Combustion chambers

Contents Page

Introduction 35Combustion process 36Fuel supply 38Types of combustion chamber 38

Multiple combustion chamber Tubo-annular combustion chamber Annular combustion chamber

Combustion chamberperformance 41

Combustion intensity Combustion efficiency Combustion stability Emissions

Materials 43

INTRODUCTION

1. The combustion chamber (fig. 4-1) has thedifficult task of burning large quantities of fuel,supplied through the fuel spray nozzles (Part 10),with extensive volumes of air, supplied by thecompressor (Part 3), and releasing the heat in sucha manner that the air is expanded and accelerated togive a smooth stream of uniformly heated gas at allconditions required by the turbine (Part 5). This taskmust be accomplished with the minimum loss inpressure and with the maximum heat release for thelimited space available.

2. The amount of fuel added to the air will dependupon the temperature rise required. However, themaximum temperature is limited to within the rangeof 850 to 1700 deg. C. by the materials from which

the turbine blades and nozzles are made. The air hasalready been heated to between 200 and 550 deg. C.by the work done during compression, giving atemperature rise requirement of 650 to 1150 deg. C.from the combustion process. Since the gastemperature required at the turbine varies withengine thrust, and in the case of the turbo-propellerengine upon the power required, the combustionchamber must also be capable of maintaining stableand efficient combustion over a wide range of engineoperating conditions.

3. Efficient combustion has become increasinglyimportant because of the rapid rise in commercialaircraft traffic and the consequent increase inatmospheric pollution, which is seen by the generalpublic as exhaust smoke.

35

Administrator
文本框
绪言 1.燃烧室(图4-1)的困难任务是将燃油喷嘴(第10章)供应的大量燃油和压气机(第3章)供应的大体积的空气一起燃烧,释放热量,让空气膨胀和加速,以便在所有状态下供给涡轮(第5章)所需的均匀加热的平稳燃气流。这一任务必须以最小的压力损失来完成,并且在有限的可用空间里释放出最大的热量。
Administrator
文本框
燃烧室性能 燃烧强度 燃烧效率 燃烧稳定性 排放尾气 材料
Administrator
文本框
第四章 燃烧室
Administrator
文本框
目 录
Administrator
文本框
绪言 燃烧过程 燃油供应 燃烧室的类型
Administrator
文本框
多个单管燃烧室 环管形燃烧室 环形燃烧室
Administrator
文本框
2.加到空气中的燃油量将取决于所要求的温升。然而,最高温度限制到850到1700℃.这是由制造涡轮转子叶片和导向器的材料决定的。压缩过程所做的功已经将空气加热到200和550℃之间,使燃烧过程产生的温升要求为650到1150℃。由于涡轮要求的燃气温度随发动机推力变化,在涡轮螺桨发动机中则取决于要求的功率,所以,燃烧室也必须能够在范围宽广的发动机工作状态下保持稳定而有效的燃烧。
Administrator
文本框
3.因为商用飞机交通的迅速增加和随之而来的、一般公众从飞机排烟所看到的大气污染的加剧,有效的燃烧已经变得日益重要。
Administrator
文本框
4.从发动机压气机来的空气以高达500英尺/秒的速度进入燃烧室。但是,因为这一速度太高,不适于燃烧,燃烧室必须做的第一件事是使空气扩压,即使之减速并提高其静压。因为在正常混合比下燃烧着的煤油速度只是几英尺/秒,所以,任何燃油的火焰,即使在扩压的空气流中,那里现有大约80英尺/秒的速度,也会被吹走。因此,必须在燃烧室中创造出一个低轴向速度的区域,以使火焰在发动机工作状态的整个范围内都一直在烧着。
Page 44: Rolls royce jet engine

COMBUSTION PROCESS

4. Air from the engine compressor enters thecombustion chamber at a velocity up to 500 feet persecond, but because at this velocity the air speed isfar too high for combustion, the first thing that thechamber must do is to diffuse it, i.e. decelerate it andraise its static pressure. Since the speed of burningkerosine at normal mixture ratios is only a few feetper second, any fuel lit even in the diffused airstream, which now has a velocity of about 80 feet persecond, would be blown away. A region of low axialvelocity has therefore to be created in the chamber,so that the flame will remain alight throughout therange of engine operating conditions.

5. In normal operation, the overall air/fuel ratio of acombustion chamber can vary between 45:1 and130:1, However, kerosine will only burn efficiently at,or close to, a ratio of 15:1, so the fuel must be burnedwith only part of the air entering the chamber, in whatis called a primary combustion zone. This is achievedby means of a flame tube (combustion liner) that has

various devices for metering the airflow distributionalong the chamber.

6. Approximately 20 per cent of the air mass flow istaken in by the snout or entry section (fig. 4-2).Immediately downstream of the snout are swirl vanesand a perforated flare, through which air passes intothe primary combustion zone. The swirling airinduces a flow upstream of the centre of the flametube and promotes the desired recirculation. The airnot picked up by the snout flows into the annularspace between the flame tube and the air casing.

7. Through the wall of the flame tube body, adjacentto the combustion zone, are a selected number ofsecondary holes through which a further 20 per centof the main flow of air passes into the primary zone.The air from the swirl vanes and that from thesecondary air holes interacts and creates a region oflow velocity recirculation. This takes the form of atoroidal vortex, similar to a smoke ring, which has theeffect of stabilizing and anchoring the flame (fig, 4-3).The recirculating gases hasten the burning of freshly

Combustion chambers

36

Fig. 4-1 An early combustion chamber.

Administrator
文本框
5.在正常工作时,燃烧室的总的空气/燃油比可在45:1和130:1之间变化。然而,煤油只能在,或者接近于15:1的比例下有效地燃烧,所以,燃油必须只和进入燃烧室的一部分空气在所谓的主燃烧区中燃烧。这依靠火焰筒(燃烧衬筒)来实现。火焰筒有使气流沿燃烧室按要求分布的各种限流装置。 6.将近百分之二十的空气质量流量从锥形进口即进气段(图4-2)进来。紧靠此锥形口下游的是漩涡叶片和多孔的扩张段,空气从这里进入主燃烧区。漩涡着的空气诱导火焰筒中心部位的气流向前流,促成符合愿望的再循环。未流入锥形口的空气流入火焰筒和空气机匣之间的环形空间。 7.在燃烧区附近的火焰筒体壁面上有选定数量的二股气流孔,另外20%的空气主流穿过这些孔进入主燃区。从漩涡叶片进来的空气和从二股气流孔进来的空气互相作用,形成一个低速回流区。它呈回旋涡流形状,类似发烟环,起稳定和系留火焰的作用(图4-3)。回流燃气将新喷入的燃油滴迅速加温到点燃温度,促进了它们的燃烧。
Administrator
文本框
图4-1 一种早期的燃烧室
Administrator
文本框
扩张段
Administrator
文本框
燃烧过程
Administrator
文本框
漩涡叶片
Administrator
文本框
二股空气孔
Administrator
文本框
火焰筒
Administrator
文本框
空气机匣
Administrator
文本框
稀释空气孔
Administrator
文本框
锥形进口
Administrator
文本框
燃油喷嘴
Administrator
文本框
主燃区
Administrator
文本框
联焰管
Administrator
文本框
波纹形连接
Administrator
文本框
密封环
Page 45: Rolls royce jet engine

injected fuel droplets by rapidly bringing them toignition temperature.

8. It is arranged that the conical fuel spray from thenozzle intersects the recirculation vortex at its centre.This action, together with the general turbulence inthe primary zone, greatly assists in breaking up thefuel and mixing it with the incoming air.

9. The temperature of the gases released bycombustion is about 1,800 to 2,000 deg. C., which isfar too hot for entry to the nozzle guide vanes of theturbine. The air not used for combustion, whichamounts to about 60 per cent of the total airflow, istherefore introduced progressively into the flametube. Approximately a third of this is used to lower thegas temperature in the dilution zone before it enters

the turbine and the remainder is used for cooling thewalls of the flame tube. This is achieved by a film ofcooling air flowing along the inside surface of theflame tube wall, insulating it from the hot combustiongases (fig. 4-4). A recent development allows coolingair to enter a network of passages within the flametube wall before exiting to form an insulating film ofair, this can reduce the required wall cooling airflowby up to 50 per cent. Combustion should becompleted before the dilution air enters the flametube, otherwise the incoming air will cool the flameand incomplete combustion will result.

10. An electric spark from an igniter plug (Part 11)initiates combustion and the flame is then self-sustained.

Combustion chambers

37

Fig. 4-2 Apportioning the airflow.

Fig. 4-3 Flame stabilizing and general airflow pattern.

Administrator
文本框
8.设计中应当使从喷嘴呈锥形喷出的燃油与回旋涡流的中心相交。这一作用,和主燃烧区的总体紊流一起,极大地帮助了击碎燃油并使之与正在进入的空气混合起来。
Administrator
文本框
图4-2 空气流的分配
Administrator
文本框
图4-3 火焰稳定和总的气流图形
Administrator
文本框
9.燃烧释放的燃气温度大约是1800到2000℃。此温度太高,不适于进入涡轮导向器叶片。因此,未用于燃烧的空气,它占大约60%的总空气流量,被逐渐引入火焰筒。这部分空气大约有三分之一用来在稀释区降低燃气的温度,然后再进入涡轮,而其余的空气则用来冷却火焰筒的壁面。实现这一点是借助于一薄层冷却空气沿火焰筒壁的内表面流动,将火焰筒壁面与热燃气隔开(图4-4)。目前的一项发展成就允许冷却空气在排出前先进入火焰筒壁内的一套通道,并形成一层隔热空气膜,这可以把要求冷却壁面的气流量减少50%之多。燃烧应当在稀释空气进入火焰筒以前完成,否则,进来的空气会使火焰降温,造成不完全燃烧。 10.点火电嘴(第11章)发出的电火花使燃烧开始然后,火焰自身维持常着不灭。
Administrator
文本框
主燃区
Administrator
文本框
稀释区
Administrator
文本框
冷却
Administrator
文本框
稀释
Page 46: Rolls royce jet engine

11. The design of a combustion chamber and themethod of adding the fuel may vary considerably, butthe airflow distribution used to effect and maintaincombustion is always very similar to that described.

FUEL SUPPLY

12. Fuel is supplied to the airstream by one of twodistinct methods. The most common is the injectionof a fine atomized spray into the recirculatingairstream through spray nozzles (Part 10). Thesecond method is based on the pre-vaporization ofthe fuel before it enters the combustion zone.

13. In the vaporizing method (fig.4-5) the fuel issprayed from feed tubes into vaporizing tubes whichare positioned inside the flame tube. These tubesturn the fuel through 180 degrees and, as they areheated by combustion, the fuel vaporizes beforepassing into the flame tube. The primary airflowpasses down the vaporizing tubes with the fuel andalso through holes in the flame tube entry sectionwhich provide 'fans' of air to sweep the flamerearwards. Cooling and dilution air is metered into

the flame tube in a manner similar to the atomizerflame tube.

TYPES OF COMBUSTION CHAMBER

14. There are three main types of combustionchamber in use for gas turbine engines. These arethe multiple chamber, the tubo-annular chamber andthe annular chamber.

Multiple combustion chamber15. This type of combustion chamber is used oncentrifugal compressor engines and the earlier typesof axial flow compressor engines. It is a directdevelopment of the early type of Whittle combustionchamber. The major difference is that the Whittlechamber had a reverse flow as illustrated in fig. 4-6but, as this created a considerable pressure loss, thestraight-through multiple chamber was developed byJoseph Lucas Limited.

16. The chambers are disposed around the engine(fig. 4-7) and compressor delivery air is directed byducts to pass into the individual chambers. Each

Combustion chambers

38

Fig. 4-4 Flame tube cooling methods.

Administrator
文本框
波纹条冷却
Administrator
文本框
折流冷却条
Administrator
文本框
图4-4 几种火焰筒冷却方式
Administrator
文本框
机械加工的冷却环
Administrator
文本框
11.燃烧室的设计和加入燃油的方式可有很大变化。但是,用来 影响和维持燃烧的空气流分布却总是与描述的情形极其类似。 燃油供应 12.燃油用二种不同方式之一供入空气流中。最普通的是用喷嘴(第10章)将雾化良好的燃油喷入回旋的空气流中。第二种方式是让燃油预先汽化,然后进入燃烧区。
Administrator
文本框
蒸发式冷却
Administrator
文本框
13.在汽化方式中(图4-5),燃油从供油管喷入位于火焰筒内部的汽化管中。这些汽化管将燃油折转180度,并且,随着它们被燃烧所加热时,燃油汽化,然后流入火焰筒。主空气流流过带着燃油的汽化管,同时也流入火焰筒进口段中的许多孔,形成空气“风扇’的作用,将火焰吹得向后倾斜。冷却和稀释空气经限流后进入火焰筒,其方式与进入雾化式火焰筒相似。
Administrator
文本框
燃烧窒的类型 14.用于燃气涡轮发动机的燃烧室有三种主要类型。即多个单管燃烧室、环管形燃烧室和环形燃烧室。
Administrator
文本框
多个单管燃烧室 15.这种燃烧室用于离心压气机发动机和早期型别的轴流压气机发动机中。它是早期型惠特尔(Whittie)燃烧室的直接发展。其主要区别是惠特尔燃烧室有回流。如图4-6所示。但是,由于这造成相当大的压力损失,约瑟夫-卢卡斯公司便发展了这种通流多个单管燃烧室。
Administrator
文本框
波纹条
Administrator
文本框
火焰筒
Administrator
文本框
冷却空气膜
Administrator
文本框
层板火焰筒壁
Administrator
标注
冷却空气入口
Administrator
文本框
内部冷却
Administrator
文本框
冷却空气出口
Page 47: Rolls royce jet engine

chamber has an inner flame tube around which thereis an air casing. The air passes through the flametube snout and also between the tube and the outercasing as already described in para. 6.

17. The separate flame tubes are all interconnect-ed. This allows each tube to operate at the samepressure and also allows combustion to propagatearound the flame tubes during engine starting.

Combustion chambers

39

Fig. 4-5 A vaporizer combustion chamber.

Fig. 4-6 An early Whittle combustion chamber.

Administrator
文本框
17.单独的火焰简互相连接,这使所有火焰筒在同样的压力下工作,并且,使燃烧在发动机起动期间传 遍所有火焰简。
Administrator
文本框
图4-5 一种汽化式燃烧室
Administrator
文本框
16.这些燃烧室布置在发动机周围(图4-7),压气机出口空气用管道引入一个个单独的燃烧室中。每一燃烧室内部均有一个火焰筒,围绕它的是空气机匣。空气流入火焰筒的锥形进口,并且流入火焰筒和外机匣之间的空间,其情形已如第6段所述。
Administrator
文本框
图4-6 一种早期的惠特尔燃烧室
Administrator
文本框
火焰筒
Administrator
文本框
稀释空气孔
Administrator
文本框
涡轮导向器叶片
Administrator
文本框
气化管
Administrator
文本框
二股气流管
Administrator
文本框
燃油供油管
Administrator
文本框
气虑
Administrator
文本框
主燃烧区
Administrator
文本框
短管
Administrator
文本框
冷却空气孔
Administrator
文本框
压气机出口
Administrator
文本框
燃气排气管
Administrator
文本框
火焰筒
Administrator
文本框
空气机匣
Administrator
文本框
联焰管
Administrator
文本框
漩涡叶片
Administrator
文本框
喷嘴
Page 48: Rolls royce jet engine

Tubo-annular combustion chamber18. The tubo-annular combustion chamber bridgesthe evolutionary gap between the multiple andannular types. A number of flame tubes are fittedinside a common air casing (fig. 4-8). The airflow issimilar to that already described. This arrangementcombines the ease of overhaul and testing of themultiple system with the compactness of the annularsystem.

Annular combustion chamber19. This type of combustion chamber consists of asingle flame tube, completely annular in form, whichis contained in an inner and outer casing (fig. 4-9).The airflow through the flame tube is similar to thatalready described, the chamber being open at thefront to the compressor and at the rear to the turbinenozzles.

20. The main advantage of the annular chamber isthat, for the same power output, the length of thechamber is only 75 per cent of that of a tubo-annularsystem of the same diameter, resulting in consider-able saving of weight and production cost. Anotheradvantage is the elimination of combustionpropagation problems from chamber to chamber.

21. In comparison with a tubo-annular combustionsystem, the wall area of a comparable annularchamber is much less; consequently the amount ofcooling air required to prevent the burning of theflame tube wall is less, by approximately 15 per cent,This reduction in cooling air raises the combustionefficiency (para. 27) to virtually eliminate unburntfuel, and oxidizes the carbon monoxide to non-toxiccarbon dioxide, thus reducing air pollution.

22. The introduction of the air spray type fuel spraynozzle (Part 10) to this type of combustion chamber

Combustion chambers

40

Fig. 4-7 Multiple combustion chambers.

Administrator
文本框
环管形燃烧室 18.环管形燃烧室填补了从多个单管燃烧室过渡到环形燃烧室的空档。多个火焰筒装在一个共同的空气机匣里(图4-8)。气流与已描述的情形相似。这种布局兼有多个单管燃烧室易于翻修和试验以及环形系统的紧凑性的优点。
Administrator
文本框
图4-7 多个单管燃烧窒
Administrator
文本框
环形燃烧室 19.这种燃烧室有一个火焰筒,其形状完全是环形的,装在内外机匣之间(图4-9)。流过火焰筒的气流与已经描述的情形类似,燃烧室前部向压气机敞开,而后端则连接涡轮导向器。 20.环形燃烧室的主要优点是,就同一功率输出而 言,燃烧室的长度只有同样直径的环管形系统长度的75%,大大节省了重量和生产成本。另一优点是消除了各燃烧室之间的燃烧传播问题。 21.与环管燃烧系统比较,与之相当的环形燃烧室的壁面积少得多,因而,防止火焰筒壁烧穿所要求的冷却空气量大约也少15%。冷却空气量的这一减少将燃烧效率(笫27段)提高,因此实际上消除了未燃烧的燃油,并将一氧化碳氧化成无毒的二氧化碳,从而减少了对空气的污染。 22.将空气喷雾燃油喷嘴(第l0章)引入这种类型 的燃烧室大大改善了燃油为燃烧所做的准备,因空气会进入靠近喷嘴处的燃油汽泡中,而这些泡都是过度富油的。这大大减轻了初始碳粒的形成。
Administrator
文本框
压气机出口弯管安装边接口
Administrator
文本框
主燃油总管
Administrator
文本框
发动机防火封严框
Administrator
文本框
燃烧室
Administrator
文本框
主空气戽斗
Administrator
文本框
副燃油总管
Administrator
文本框
联焰管
Administrator
文本框
放油管
Administrator
文本框
空气机匣
Page 49: Rolls royce jet engine

also greatly improves the preparation of fuel forcombustion by aerating the over-rich pockets of fuelvapours close to the spray nozzle; this results in alarge reduction in initial carbon formation.

COMBUSTION CHAMBER PERFORMANCE

23. A combustion chamber must be capable ofallowing fuel to burn efficiently over a wide range ofoperating conditions without incurring a largepressure loss. In addition, if flame extinction occurs,then it must be possible to relight. In performingthese functions, the flame tube and spray nozzleatomizer components must be mechanically reliable.

24. The gas turbine engine operates on a constantpressure cycle, therefore any loss of pressure duringthe process of combustion must be kept to aminimum. In providing adequate turbulence andmixing, a total pressure loss varying from about 3 to8 per cent of the air pressure at entry to the chamberis incurred.

Combustion intensity25. The heat released by a combustion chamber orany other heat generating unit is dependent on thevolume of the combustion area. Thus, to obtain therequired high power output, a comparatively small

Combustion chambers

41

Fig. 4-8 Tubo-annular combustion chamber.

Administrator
文本框
燃烧室性能 23.燃烧室必须能够允许燃油在范围广泛的工作状态有效地燃烧而不致产生巨大的压力损失。此外,如果火焰熄灭了。它必须能够重新点燃。在完成这些功能时,火焰筒和喷嘴雾化器部件必须在机械上是可靠的。
Administrator
文本框
图4-8 环管形燃烧室
Administrator
文本框
扩压器机匣
Administrator
文本框
24.燃气涡轮发动机按等压循环工作,因而,燃烧过程的压力损失必须保持在最低水平。在提供足够的紊流和掺混时,总压损失在燃烧室进口空气压力的3~8%之间变化。 燃烧强度 25.由燃烧室或任何别的热量发生装置放出的热量取决于燃烧区的容积。因而,为了获得要求的高功率输出,一个相当小而紧凑的燃气涡轮燃烧室必须以极高的放热率放热。
Administrator
文本框
外空气机匣
Administrator
文本框
稀释空气孔
Administrator
文本框
涡轮安装边
Administrator
文本框
内空气机匣
Administrator
文本框
导向器叶片
Administrator
标注
火焰筒
Administrator
文本框
联焰管
Administrator
文本框
漩涡叶片
Administrator
文本框
主空气戽斗
Administrator
文本框
电点火嘴
Page 50: Rolls royce jet engine

and compact gas turbine combustion chamber mustrelease heat at exceptionally high rates.

26. For example, at take-off conditions a Rolls-Royce RB211-524 engine will consume 20,635 lb. offuel per hour. The fuel has a calorific value of approx-imately 18,550 British thermal units per lb., thereforethe combustion chamber releases nearly 106,300British thermal units per second. Expressed in

another way this is an expenditure of potential heatat a rate equivalent to approximately 150,000 horse-power.

Combustion efficiency27. The combustion efficiency of most gas turbineengines at sea-level take-off conditions is almost 100per cent, reducing to 98 per cent at altitude cruiseconditions, as shown in fig. 4-10.

Combustion chambers

42

Fig. 4-9 Annular combustion chamber.

Administrator
文本框
26.例如,在起飞状态,一台罗尔斯-罗伊斯公司的RB211-524发动机每小时消耗20635磅燃油。这种燃油具有大约18550英国热量单位/磅的热值。因此,该燃烧室每秒释放将近106300英国热量单位的热量。换言之,这种潜在的热量消耗率相当于大 约150000马力。
Administrator
文本框
图4-9 环形燃烧室
Administrator
文本框
燃烧效率 27.大多数燃气涡轮发动机在海平面起飞状态下燃烧效率几乎是100%,在高空巡航状态降低98%。如图4-10所示。
Administrator
文本框
火焰筒
Administrator
文本框
燃烧室外机匣
Administrator
文本框
涡轮导向器叶片
Administrator
文本框
高压压气机出口导向叶片
Administrator
文本框
燃烧室内机匣
Administrator
文本框
燃油喷嘴
Administrator
文本框
压气机机匣安装边
Administrator
文本框
燃油总管
Administrator
文本框
稀释空气孔
Administrator
文本框
涡轮机匣安装边
Administrator
文本框
燃烧稳定性 28.燃烧稳定性是指在宽广的工作范围内平稳燃烧和火焰保持在燃着状态的能力。 29.就任一具体燃烧室而言,都有空气/燃油比的富油极限和贫油极限,超出这些极限火焰就会熄灭。在发动机慢车状态下滑或俯冲期间极有可能出现熄火,这时的空气流最大而又只有很小的燃油流量,即很贫的混合强度。 30.空气/燃油比在富油和贫油极限之间的范围随空气速度的增加而减小,并且,如果空气质量流量的增加超过一定的值,就会熄火。典型的稳定性包线示于图4-11。由稳定包线规定的工作范围显然必须覆盖燃烧室的空气/燃油比和质量流量。
Administrator
文本框
31.点火过程有贫油和富油极限,类似于图4-1l中表示稳定性的极限。然而,点火包线在稳定包线以内,因为在冷状态下建立燃烧比保持正常燃烧要困难得多。
Page 51: Rolls royce jet engine

Combustion stability28. Combustion stability means smooth burningand the ability of the flame to remain alight over awide operating range.

29. For any particular type of combustion chamberthere is both a rich and weak limit to the air/fuel ratio,beyond which the flame is extinguished. Anextinction is most likely to occur in flight during aglide or dive with the engine idling, when there is ahigh airflow and only a small fuel flow, i.e. a veryweak mixture strength.

30. The range of air/fuel ratio between the rich andweak limits is reduced with an increase of air velocity,and if the air mass flow is increased beyond a certainvalue, flame extinction occurs. A typical stability loopis illustrated in fig. 4-11. The operating range definedby the stability loop must obviously cover the air/fuelratios and mass flow of the combustion chamber.

31. The ignition process has weak and rich limitssimilar to those shown for stability in fig. 4-11. Theignition loop, however, lies within the stability loopsince it is more difficult to establish combustion under'cold' conditions than to maintain normal burning.

Emissions32. The unwanted pollutants which are found in theexhaust gases are created within the combustionchamber. There are four main pollutants which arelegislatively controlled; unburnt hydrocarbons(unburnt fuel), smoke (carbon particles), carbonmonoxide and oxides of nitrogen. The principalconditions which affect the formation of pollutants arepressure, temperature and time.

33. In the fuel rich regions of the primary zone, thehydrocarbons are converted into carbon monoxideand smoke, Fresh dilution air can be used to oxidizethe carbon monoxide and smoke into non-toxiccarbon dioxide within the dilution zone. Unburnthydrocarbons can also be reduced in this zone bycontinuing the combustion process to ensurecomplete combustion.

34. Oxides of nitrogen are formed under the sameconditions as those required for the suppression ofthe other pollutants, Therefore it is desirable to coolthe flame as quickly as possible and to reduce thetime available for combustion. This conflict ofconditions requires a compromise to be made, butcontinuing improvements in combustor design andperformance has led to a substantially 'cleaner'combustion process.

MATERIALS

35. The containing walls and internal parts of thecombustion chamber must be capable of resistingthe very high gas temperature in the primary zone. Inpractice, this is achieved by using the best heat-resisting materials available, the use of high heatresistant coatings and by cooling the inner wall of theflame tube as an insulation from the flame.

36. The combustion chamber must also withstandcorrosion due to the products of the combustion,creep failure due to temperature gradients andfatigue due to vibrational stresses.

Combustion chambers

43

Fig. 4-10 Combustion efficiency and air/fuelratio.

Fig. 4-11 Combustion stability limits.

Administrator
文本框
材料 35.燃烧室包容壁及内部零件必须能够多承受主燃烧区中很高的燃气温度。实际上,通过采用现有的最好的耐热材料、耐高温涂层,以及用冷却火焰筒的内壁作为它与火焰的隔离层已经实现了上述要求。
Administrator
文本框
图4-10 燃烧效率随空气/燃油比的变化
Administrator
文本框
总空气/燃油比
Administrator
文本框
排放尾气 32.在排气中发现的不希望有的污染物是在燃烧室中产生的。有4种主要污染物是受法规控制的。它们是未燃烧的碳氢化合物(未燃烧的燃油)、烟(碳粒)、一氧化碳和氮的氧化物。影响污染物生成的主要条件是压力、温度和时间。
Administrator
文本框
33.在主燃烧区的富油区里,碳氢化合物转化成一氧化碳和烟。新鲜的稀释空气可用于在稀释区中将一氧化碳和烟氧化成无毒的二氧化碳。通过燃烧过程在稀释区的继续进行还能减少该区中未燃烧的碳氢化合物,以确保完全燃烧。 34.氮的氧化物是在和抑制其它污染物所要求的相同条件下形成的。因此,尽快地使火焰冷却下来并减少燃烧可用的时间是符合愿望的。这些相互冲突 的条件要求进行折衷,但是,燃烧室设计与性能的连续改善已经导致燃烧过程“清洁”得多了。
Administrator
文本框
图4-11 燃烧稳定性极限
Administrator
文本框
空气质量流量
Administrator
文本框
36.燃烧室还必须承受由燃烧产物造成的腐蚀、温 度梯度产生的蠕变失效和由振动应力产生的疲劳。
Administrator
文本框
燃烧效率
Administrator
文本框
增加
Administrator
文本框
空气燃油比
Administrator
文本框
点火包线
Administrator
标注
贫油极限
Administrator
标注
稳定区
Administrator
标注
富油极限
Administrator
标注
正常状态
Administrator
标注
正常工作范围
Page 52: Rolls royce jet engine

Rolls-Royce Turbomeca Adour Mk102

Rolls-Royce RB37 Derwent V

Work commenced in January 1945 on a 0.855scale Nene, reduced to fit the engine nacelleof a Gloster Meteor. Known as the Derwent Vthe engine passed a 100 hr test at 2600 lbthrust in June 1945 and in September wentinto production with a service rating of 3500lb. Two world speed records were set byMeteor IV's powered by special Derwent V'sin November 1945 and September 1946.

Administrator
文本框
罗尔斯-罗伊斯透博梅卡公司 “阿杜尔”(Adour)Mk102发动机
Administrator
文本框
1.工作从1945年1月开始,按“尼恩”发动机以0.855比例缩小,以适合于格洛斯特公司的“流星”(Gloster Meteor) 的发动机短舱中。称为“德温特”(Derwent)的该发动机于1945年6月以2600磅通过了100小时试车,于9月投产,服役时达到3500磅。装了特殊的“德温特’V发动机的“流星”Ⅳ飞机于1945年11月和1946年两项世界速度记录。
Administrator
文本框
罗尔斯-罗伊斯公司 RB37“德温特”V发动机
Page 53: Rolls royce jet engine

5: Turbines

Contents Page

Introduction 45 Energy transfer from gas flowto turbine 49Construction 51

Nozzle guide vanes Turbine discs Turbine blades Contra-rotating turbines Dual alloy discs

Compressor-turbine matching 53Materials 53

Nozzle guide vanes Turbine discs Turbine blades

Balancing 57

INTRODUCTION

1. The turbine has the task of providing the power todrive the compressor and accessories and, in thecase of engines which do not make use solely of a jetfor propulsion, of providing shaft power for apropeller or rotor. It does this by extracting energyfrom the hot gases released from the combustionsystem and expanding them to a lower pressure and

temperature. High stresses are involved in thisprocess, and for efficient operation, the turbine bladetips may rotate at speeds over 1,500 feet per second,The continuous flow of gas to which the turbine isexposed may have an entry temperature between850 and 1,700 deg. C. and may reach a velocity ofover 2,500 feet per second in parts of the turbine.

2. To produce the driving torque, the turbine mayconsist of several stages each employing one row ofstationary nozzle guide vanes and one row of movingblades (fig. 5-1). The number of stages dependsupon the relationship between the power required

45

Administrator
文本框
绪言 从燃气流向涡轮的 能量转移 结构
Administrator
文本框
第五章 涡轮
Administrator
文本框
目 录
Administrator
文本框
绪言
Administrator
文本框
1.涡轮的任务是为驱动压气机和附件提供功率,以及当发动机不单纯用于产生推进喷气流的情况下,它还为螺旋桨或旋冀提供轴功率。涡轮的工作是从燃烧系统释放的燃气流吸收能量,并将就膨胀到较低的压力和温度。在这个过程中产生很高的应力,而且,为了工作效率高,涡轮叶尖可能在高于l500英尺/秒的速度下旋转。涡轮经受的连续燃气流的进口温度可能达到850到1700℃,在涡轮部件中的燃气速度可能达到2500英尺/秒。
Administrator
文本框
2.为了产生驱动扭矩,涡轮可以有若干级,每级有 一排静止的导向器叶片和一排旋转的工作叶片(图5-1)。级数取决于需要从燃气流吸收的功率,发出该功率的旋转速度,及允许的涡轮直径。
Administrator
文本框
导向器叶片 涡轮盘 涡轮工作叶片 对转涡轮 双合金轮盘
Administrator
文本框
压气机涡轮的匹配
Administrator
文本框
导向器叶片 涡轮盘 涡轮工作叶片
Administrator
文本框
平衡
Administrator
文本框
材料
Page 54: Rolls royce jet engine

from the gas flow, the rotational speed at which itmust be produced and the diameter of turbinepermitted.

3. The number of shafts, and therefore turbines,varies with the type of engine; high compression ratioengines usually have two shafts, driving high and lowpressure compressors (fig, 5-2). On high by-pass

ratio fan engines that feature an intermediatepressure system, another turbine may be interposedbetween the high and low pressure turbines, thusforming a triple-spool system (fig, 5-3). On someengines, driving torque is derived from a free-powerturbine (fig. 5-4). This method allows the turbine torun at its optimum speed because it is mechanicallyindependent of other turbine and compressor shafts.

46

Fig. 5-1 A triple-stage turbine with single shaft system.

Administrator
文本框
3.轴的数量,因而涡轮的数量随发动机的型别而异。高压比发动机通常有两根轴,分别驱动高压和低压压气机(图5-2)。对于高涵道比风扇发动机,其以有一个中压系统为特点,则在高压和低压涡轮之间插入另一个涡轮,这就构成了三转子系统(图5-3)在某些发动机上,其驱动扭矩来自由动力涡轮(图5-4)。由于它与其它的涡轮轴和压气机轴在机械上是独立的,所以这种方法允许此涡轮在其最佳的转速下运转。
Administrator
文本框
图5-1 单轴系统三级涡轮
Administrator
文本框
燃烧室燃气短管
Administrator
文本框
三级涡轮
Administrator
文本框
涡轮轴
Administrator
文本框
涡轮叶冠
Administrator
文本框
排气装置安装边
Administrator
文本框
导向器叶片
Page 55: Rolls royce jet engine

4. The mean blade speed of a turbine has consid-erable effect on the maximum efficiency possible fora given stage output. For a given output the gasvelocities, deflections, and hence losses, arereduced in proportion to the square of higher meanblade speeds. Stress in the turbine disc increases asthe square of the speed, therefore to maintain thesame stress level at higher speed the sectionalthickness, hence the weight, must be increased dis-proportionately. For this reason, the final design is acompromise between efficiency and weight. Engines

operating at higher turbine inlet temperatures arethermally more efficient and have an improved powerto weight ratio. By-pass engines have a betterpropulsive efficiency and thus can have a smallerturbine for a given thrust.

5. The design of the nozzle guide vane and turbineblade passages is based broadly on aerodynamicconsiderations, and to obtain optimum efficiency,compatible with compressor and combustion design,the nozzle guide vanes and turbine blades are of a

47

Fig. 5-2 A twin turbine and shaft arrangement.

Administrator
文本框
4.对于给定的级输出,涡轮工作叶片的平均速度对可能取得的最高效率具有很大的影响。对于给定的输出,燃气速度、转折角、以及损失都随较高的叶片平均速度的平方成比例地减少。涡轮盘的应力随转速的平方而增加,所以要在较高转速下保持相同的应力水平,截面厚度及重量应当不成比例地增加。正因为如此,最终的设计是在效率和重量之间折衷。发动机在更高的涡轮进口温度下工作,在热力学上效率会更高,具有更高的功率重量比。内外涵发动机具有较好的推进效率,因而对于给定的推力来说,它可以用较小的涡轮。
Administrator
文本框
图5-2 一种双转子涡轮和轴的布置
Administrator
文本框
三级低压涡轮
Administrator
文本框
燃烧系统安装边
Administrator
文本框
单级高压涡轮
Administrator
文本框
排气装置安装边
Administrator
文本框
涡轮后轴承
Administrator
文本框
高压导向器叶片
Administrator
文本框
高压涡轮轴承
Administrator
文本框
高压涡轮轴
Administrator
文本框
低压涡轮轴
Administrator
文本框
5.慨括地讲,导向器叶片和涡轮工作叶片通道的设计主要依据空气动力学的考虑。从获得最佳效率,与压气机和燃烧室兼容出发,导向器叶片和涡轮工作叶片属于基本叶型。
Page 56: Rolls royce jet engine

48

Fig. 5-3 A triple turbine and shaft arrangement.

Administrator
文本框
低压涡轮轴承
Administrator
文本框
排气装置安装边
Administrator
文本框
中压涡轮轴承
Administrator
文本框
燃烧系统安装边
Administrator
文本框
中压/高压轴间轴承
Administrator
文本框
低压涡轮轴
Administrator
文本框
中压涡轮轴
Administrator
文本框
高压涡轮轴
Administrator
文本框
高压导向器叶片
Administrator
文本框
单级高压涡轮
Administrator
文本框
中压导向器叶片
Administrator
文本框
单级中压涡轮
Administrator
文本框
低压导向器叶片
Administrator
文本框
两级低压祸轮
Administrator
文本框
图5-3 一种三转子涡轮和轴的布置
Page 57: Rolls royce jet engine

basic aerofoil shape. There are three types ofturbine; impulse, reaction and a combination of thetwo known as impulse-reaction. In the impulse typethe total pressure drop across each stage occurs inthe fixed nozzle guide vanes which, because of theirconvergent shape, increase the gas velocity whilstreducing the pressure. The gas is directed onto theturbine blades which experience an impulse forcecaused by the impact of the gas on the blades. In thereaction type the fixed nozzle guide vanes aredesigned to alter the gas flow direction withoutchanging the pressure. The converging bladepassages experience a reaction force resulting fromthe expansion and acceleration of the gas. Normallygas turbine engines do not use pure impulse or pure

reaction turbine blades but the impulse-reactioncombination (fig. 5-5). The proportion of eachprinciple incorporated in the design of a turbine islargely dependent on the type of engine in which theturbine is to operate, but in general it is about 50 percent impulse and 50 per cent reaction. Impulse-typeturbines are used for cartridge and air starters (Part11).

ENERGY TRANSFER FROM GAS FLOW TOTURBINE

6. From the description contained in para. 1, it willbe seen that the turbine depends for its operation onthe transfer of energy between the combustion

49

Fig. 5-4 A typical free power turbine.

Administrator
文本框
涡轮有三种类型,即冲击式、反力式和这两种的组合-冲击反山式。对于冲击式涡轮,每级的总压降在固定的导向器叶片中发生。由于叶片的收敛形状,使燃气建度增加,同时降低压力。燃气被引向涡轮工作叶片,叶片承受燃气冲击在其上的冲击力。对于反力式涡轮,固定的导向器叶片设计将燃气流的方向改变,但不改变压力。收敛式工作叶片通道承受燃气膨胀和加速产生的反作用力。正常情况下,燃气涡轮发动机并不采用纯冲击或纯反力式涡轮工作叶片,而是采用冲击反力组合式(图5-5)。涡轮设计中每一种方式的比例大体上取决于装此涡轮的发动机的型别,一般来说,大约冲击式占50%反力式占50%。冲击式涡轮应用于火药和空气起动机(第11章)。
Administrator
文本框
图5-4 一种典型的自由动力涡轮
Administrator
文本框
从燃气流向涡轮的能量转移 6.由第1段所述的内容将会知道,涡轮的工作在于燃气流和涡轮之间的能量转移。由于热力和机械损失,这种转移不会达100%(第11段)。
Administrator
文本框
自由动力涡轮 导向器叶片
Administrator
文本框
自由动力涡轮
Administrator
文本框
涡轮(驱动发动机的压气机)
Administrator
文本框
联轴器轴
Administrator
文本框
减速齿轮组件
Administrator
文本框
排气出口机匣
Administrator
文本框
动力输出轴
Page 58: Rolls royce jet engine

gases and the turbine. This transfer is never 100 percent because of thermodynamic and mechanicallosses, (para. 11).

7.when the gas is expanded by the combustionprocess (Part 4), it forces its way into the dischargenozzles of the turbine where, because of theirconvergent shape, it is accelerated to about thespeed of sound which, at the gas temperature, isabout 2,500 feet per second. At the same time thegas flow is given a 'spin' or 'whirl' in the direction ofrotation of the turbine blades by the nozzle guidevanes. On impact with the blades and during thesubsequent reaction through the blades, energy isabsorbed, causing the turbine to rotate at high speedand so provide the power for driving the turbine shaftand compressor.

8. The torque or turning power applied to theturbine is governed by the rate of gas flow and theenergy change of the gas between the inlet and theoutlet of the turbine blades, The design of the turbineis such that the whirl will be removed from the gasstream so that the flow at exit from the turbine will be

substantially 'straightened out' to give an axial flowinto the exhaust system (Part 6). Excessive residualwhirl reduces the efficiency of the exhaust systemand also tends to produce jet pipe vibration whichhas a detrimental effect on the exhaust conesupports and struts.

9. It will be seen that the nozzle guide vanes andblades of the turbine are 'twisted', the blades havinga stagger angle that is greater at the tip than at theroot (fig. 5-6). The reason for the twist is to make thegas flow from the combustion system do equal workat all positions along the length of the blade and toensure that the flow enters the exhaust system witha uniform axial velocity. This results in certainchanges in velocity, pressure and temperatureoccurring through the turbine, as shown diagram-matically in fig. 5-7.

10. The 'degree of reaction' varies from root to tip,being least at the root and highest at the tip, with themean section having the chosen value of about 50per cent.

50

Fig. 5-5 Comparison between a pure Impulse turbine and an impulse/reaction turbine.

Administrator
文本框
7.当在燃烧过程(第4章)中燃气膨胀时,它被迫进入涡轮导向器。由于导向器的收敛形状,燃气被加速到接近音速,此时在当地燃气温度下,速度约为2500英尺/秒。同时由导向器叶片将燃气流沿涡轮工作叶片的转动方向“旋转”或“打旋”。通过对叶片的冲击和随后流过叶片时的反作用力,涡轮吸收了能量,导致涡轮高速旋转,于是发出驱动涡轮轴和压气机的动力。
Administrator
文本框
仅由燃气流冲击驱动的涡轮
Administrator
文本框
自燃气流的冲击及通过收敛 工作叶片通道加速的反作用 驱动的涡轮
Administrator
文本框
图5-5 一种纯冲击式涡轮和一种冲击/反力式涡轮的比较
Administrator
文本框
8.作用在涡轮上的扭矩或扭转动力由燃气流的流量和燃气在涡轮工作叶片的进口和出口之间的能量改变所支配。涡轮的设计应保证从燃气流动中去掉涡漩。使燃气在涡轮的出口基本上是“直流的”,保证进入排气系统的是轴向气流(第6章)。过多的残余涡漩台降低排气系统的效率,且易于导致喷管振动,它对尾锥体的支承和支柱具有有害的影响。
Administrator
文本框
9.可以看到,导向器叶片和涡轮工作叶片是“扭曲”的,即叶片的安装角在叶尖处比在叶根处的大(图5-6)。扭曲的理由是使来自燃烧系统的燃气流在沿叶片长度的所有部位都做相等的功,并且保证进入排气系统的气流具有均匀的轴向速度。这就使流过涡轮的气流的速度、压力和温度发生某种改变,如(图5-7)所示。
Administrator
文本框
10.“反力度”从叶根到叶尖是变化的,叶根处最小,叶尖处最大,在平均截面处为选定值,约50%。
Administrator
标注
导向器
Administrator
文本框
涡轮
Page 59: Rolls royce jet engine

11. The losses which prevent the turbine from being100 per cent efficient are due to a number ofreasons. A typical uncooled three-stage turbinewould suffer a 3.5 per cent loss because ofaerodynamic losses in the turbine blades. A further4.5 per cent loss would be incurred by aerodynamiclosses in the nozzle guide vanes, gas leakage overthe turbine blade tips and exhaust system losses;these losses are of approximately equal proportions.The total losses result in an overall efficiency ofapproximately 92 per cent.

CONSTRUCTION

12. The basic components of the turbine are thecombustion discharge nozzles, the nozzle guidevanes, the turbine discs and the turbine blades. Therotating assembly is carried on bearings mounted inthe turbine casing and the turbine shaft may becommon to the compressor shaft or connected to itby a self-aligning coupling.

Nozzle guide vanes13. The nozzle guide vanes are of an aerofoil shapewith the passage between adjacent vanes forming aconvergent duct. The vanes are located (fig. 5-8) inthe turbine casing in a manner that allows forexpansion.

51

Fig. 5-6 A typical turbine blade showingtwisted contour.

Fig. 5-7 Gas flow pattern through nozzle and blade.

Administrator
文本框
11.由于许多原因,损失总要发生,使涡轮不能获得100%效率。由于涡轮工作叶片的气动力损失,典型的非冷却式三级涡轮会遭受3.5%的损失。另外,由导向器叶片中的气动损失,燃气漏过涡轮工作叶片叶尖的损失以及排气系统的损失总共将产生4.5%的损失。这些损失大致上占相等的比例。计及各种损失之后,总的效率约为92%。
Administrator
文本框
安装角
Administrator
文本框
气流方向
Administrator
文本框
旋转方向
Administrator
文本框
安装角
Administrator
文本框
图5-6一种典型的涡轮工作叶片,图中示出了扭曲的外形
Administrator
文本框
结构 12.涡轮的基本部件有燃烧室燃气导管、导向器叶 片、涡轮盘和涡轮工作叶片。转动组件由装在涡轮 机匣中的轴承支承,涡轮轴可以和压气机轴共用一 轴,或者由自动定心的联轴器与压气机轴相接。
Administrator
文本框
导向器叶片 13.导向器叶片具有翼型截面,相邻叶片之间的通道构成了收敛的涵道。导向叶片位于(图5-8)涡轮机匣中其安装方式应能使它们发生膨胀。
Administrator
文本框
速度降低
Administrator
文本框
速度
Administrator
文本框
静压
Administrator
文本框
压力增加 (从导向叶片叶根到叶尖)
Administrator
文本框
进入排气系统时压力和速度均匀
Administrator
文本框
导向器
Administrator
文本框
涡轮叶片
Administrator
文本框
图5-7 流过导向器叶片和涡轮工作叶片的燃气流的流型
Page 60: Rolls royce jet engine

14. The nozzle guide vanes are usually of hollowform and may be cooled by passing compressordelivery air through them to reduce the effects of highthermal stresses and gas loads. For details of turbinecooling, reference should be made to Part 9.

15. Turbine discs are usually manufactured from amachined forging with an integral shaft or with aflange onto which the shaft may be bolted. The discalso has, around its perimeter, provision for theattachment of the turbine blades.

16. To limit the effect of heat conduction from theturbine blades to the disc a flow of cooling air ispassed across both sides of each disc (Part 9).

Turbine blades17. The turbine blades are of an aerofoil shape,designed to provide passages between adjacentblades that give a steady acceleration of the flow upto the 'throat', where the area is smallest and the

velocity reaches that required at exit to produce therequired degree of reaction (para. 5).

18. The actual area of each blade cross-section isfixed by the permitted stress in the material used andby the size of any holes which may be required forcooling purposes (Part 9). High efficiency demandsthin trailing edges to the sections, but a compromisehas to be made so as to prevent the blades crackingdue to the temperature changes during engineoperation.

19. The method of attaching the blades to theturbine disc is of considerable importance, since thestress in the disc around the fixing or in the bladeroot has an important bearing on the limiting rimspeed. The blades on the early Whittle engine wereattached by the de Laval bulb root fixing, but thisdesign was soon superseded by the 'fir-tree' fixingthat is now used in the majority of gas turbineengines. This type of fixing involves very accuratemachining to ensure that the loading is shared by all

52

Fig. 5-8 Typical nozzle guide vanes showing their shape and location.

Administrator
文本框
14.导向器叶片通常是空心结构,可以由压气机的 出口空气在其内部流过进行冷却,以减轻热应力和 气动负荷的影响。对于涡轮冷却的详细情况可参看 第9章。
Administrator
文本框
Administrator
文本框
图5-8 典型的导向器叶片,图中示出其形状和位置
Administrator
文本框
涡轮盘 15.涡轮盘通常由机械加工的锻件制成。它可以与轴制成一个整体,也可以带安装边由螺栓连接涡轮轴,而且,轮盘的外圆处还有涡轮工作叶片安装用的榫槽。
Administrator
文本框
涡轮工作叶片 17.涡轮工作叶片设计成翼型截面,每个相邻叶片之间的通遭使气流稳定地加速到“喉部”。喉部的面积最小。速度达到了所需的出口速度来产生要求的反力度(第5章)。
Administrator
文本框
16.为了限制从涡轮工作叶片向轮盘的热传导的影响,每一级轮盘的两面都通一股冷却空气(第9章)。
Administrator
文本框
18.根据所用材料的许用应力及扣除为冷却(第9章)目的要求用的孔的尺寸之后,每个工作叶片横截面的实际面积是固定的。高效率要求截面的后缘薄,但是为了防止在发动机工作中由于温度的改变使叶片产生裂纹,不得已进行折衷处理。
Administrator
文本框
19.工作叶片安装在涡轮盘上的方法极为重要,因为在固定部位或叶片根部周围涡轮盘的应力对于限制轮缘速度具有很重要的意义。早期的“惠特尔”(whittle)发动机的叶片曾用拉瓦尔(Laval)的球形叶根固定,但这种设计很快便由枞树形榫头所取代,这就是目前大多数燃气涡轮发动机所使用的榫头。为保证载荷能由所有齿分担,这种榫头要作非常精密的机械加工。当涡轮处于静止状态时,叶片在齿上是活动的,当涡轮旋转时,在离心载荷的作用下根部才变成刚性结合。在图5-9中示出了叶片的各种连接方法,但是德国BMW公司的空心叶片及拉瓦尔球形叶根式连接方法目前在燃气涡轮发动机上一般都不使用。
Page 61: Rolls royce jet engine

the serrations. The blade is free in the serrationswhen the turbine is stationary and is stiffened in theroot by centrifugal loading when the turbine isrotating. Various methods of blade attachment areshown in fig. 5-9; however, the B.M.W. hollow bladeand the de Laval bulb root types are not nowgenerally used on gas turbine engines.

20. A gap exists between the blade tips and casing,which varies in size due to the different rates ofexpansion and contraction. To reduce the loss ofefficiency through gas leakage across the blade tips,a shroud is often fitted as shown in fig. 5-1. This ismade up by a small segment at the tip of each bladewhich forms a peripheral ring around the blade tips.An abradable lining in the casing may also be usedto reduce gas leakage as discussed in Part 9. ActiveClearance Control (A.C.C.) is a more effectivemethod of maintaining minimum tip clearancethroughout the flight cycle. Air from the compressor isused to cool the turbine casing and when used withshroudless turbine blades, enables higher tempera-tures and speeds to be used.

Contra-rotating turbine21. Fig. 5-10 shows a twelve stage contra-rotatingfree power turbine driving a contra-rotating rear fan.This design has only one row of static nozzle guidevanes. The remaining nozzle guide vanes are, ineffect, turbine blades attached to a rotating casingwhich revolves in the opposite direction to a rotatingdrum. Since all but one aerofoil row extracts energyfrom the gas stream, contra-rotating turbines are

capable of operating at much higher stage loadingsthan conventional turbines, making them attractivefor direct drive applications.

Dual alloy discs22. Very high stresses are imposed on the bladeroot fixing of high work rate turbines, which makeconventional methods of blade attachmentimpractical. A dual alloy disc, or 'blisk' as shown infig. 5-11, has a ring of cast turbine blades bonded tothe disc. This type of turbine is suitable for small highpower helicopter engines.

COMPRESSOR-TURBINE MATCHING

23. The flow characteristics of the turbine must bevery carefully matched with those of the compressorto obtain the maximum efficiency and performance ofthe engine. If, for example, the nozzle guide vanesallowed too low a maximum flow, then a backpressure would build up causing the compressor tosurge (Part 3); too high a flow would cause thecompressor to choke. In either condition a loss ofefficiency would very rapidly occur.

MATERIALS

24. Among the obstacles in the way of using higherturbine entry temperatures have always been theeffects of these temperatures on the nozzle guidevanes and turbine blades, The high speed of rotationwhich imparts tensile stress to the turbine disc andblades is also a limiting factor.

53

Fig. 5-9 Various methods of attaching blades to turbine discs.

Administrator
文本框
双合金轮盘 22.在高功率涡轮的叶片根部固定处承受着非常高的应力,这使得叶片的常规连接方法变得不实用。如图5-11所示,一种双合金轮盘,即“整体叶盘”上有一圈铸造的涡轮叶片焊接在轮盘上。这种涡轮适用于小型的高功率直升机发动机。
Administrator
文本框
20.在叶尖和机匣之间存在间隙,由于膨胀和收缩率的不同,间隙的尺寸是变化的。为了减少燃气漏过叶片顶部时的效率损失,通常装有叶冠,如图5-1所示。这是由每个叶片的叶尖处加一个小片构成的,这些小片在叶尖的周围形成一个圆环。如第9章所述,机匣中还可以采用一条易摩带,用来减少燃气漏气。主动间隙控制是在整个飞行循环中保持叶尖间隙最小的更有效的方法。来自压气机的空气用于对涡轮机匣冷却,当与不带叶冠的涡轮工作叶片一起使用时,可以使用更高的温度和转速。
Administrator
文本框
对转涡轮 21.图5-10所示为驱动一个对转后风扇的一台12级对转自由动力涡轮。这种设计只有一排静止的导向器叶片。实际上其余的导向器叶片是固定在旋转机匣上的涡轮工作叶片,它与旋转鼓筒的旋转方向相反。由于只有一排叶片不从燃气流吸收能量,所以对转涡轮能够在比常规涡轮高得多的级载荷下工作,对于直接驱动的用途,它非常有吸引力。
Administrator
文本框
图5-9 几种叶片与涡轮盘连接的各种方法
Administrator
文本框
压气机涡轮匹配 23.为了获得发动机的最大效率及性能,涡轮的流量特性应当和压气机的流量特性非常仔细地匹配。例如,如果导向器叶片允许通过的最大流量太低,便会累积反压,导致压气机喘振(第3章)。流最太高会导致压气机堵塞。无论在那一种情况下,效率的损失都会非常急剧地增加。
Administrator
文本框
材料 24.采用更高涡轮进口温度所遇到的障碍常常是这些温度对于导向器叶片和涡轮工作叶片的影响。向涡轮盘和工作叶片施加拉伸应力的高旋转速度也是一个限制因素。
Administrator
标注
橡树形叶根 (带深根封严)
Administrator
文本框
拉瓦尔的球形叶根 (带锁紧螺钉)
Administrator
文本框
BMW公司空心叶片 (带固定銷钉)
Administrator
文本框
枞树型叶根 (带锁片)
Page 62: Rolls royce jet engine

Nozzle guide vanes25. Due to their static condition. the nozzle guidevanes do not endure the same rotational stresses asthe turbine blades. Therefore, heat resistance is theproperty most required. Nickel alloys are used,although cooling is required to prevent melting.Ceramic coatings can enhance the heat resistingproperties and, for the same set of conditions,reduce the amount of cooling air required, thusimproving engine efficiency.

Turbine discs26. A turbine disc has to rotate at high speed in arelatively cool environment and is subjected to largerotational stresses. The limiting factor which affectsthe useful disc life is its resistance to fatiguecracking.

54

Fig. 5-10 Free power contra-rotating turbine.

Fig. 5-11 Section through a dual alloy disc.

Administrator
文本框
导向器叶片 25.由于处于静止状态,导向器叶片不像涡轮工作叶片那样承受旋转应力。因此,耐热是其最主要的性能要求。虽然需要采用冷却来防止熔化,但仍使用了镍台金。陶瓷涂层能够加强热阻特性,在相同的工作条件下,可减少需要的冷却空气量,从而改善发动机效率。
Administrator
文本框
旋转鼓筒
Administrator
文本框
涡轮盘 26.涡轮盘必须在相对低的温度环境下高速旋转,并承受很大的旋转应力。影响轮盘可用寿命的限制因素是其抗疲劳裂纹的能力。
Administrator
文本框
旋转机匣
Administrator
文本框
后支承支板
Administrator
文本框
尾锥
Administrator
文本框
导向器叶片
Administrator
文本框
前风扇和涡轮
Administrator
文本框
后风扇和涡轮
Administrator
文本框
铸造的叶片环 扩散粘接 粉末冶金轮盘
Administrator
文本框
图5-10 对转的自由动力涡轮
Administrator
文本框
图5-11 一种双合金涡轮盘的截面图
Page 63: Rolls royce jet engine

55

Fig. 5-11 Section through a dual alloy disc.

Administrator
文本框
普通铸造涡轮叶片
Administrator
文本框
在各方向机械特性良好
Administrator
文本框
纵轴方向具有优越的 机械特性并改善了耐热性
Administrator
文本框
等轴晶体结构
Administrator
文本框
在纵轴方向有 改进的机械特性
Administrator
文本框
圆柱形 晶体结构
Administrator
文本框
单晶体涡轮叶片
Administrator
文本框
定向凝固涡轮叶片(D.S.叶片)
Administrator
文本框
图5-12 各种涡轮工作叶片的晶粒结构
Administrator
文本框
27.在过去,涡轮盘是用铁和奥氏体钢制造的,而近年来则用镍基合金制造。增加合金中镍元素的含量可通过增大抗疲劳特性而延长轮盘的寿命。另一个途径是采用昂贵的粉末冶金盘,它可提高强度10%,允许达到更高的转速。
Page 64: Rolls royce jet engine

27. In the past, turbine discs have been made inferritic and austenitic steels but nickel based alloysare currently used. Increasing the alloying elementsin nickel extend the life limits of a disc by increasingfatigue resistance. Alternatively, expensive powdermetallurgy discs, which offer an additional 10% instrength, allow faster rotational speeds to beachieved.

Turbine blades28. A brief mention of some of the points to beconsidered in connection with turbine blade designwill give an idea of the importance of the correctchoice of blade material. The blades, while glowingred-hot, must be strong enough to carry thecentrifugal loads due to rotation at high speed. Asmall turbine blade weighing only two ounces mayexert a load of over two tons at top speed and it mustwithstand the high bending loads applied by the gasto produce the many thousands of turbine horse-power necessary to drive the compressor. Turbineblades must also be resistant to fatigue and thermalshock, so that they will not fail under the influence ofhigh frequency fluctuations in the gas conditions, andthey must also be resistant to corrosion andoxidization. In spite of all these demands, the bladesmust be made in a material that can be accuratelyformed and machined by current manufacturingmethods.

29. From the foregoing, it follows that for aparticular blade material and an acceptable safe lifethere is an associated maximum permissible turbineentry temperature and a corresponding maximumengine power. It is not surprising, therefore, that met-allurgists and designers are constantly searching forbetter turbine blade materials and improved methodsof blade cooling.

30. Over a period of operational time the turbineblades slowly grow in length. This phenomenon isknown as 'creep' and there is a finite useful life limitbefore failure occurs.

31. The early materials used were high temperaturesteel forgings, but these were rapidly replaced bycast nickel base alloys which give better creep andfatigue properties.

32. Close examination of a conventional turbineblade reveals a myriad of crystals that lie in alldirections (equi-axed). Improved service life can beobtained by aligning the crystals to form columnsalong the blade length, produced by a method knownas 'Directional Solidification'. A further advance ofthis technique is to make the blade out of a single

56

Fig. 5-13 Comparison of turbine blade lifeproperties.

Fig. 5-14 Ceramic turbine blades.

Administrator
文本框
图5-13 涡轮工作叶片寿命特性的比较
Administrator
文本框
图5-14 陶瓷涡轮工作叶片
Administrator
文本框
断裂
Administrator
文本框
单晶叶片
Administrator
文本框
等轴叶片
Administrator
文本框
时间
Administrator
文本框
延伸率
Administrator
文本框
定向凝固叶片
Administrator
文本框
涡轮工作叶片 28.简要叙述关于涡轮工作叶片设计要考虑的某些问题会得到关于正确选用叶片材料重要性的概念。工作叶片尽管已达到红热状态,仍应具备足够的强度来承受高速旋转产生的离心载荷。一片小小的涡轮工作叶片重量仅2盎司,在最高转速下的载荷会超过2吨,它还要承受燃气施加的很高的弯曲载荷,以产生驱动压气机所必须的数千马力的涡轮功率。涡轮工作叶片还应当耐疲劳和热冲击,保证在燃气高频脉动影响下不致损坏。工作叶片还要能耐腐蚀和耐氧化。除了所有这些要求之外,工作叶片应当采用可以精确成形和利用现有制造方法加工的材料制造。
Page 65: Rolls royce jet engine

crystal, Examples of these structures are shown infig. 5-12. Each method extends the useful creep lifeof the blade (fig. 5-13) and in the case of the singlecrystal blade, the operating temperature can be sub-stantially increased.

33. A non-metal based turbine blade can be manu-factured from reinforced ceramics. Their initialproduction application is likely to be for small highspeed turbines which have very high turbine entry

temperatures. An example of a ceramic blade isshown in fig. 5-14.

BALANCING

34. The balancing of a turbine is an extremelyimportant operation in its assembly. In view of thehigh rotational speeds and the mass of materials,any unbalance could seriously affect the rotatingassembly bearings and engine operation. Balancingis effected on a special balancing machine, theprinciples of which are briefly described in Part 25.

57

Administrator
文本框
33.用强化陶瓷可以制造出非金属基的涡轮工作叶片。它们初始的生产应用似乎会用于具有极高涡轮进口温度的小型高速涡轮。图5-14示出了一种陶瓷叶片的例子。
Administrator
文本框
平衡 34.涡轮的平衡是其装配中极端重要的工作。考虑到高旋转速度及材料的质量,任何不平衡都会严重影响旋转组件的轴承和发动机的工作。平衡在专用的平衡机上进行,其原理在第25章中简要叙述。
Administrator
文本框
32.对常规涡轮工作叶片的仔细研究发现,在各个方向(等轴)存在无数晶体。通过将晶粒沿叶片长度方向排成柱状可以改善使用寿命,这种方法称为“定向凝固”。这种技术的进一步改进是用一个单晶体制造叶片。这些结构的示例见图5-12。定向凝固,单晶都增长了叶片的蠕变可用寿命(图5-13)。在单晶叶片的情况下,使用温度可以大大地增高。
Administrator
文本框
30.超过一段工作期间,涡轮工作叶片慢慢地伸长,这种现象被称为“蠕变”,而且,在损坏之前存在有限的可用寿命极限。 31.早期曾经使用高温钢锻件,但这些材料很快便由铸造镍基合金所取代。后者具有更好的蠕变和疲劳特性。
Administrator
文本框
29.依据上面所述,对于某种叶片材料及允许的安全寿命,就会有一个相应的最大允许的涡轮进口温度以及相应的最大发动机功率。因此,并不奇怿,冶金学家和设计师们总是不断地在寻求更好的涡轮工作叶片材料和改善叶片的冷却方法。
Page 66: Rolls royce jet engine

Rolls-Royce RB50 Trent

Late in 1943 the decision was taken at Rolls-Royce to build a turbo-prop for aircraft speedsof around 400 mph. The resulting engine,known as the RB50 Trent, was basically aDerwent II with a flexible quillshaft toreduction gear and propeller. On 20September 1945 a Gloster Meteor, fitted withtwo Trents, became the world's first turbo-prop powered aircraft to fly.

Rolls-Royce RB211-535E4

Administrator
文本框
罗尔斯-罗伊斯公司 RB211-535E4发动机
Administrator
文本框
1943年末,罗尔斯-罗伊斯公司决定研制一种涡轮螺桨发动机,用于速度为400英里/小时左右的飞机。所制成的发动机称为RB50“遄达”(Trent),它基本上是一台“德温特”(Derwent)Ⅱ型,带有一根驱动减速器和螺旋桨的挠性的套轴。1945年9月20日,装有两台“遄达”发动机的格洛斯特公司的“流星”飞机成为全世界第一架投入飞行的以涡轮螺浆为动力的飞机。
Administrator
文本框
罗尔斯-罗伊斯公司 RB50“遄达”发动机
Page 67: Rolls royce jet engine

6: Exhaust system

Contents Page

Introduction 59Exhaust gas flow 61Construction and materials 63

INTRODUCTION

1. Aero gas turbine engines have an exhaustsystem which passes the turbine discharge gases toatmosphere at a velocity, and in the requireddirection, to provide the resultant thrust. The velocityand pressure of the exhaust gases create the thrustin the turbo-jet engine (para. 5) but in the turbo-propeller engine only a small amount of thrust iscontributed by the exhaust gases, because most ofthe energy has been absorbed by the turbine fordriving the propeller. The design of the exhaustsystem therefore, exerts a considerable influence onthe performance of the engine. The areas of the jetpipe and propelling or outlet nozzle affect the turbineentry temperature, the mass airflow and the velocityand pressure of the exhaust jet.

2. The temperature of the gas entering the exhaustsystem is between 550 and 850 deg. C. according tothe type of engine and with the use of afterburning(Part 16) can be 1,500 deg. C. or higher. Therefore,it is necessary to use materials and a form of con-struction that will resist distortion and cracking, andprevent heat conduction to the aircraft structure.

3. A basic exhaust system is shown in fig. 6-1. Theuse of a thrust reverser (Part 15), noise suppressor(Part 19) and a two position propelling nozzle entailsa more complicated system as shown in fig. 6-2. Thelow by-pass engine may also include a mixer unit(fig. 6-4) to encourage a thorough mixing of the hotand cold gas streams.

59

Administrator
文本框
绪言 1.航空燃气涡轮发动机有一个排气系统,它将涡轮排出的燃气以一定的速度和要求的方向排入大气,提供最后所得到的推力。在涡轮喷气发动机中排气流的速度和压力产生推力(第5段)。但在涡轮螺桨发动机中,排气流只提供少量推力,因为大部分能量已经由涡轮吸收,用来驱动螺旋桨。因此,排气采统的设计对发动机的性能有很大影响。喷管、推进喷管或排气口的面积影响到涡轮进口温度、排气流的质量流量、速度及压力。 2.依据发动机类型的不同,进入排气系统的燃气温度在550~850℃之间,采用加力燃烧室时(第11章)可达l500℃,甚至更高。所以需要采用的材料及结构形式应能够抵御挠曲和产生裂纹,并防止向飞机结构的热传导。 3.基本的排气系统示于图6-1。反推力装置(第15章),消声器(第19章)及双位推进喷管的使用使系统的结构更为复杂,参见图6-2所示。低涵道比发动机也可以有一个混合器(图6-4),用于促进冷热燃气流彻底的混合。
Administrator
文本框
目录 绪言 燃气排气流 结构和材料
Administrator
文本框
第六章 排气系统
Page 68: Rolls royce jet engine

Exhaust system

60

Fig. 6-1 A basic exhaust system.

Fig. 6-2 Exhaust system with thrust reverser, noise suppressor and two position propelling nozzle.

Administrator
文本框
排气锥
Administrator
文本框
喷管
Administrator
文本框
收敛(推进)喷口
Administrator
文本框
涡轮后面级
Administrator
文本框
涡轮后支柱
Administrator
文本框
图6-1 一种基本的排气系统
Administrator
文本框
喷管
Administrator
文本框
消音器
Administrator
文本框
转接段
Administrator
文本框
反推力装置
Administrator
文本框
可调鱼鳞片
Administrator
文本框
隔热层
Administrator
文本框
图6-2 带反推力装置、消声器和双位推进喷管的排气系统
Administrator
文本框
双位喷口
Administrator
文本框
燃气排气流 4.从发动机涡轮流出的燃气以750~1200英尺/秒的速度进入排气系统,由于这样高的速度量级会产生很高的摩擦损失。所以气流的速度要通过扩散加以降低。这是通过将排气锥和外壁之间的通道面积不断地加大而实现的。如图6-1所示。排气锥还防止燃气流跨越涡轮盘后面的流动。通常,在排气装置出口保持速度为马赫数0.5左右,即950英尺/秒左右。由于燃气流离开涡轮时存在残余的漩涡速度,所以还产生附加损失。为了减步这些损失,在排气装置中的涡轮后部支柱设计成能将气流在流入喷管之前先行扭直。
Page 69: Rolls royce jet engine

EXHAUST GAS FLOW

4. Gas from the engine turbine enters the exhaustsystem at velocities from 750 to 1,200 feet persecond, but, because velocities of this order producehigh friction losses, the speed of flow is decreased bydiffusion. This is accomplished by having anincreasing passage area between the exhaust coneand the outer wall as shown in fig. 6-1. The cone alsoprevents the exhaust gases from flowing across therear face of the turbine disc. It is usual to hold thevelocity at the exhaust unit outlet to a Mach numberof about 0.5, i.e. approximately 950 feet per second.Additional losses occur due to the residual whirlvelocity in the gas stream from the turbine. To reducethese losses, the turbine rear struts in the exhaustunit are designed to straighten out the flow before thegases pass into the jet pipe.

5. The exhaust gases pass to atmosphere throughthe propelling nozzle, which is a convergent duct,thus increasing the gas velocity (Part 2). In a turbo-jet engine, the exit velocity of the exhaust gases issubsonic at low thrust conditions only. During mostoperating conditions, the exit velocity reaches thespeed of sound in relation to the exhaust gas

temperature and the propelling nozzle is then said tobe 'choked'; that is, no further increase in velocitycan be obtained unless the temperature is increased.As the upstream total pressure is increased abovethe value at which the propelling nozzle becomes'choked', the static pressure of the gases at exitincreases above atmospheric pressure. Thispressure difference across the propelling nozzlegives what is known as 'pressure thrust' and iseffective over the nozzle exit area. This is additionalthrust to that obtained due to the momentum changeof the gas stream (Part 20).

Exhaust system

61

Fig. 6-3 Gas flow through a convergent-divergent nozzle.

Fig. 6-4 A low by-pass air mixer unit.

Administrator
文本框
5.燃气排气流经过推进喷管排入大气。喷管是一个收敛形管道,它增加了燃气速度(第2段)。对于涡轮喷气发动机,只有在低推力状态时排气流的出口速度才是亚音速的。在大多数工作状态下,出口速度达到当时排气流温度下的声速值,所以,推进喷管认为是“堵塞”的。也即是说,除非再增加温度,否则速度不会再增大。当推进喷管堵塞时再增加上流的总压,出口处的燃气静压增高到高于大气压力,推进喷管前后的压差便产生了所谓的“压力推力”,它作用在喷口出口截面上。此推力附加于由燃气流动量的变化而得到的推力(第20章)。
Administrator
文本框
图6-4 一种低涵道比空气混合装置
Administrator
文本框
图6-3 流过收敛扩散喷口的燃气流
Administrator
文本框
外涵道
Administrator
文本框
涡轮后支柱
Administrator
文本框
外涵空气与燃气 排气流混合
Administrator
文本框
混台器斜槽
Administrator
文本框
喷管安装边
Administrator
文本框
外涵空气 燃气排气
Administrator
文本框
收敛
Administrator
文本框
扩散
Administrator
文本框
作用于喷口壁面的净推力
Administrator
文本框
静压 声速 速度
Administrator
文本框
喉部
Administrator
标注
分流器的整流罩
Administrator
标注
排气装置的内锥
Page 70: Rolls royce jet engine

6. With the convergent type of nozzle a wastage ofenergy occurs, since the gases leaving the exit donot expand rapidly enough to immediately achieveoutside air pressure. Depending on the aircraft flightplan, some high pressure ratio engines can withadvantage use a convergent-divergent nozzle torecover some of the wasted energy This nozzleutilizes the pressure energy to obtain a furtherincrease in gas velocity and, consequently, anincrease in thrust.

7. From the illustration (fig. 6-3), it will be seen thatthe convergent section exit now becomes the throat,

with the exit proper now being at the end of the flareddivergent section. When the gas enters theconvergent section of the nozzle, the gas velocityincreases with a corresponding fall in static pressure.The gas velocity at the throat corresponds to thelocal sonic velocity. As the gas leaves the restrictionof the throat and flows into the divergent section, itprogressively increases in velocity towards the exit.The reaction to this further increase in momentum isa pressure force acting on the inner wall of thenozzle. A component of this force acting parallel tothe longitudinal axis of the nozzle produces thefurther increase in thrust.

Exhaust system

62

Fig. 6-5 High by-pass ratio engine exhaust systems.

Administrator
文本框
7.由图(图6-3)可以看到,收敛段的出口目前已成为喉部,而出口本身则在喇叭形扩散段的末端。当燃气进入喷口的收敛段时,燃气速度增加,静压相应降低。喉部的燃气速度相当于此点音速。当燃气离开喉部限制区并流入扩散段时,速度不断增加,直到出口为止。这种动量进一步增加所产生的反作用是作用在喷口内壁上的压力作用力。该力作用于平行于喷管纵轴方向的分力,进一步增加了推力。
Administrator
文本框
外涵道(风扇)冷气流 高温燃气排气流
Administrator
文本框
图6-5 两种高涵道比发动机排气系统
Administrator
文本框
6.当装用收敛形喷口时,有些能量被浪费了,因为燃气离开喷口时膨胀得不够迅速,不能立即达到外界的空气压力。依据飞机的飞行计划,有些高压比发动机可以有效地利用收敛扩散喷口来回收一部分这种浪费的能量。这种喷口利用压力能进一步增加燃气的速度,从而增加推力。
Administrator
文本框
燃气流外部混合
Administrator
文本框
公用的或整体的排气喷管
Administrator
文本框
燃气流部分内部混台
Administrator
文本框
8.推进喷管的尺寸极为重要,它的设计应当能使压力、温度和推力得到正确的均衡。小喷口使这些参数值增大,但是有可能使发动机喘振(第3章),而大喷口使所得各数值过低。
Page 71: Rolls royce jet engine

8. The propelling nozzle size is extremely importantand must be designed to obtain the correct balanceof pressure, temperature and thrust. With a smallnozzle these values increase, but there is apossibility of the engine surging (Part 3), whereaswith a large nozzle the values obtained are too low,

9. A fixed area propelling nozzle is only efficientover a narrow range of engine operating conditions.To increase this range, a variable area nozzle maybe used. This type of nozzle is usually automaticallycontrolled and is designed to maintain the correctbalance of pressure and temperature at all operatingconditions. In practice, this system is seldom used asthe performance gain is offset by the increase inweight. However, with afterburning a variable areanozzle is necessary and is described in Part 16.

10. The by-pass engine has two gas streams toeject to atmosphere, the cool by-pass airflow and thehot turbine discharge gases.

11. In a low by-pass ratio engine, the two flows arecombined by a mixer unit (fig. 6-4) which allows theby-pass air to flow into the turbine exhaust gas flowin a manner that ensures thorough mixing of the twostreams.

12. In high by-pass ratio engines, the two streamsare usually exhausted separately. The hot and coldnozzles are co-axial and the area of each nozzle isdesigned to obtain maximum efficiency. However, animprovement can be made by combining the two gasflows within a common, or integrated, nozzleassembly. This partially mixes the gas flows prior toejection to atmosphere. An example of both types ofhigh by-pass exhaust system is shown in fig, 6-5.

CONSTRUCTION AND MATERIALS

13. The exhaust system must be capable of with-standing the high gas temperatures and is thereforemanufactured from nickel or titanium. It is alsonecessary to prevent any heat being transferred tothe surrounding aircraft structure. This is achieved bypassing ventilating air around the jet pipe, or bylagging the section of the exhaust system with aninsulating blanket (fig. 6-6). Each blanket has aninner layer of fibrous insulating material contained by

an outer skin of thin stainless steel, which is dimpledto increase its strength. In addition, acousticallyabsorbent materials are sometimes applied to theexhaust system to reduce engine noise (Part 19).

14. When the gas temperature is very high (forexample, when afterburning is employed), thecomplete jet pipe is usually of double-wall construc-tion (Part 16) with an annular space between the twowalls. The hot gases leaving the propelling nozzleinduce, by ejector action, a flow of air through theannular space of the engine nacelle. This flow of aircools the inner wall of the jet pipe and acts as aninsulating blanket by reducing the transfer of heatfrom the inner to the outer wall.

15. The cone and streamline fairings in the exhaustunit are subjected to the pressure of the exhaustgases; therefore, to prevent any distortion, ventholes are provided to obtain a pressure balance.

16. The mixer unit used in low by-pass ratioengines consists of a number of chutes throughwhich the bypass air flows into the exhaust gases. Abonded honeycomb structure is used for theintegrated nozzle assembly of high by-pass ratioengines to give lightweight strength to this largecomponent.

17. Due to the wide variations of temperature towhich the exhaust system is subjected, it must bemounted and have its sections joined together insuch a manner as to allow for expansion andcontraction without distortion or damage.

Exhaust system

63

Fig. 6-6 An insulating blanket.

Administrator
文本框
14.当燃气温度非常高的时候(例如,采用加力燃烧室时),整个喷管通常是双壁结构(第16章),两壁之问有一个环腔。热燃气离开推进喷管时,通过引射作用,引射一股空气流过发动机短舱的环形通道时,该空气流冷却喷管的内壁,通过减少自内壁向外界的传热,起着隔热层的作用。 15.排气系统的锥体及流线形整流罩承受排气的压力,因此,为了防止变形,要开通气孔,保持压力平衡。 16.低涵道比发动机所用的混合器装置上有许多槽,使外涵空气由斜槽流入排出的燃气流中。在涵道比发动机的整体式喷管组件上采用了粘接的蜂窝结构,使这种大部件能够得到轻重量、高强度。 17.由于排气系统承受的温度变化范围很宽,它的安装及其各段的连接方式应允许膨胀和收缩,而不致变形或损坏。
Administrator
文本框
9.固定面积的推进喷管只有在很窄的发动机工作范围内有效。为了增大这个范围,可以采用可调面积的喷口。这种喷口通常是自动控制的,在设计上将各个工作状态下的压力、温度保持正确的均衡。由于性能的增益被增加的重量所抵消,实际上这种系统很少采用。但是,带加力燃烧室时,可调面积喷口是必要的,参见第16章。
Administrator
文本框
10.内外涵发动机有两股气流喷入大气,即低温的外涵空气流和高温的涡轮出口燃气流。 11.在低涵道比发动机中,两股气流由混合器(图6-4)掺混。混合器能使外涵的空气流入涡轮排气流之中,保证这两股气流充分混台。 12.在高涵道比发动机中,两股气流通常分别排出。高温和低温喷口是同轴线的,每个喷口的面积都设计成能获得最大效率。但是,可以加以改进,将两股燃气流结合到一个公用的即整体式喷管组件之中。这种喷管使气流在喷入大气之前先部分地混台。图6-5示出的这两种高涵道比发动机的排气系统可作为示例。
Administrator
文本框
结构和材料 13.排气系统应当能够承受很高的燃气温度,因此是用镍或钛合金制成。它还应当防止向周围飞机结构有任何的热量传递。这是通过在喷管周围流过通风空气,或通过在排气系统的热段套一个隔热层(图6-6)而实现的。每个隔热层有一个由纤维隔热材料制成的内层,外面由薄的不锈钢外皮包裹,外层制 成波纹形以增加强度。另外,在排气系统中有时还应用吸声材料,以减小发动机的噪声(第19章)。
Administrator
文本框
图6-6 一种隔热层
Page 72: Rolls royce jet engine

Rolls-Royce Gnome

De Havilland H2 Ghost

The Ghost was designed as a larger and morepowerful version of the Goblin. After runningfor the first time on 2 September 1945 theengine was cleared for flight in the outernacelles of an Avro Lancastrian at 4000 lbthrust. The Ghost later went into production at5000 lb thrust to power the de HavillandComet 1 airliner and Venom fighter.

Administrator
文本框
罗尔斯-罗伊斯公司“诺姆”(Gnome)发动机
Administrator
文本框
“幽灵”(Ghost)发动机是作为“妖魔”(Goblin)的尺寸和功率加大型而设计的。在1945年9月2日首次运转之后,它获准装在阿弗罗“兰开斯特”(Avro Lancastrian)飞机的外侧发动机短舱中,推力4000磅。后来,“幽灵”发动机投产,推力达5000磅,装用于德 哈维兰(de Havilland)公司的“彗星”(Comet)I客机和“毒辣”(Venom)歼山机上。
Administrator
文本框
德 哈维兰公司 H2“幽灵”发动机
Page 73: Rolls royce jet engine

7: Accessory drives

Contents Page

Introduction 65Gearboxes and drives 65

Internal gearbox Radial driveshaft Direct drive Gear train drive Intermediate gearbox External gearbox Auxiliary gearbox

Construction and materials 69GearsGearbox sealing Materials

INTRODUCTION

1. Accessory units provide the power for aircrafthydraulic, pneumatic and electrical systems inaddition to providing various pumps and controlsystems for efficient engine operation. The high levelof dependence upon these units requires anextremely reliable drive system.

2. The drive for the accessory units is typicallytaken from a rotating engine shaft, via an internalgearbox, to an external gearbox which provides amount for the accessories and distributes theappropriate geared drive to each accessory unit. Astarter may also be fitted to provide an input torqueto the engine. An accessory drive system on a highby-pass engine takes between 400 and 500horsepower from the engine.

GEARBOXES AND DRIVES

Internal gearbox3. The location of the internal gearbox within thecore of an engine is dictated by the difficulties ofbringing a driveshaft radially outwards and the spaceavailable within the engine core.

4. Thermal fatigue and a reduction in engineperformance, due to the radial driveshaft disturbingthe gasflow, create greater problems within theturbine area than the compressor area. For anygiven engine, which incorporates an axial-flowcompressor, the turbine area is smaller than thatcontaining the compressor and therefore makes itphysically easier to mount the gearbox within thecompressor section. Centrifugal compressor enginescan have limited available space, so the internalgearbox may be located within a static nose cone or,in the case of a turbo-propeller engine, behind thepropeller reduction gear as shown in fig. 7-1.

5. On multi-shaft engines, the choice of whichcompressor shaft is used to drive the internalgearbox is primarily dependent upon the ease of

65

Administrator
文本框
内部齿轮箱 径向传动轴 直接传动 齿轮链条传动 中间齿轮箱 外部齿轮箱 辅助齿轮箱
Administrator
文本框
绪言 1.附件装置为飞机液压、气压和电气系统提供动力,而且为发动机有效工作提供各种泵和控制系统的动力。由于这些装置存在很高的依赖性,所以要求传动系统具有极高的可靠性。
Administrator
文本框
第七章 附件传动装置
Administrator
文本框
目 录
Administrator
文本框
绪言 齿轮箱及传动装置
Administrator
文本框
结构和材料 齿轮 齿轮箱封严 材料
Administrator
文本框
齿轮箱及传动装置 内部齿轮箱 3.内部齿轮箱处在发动机的核心部位,其位置安排有许多困难,既要让一根传动轴能径向外伸,又要在发动机核心里面取得可用的空间。
Administrator
文本框
2.通常,附件装置是由发动机的旋转轴,经过内部齿轮箱传向外部齿轮箱来驱动。外部齿轮箱用作附件的安装座,并向各个附件装置分配相应的齿轮传动机构。其上还可能装一个起动机,为发动机提供输入扭矩。在高涵道比发动机上,一套附件传动系统从发动机吸取的功率在400到500马力之间
Administrator
文本框
4.热疲劳以及由于径向传动轴对燃气流干扰而降低发动机的性能,在涡轮区比在压气机区产生的问题更大。对于装轴流压气机的任何发动机,涡轮包容区域总是小于压气机区域,因此在机械上将齿轮箱装在压气机段比较容易。离心式压气机发动机可用空间有限,因此内部齿轮箱可以装在固定的前锥体之内,对于涡轮螺桨发动机,可以装在螺旋桨减速齿轮之后,如图7-1所示。
Page 74: Rolls royce jet engine

Accessory drives

66

Fig. 7-1 Mechanical arrangement of accessory drives.

Administrator
文本框
静止的前锥 内帮齿轮箱机匣
Administrator
文本框
Administrator
文本框
外部齿轮箱
Administrator
文本框
装在前锥机匣内的 内部齿轮箱
Administrator
文本框
附件装置
Administrator
文本框
外部齿轮箱
Administrator
文本框
齿轮系
Administrator
文本框
外部齿轮箱
Administrator
标注
附件装置
Administrator
文本框
附件装置的直接传动和 对外部齿轮箱的齿轮系传动
Administrator
文本框
整流罩
Administrator
文本框
内部齿轮箱
Administrator
文本框
中间齿轮箱
Administrator
文本框
带中间齿轮箱的 单轴传动机构
Administrator
文本框
低速外部齿轮箱
Administrator
文本框
高速外部齿轮箱
Administrator
文本框
辅助齿轮箱传动机构
Administrator
文本框
辅助齿轮箱
Administrator
文本框
带辅助齿轮箱的 双轴传动机构
Administrator
文本框
图7-1 几种附件传动装置的机械布局
Administrator
文本框
5.在多轴发动机上,究竞选择哪一个压气机轴用于传动内部齿轮箱主要取决于发动机是否易于起动。起动通常是由外部齿轮箱(第11章)提供输入扭矩来转动压气机轴而实现的。实际上。高压压气机转动后才能使空气流过发动机的,因此选定将高压压气机与内部齿轮箱相接。
Page 75: Rolls royce jet engine

engine starting. This is achieved by rotating thecompressor shaft, usually via an input torque fromthe external gearbox (Part 11). In practice the highpressure system is invariably rotated in order togenerate an airflow through the engine and the highpressure compressor shaft is therefore coupled tothe internal gearbox.

6. To minimize unwanted movement between thecompressor shaft bevel gear and radial driveshaftbevel gear, caused by axial movement of thecompressor shaft, the drive is taken by one of threebasic methods (fig. 7-2). The least number ofcomponents is used when the compressor shaftbevel gear is mounted as close to the compressorshaft location bearing as possible, but a smallamount of movement has to be accommodatedwithin the meshing of the bevel gears. Alternatively,the compressor shaft bevel gear may be mounted ona stub shaft which has its own location bearing. Thestub shaft is splined onto the compressor shaft whichallows axial movement without affecting the bevelgear mesh. A more complex system utilizes an idlergear which meshes with the compressor shaft viastraight spur gears, accommodating the axialmovement, and drives the radial driveshaft via abevel gear arrangement. The latter method waswidely employed on early engines to overcome gearengagement difficulties at high speed.

7. To spread the load of driving accessory units,some engines take a second drive from the slowerrotating low pressure shaft to a second externalgearbox (fig. 7-1). This also has the advantage oflocating the accessory units in two groups, thusovercoming the possibility of limited external spaceon the engine. When this method is used, an attemptis made to group the accessory units specific to theengine onto the high pressure system, since that isthe first shaft to rotate, and the aircraft accessoryunits are driven by the low pressure system. A typicalinternal gearbox showing how both drives are takenis shown in fig. 7-3.

Radial driveshaft8. The purpose of a radial driveshaft is to transmitthe drive from the internal gearbox to an accessoryunit or the external gearbox. It also serves to transmitthe high torque from the starter to rotate the highpressure system for engine starting purposes. Thedriveshaft may be direct drive or via an intermediategearbox (para. 14).

9. To minimize the effect of the driveshaft passingthrough the compressor duct and disrupting theairflow, it is housed within the compressor supportstructure. On by-pass engines, the driveshaft iseither housed in the outlet guide vanes or in a hollowstreamlined radial fairing across the low pressurecompressor duct.

10. To reduce airflow disruption it is desirable tohave the smallest driveshaft diameter as possible.The smaller the diameter, the faster the shaft must

Accessory drives

67

Fig. 7-2 Mechanical arrangement of internalgearboxes.

Administrator
文本框
径向传动轴 8.径向传动轴的目的是将转动从内部齿轮箱传到附件装置或外部齿轮箱。它还用来传递起动机的巨大扭矩,以转动高压系统,达到起动发动机的目的。传动轴可以是直接传动,或经过中间齿轮箱传动(第14段)。
Administrator
文本框
6.为了尽量减少压气机轴伞齿轮与径向传动轴伞齿轮之间由于压气机轴的轴向移动而造成的不必要运动,传动可采用三种基本方法(图7-2)之一。当压气机轴伞齿轮装在尽可能靠近压气机轴的定位轴承处时,零件数量最少,但要为伞齿轮的啮合留有少量的活动余地。另一种是压气机轴伞齿轮可以装在短轴上。该短轴有其自身的定位轴承。短轴通过花键安装在压气机轴上,这样既可轴向移动,而又不影响伞齿轮的啮合。更为复杂的系统则采用一个惰轮,通过直齿正齿轮与压气机轴啮合,它允许轴向移动,并可通过伞齿轮结构驱动径向传动轴。后一种方法被广泛应用于早期的发动机,以克服高转速下齿轮啮合的困难。
Administrator
文本框
7.为了分散传动附件装置的负荷,有些发动机从转速较低的低压轴接出第二套传动装置到第一个外部齿轮箱(图7-1)。这种方法还有将附件装置安排成两组的优点,因而可克服发动机上外部空间可能有限的问题。当采用这种力法时,力阿把专用于发动机的附件装置安排到高压系统,因为那是首先转动的轴,而飞机附件装置则由低压系统驱动。表 示兼有这两种传动装置的一个典型的内部齿轮箱示于图7-3。
Administrator
文本框
压气机轴
Administrator
文本框
9.为了尽量减小传动轴通过压气机流道和阻碍空气流的影响,它被安装在压气机支承结构里面。在内外涵发动机上,传动轴既可以安排在出口导向叶片之中,也可安排在穿过低压压气机流道的、空心的流线型径向整流罩之中。
Administrator
文本框
径向传动轴
Administrator
文本框
定位轴承
Administrator
文本框
直接传动
Administrator
文本框
压气机轴 定位轴承
Administrator
文本框
短轴定位轴承
Administrator
文本框
花键传动
Administrator
文本框
短轴传动机构
Administrator
文本框
惰轮齿轮轴
Administrator
文本框
惰轮齿轮驱动
Administrator
标注
图7-2 几种内部齿轮箱的机械布置
Page 76: Rolls royce jet engine

rotate to provide the same power. However, thisraises the internal stress and gives greater dynamicproblems which result in vibration. A long radialdriveshaft usually requires a roller bearing situatedhalfway along its length to give smooth running. Thisallows a rotational speed of approximately 25,000r.p.m. to be achieved with a shaft diameter of lessthan 1.5 inch without encountering serious vibrationproblems.

Direct drive11. In some early engines, a radial driveshaft wasused to drive each, or in some instances a pair, ofaccessory units. Although this allowed each

accessory unit to be located in any desirable locationaround the engine and decreased the powertransmitted through individual gears, it necessitateda large internal gearbox. Additionally, numerousradial driveshafts had to be incorporated within thedesign. This led to an excessive amount of timerequired for disassembly and assembly of the enginefor maintenance purposes.

12. In some instances the direct drive method maybe used in conjunction with the external gearboxsystem when it is impractical to take a drive from aparticular area of the engine to the external gearbox.For example, fig. 7-1 shows a turbo-propeller engine

Accessory drives

68

Fig. 7-3 An internal gearbox.

Administrator
文本框
10.为了减少对空气流的干扰,要求传动轴的直径尽可能小。直径越小,为了提供同样的功率,轴就应当转动得越快。但是这又增加了内部应力,并产生了更大的动力学问题,即引起振动。一根长的径向传动轴通常要在其中部位置安装一个滚棒轴承,以保证其平稳运转。这样就允许用直径小于1.5英寸的轴达到约25000转/分的转速而不会遇到严重的振动问题。
Administrator
文本框
直接传动 11.在某些早期的发动机上,一根径向传动轴用来传动一个,或在有些情况下传动一对附件装置。虽然,这样可以允许每一个附件装置安排到发动机周围任何想安排的地方,并且减少通过每单个齿轮传递的功率,但是,它需要有一个大的内部齿轮箱。而且,此设计还得采用众多的径向传动轴。这样还导致为了维护目的分解及装配发动机要求的时间过长。 12.在某些情况下,当无法从发动机的一个特定部位来驱动外部齿轮箱时,直接传动方法可以与外部齿轮箱系统结合起来使用。例如,图7-1由上至下的第2图所示为一台涡轮螺桨发动机,它要求有专用于螺旋桨减速传动的附件,但又让其外部齿轮箱位于远离该区域的地位,以便于接受压气机轴的传动。
Administrator
文本框
高速齿轮箱 传动齿轮轴
Administrator
文本框
高压压气机轴
Administrator
文本框
外部(低速) 齿轮箱径向传动轴
Administrator
文本框
惰轮齿轮辅
Administrator
文本框
低压压气机轴
Administrator
文本框
低速齿轮箱 主传动齿轮
Administrator
文本框
外部(高速) 齿轮箱径向驱动轴
Administrator
文本框
图7-3 一种内部齿轮箱
Administrator
文本框
齿轮链系传动 13.在空间容许的情况下,可以采用齿轮链系来传动外部齿轮箱(图7-1由上至下的第2图)。有时在采用一个离心通风器(第8章)使用这种正齿轮链系来传动。但是,很少发现这种传动系统在目前有使用的。
Administrator
文本框
中间齿轮箱 14.在不可能直接将径向传动轴与外部齿轮箱连接的时候,就要使用中间齿轮箱。为了解决这个问题,中间齿轮箱可安装在高压压气机机匣上,并通过伞齿轮来改变通向外部齿轮箱的传动方向。这种布置的例子见图7-1由上至下的第3图所示。
Page 77: Rolls royce jet engine

which requires accessories specific to the propellerreduction drive, but has the external gearbox locatedaway from this area to receive the drive from thecompressor shaft.

Gear train drive13. When space permits, the drive may be taken tothe external gearbox via a gear train (fig. 7-1). Thisinvolves the use of spur gears, sometimes incorpo-rating a centrifugal breather (Part 8). However, it israre to find this type of drive system in current use.

Intermediate gearbox14. Intermediate gearboxes are employed when it isnot possible to directly align the radial driveshaft withthe external gearbox. To overcome this problem anintermediate gearbox is mounted on the highpressure compressor case and re-directs the drive,through bevel gears, to the external gearbox. Anexample of this layout is shown in fig. 7-1.

External gearbox15. The external gearbox contains the drives for theaccessories, the drive from the starter and providesa mounting face for each accessory unit. Provision isalso made for hand turning the engine, via thegearbox, for maintenance purposes. Fig. 7-4 showsthe accessory units that are typically found on anexternal gearbox.

16. The overall layout of an external gearbox isdictated by a number of factors. To reduce dragwhilst the aircraft is flying it is important to present alow frontal area to the airflow. Therefore the gearboxis 'wrapped' around the engine and may look, fromthe front, similar to a banana in shape. Formaintenance purposes the gearbox is generallylocated on the underside of the engine to allowground crew to gain access. However, helicopterinstallation design usually requires the gearbox to belocated on the top of the engine for ease of access.

17. The starter/driven gearshaft (fig. 7-4) roughlydivides the external gearbox into two sections. Onesection provides the drive for the accessories whichrequire low power whilst the other drives the highpower accessories. This allows the small and largegears to be grouped together independently and isan efficient method of distributing the drive for theminimum weight.

18. If any accessory unit fails, and is preventedfrom rotating, it could cause further failure in theexternal gearbox by shearing the teeth of the geartrain. To prevent secondary failure occurring a weaksection is machined into the driveshafts, known as a

'shear-neck', which is designed to fail and thusprotect the other drives. This feature is not includedfor primary engine accessory units, such as the oilpumps, because these units are vital to the runningof the engine and any failure would necessitateimmediate shutdown of the engine.

19. Since the starter provides the highest torquethat the drive system encounters, it is the basis ofdesign. The starter is usually positioned to give theshortest drive line to the engine core. This eliminatesthe necessity of strengthening the entire gear trainwhich would increase the gearbox weight. However,when an auxiliary gearbox is fitted (para, 21) thestarter is moved along the gear train to allow theheavily loaded auxiliary gearbox drive to passthrough the external gearbox. This requires the spurgears between the starter and starter/drivengearshaft to have a larger face width to carry the loadapplied by the starter (fig. 7-5).

20. When a drive is taken from two compressorshafts, as discussed in para. 7, two separategearboxes are required. These are mounted eitherside of the compressor case and are generallyknown as the 'low speed' and 'high speed' externalgearboxes.

Auxiliary gearbox21. An auxiliary gearbox is a convenient method ofproviding additional accessory drives when the con-figuration of an engine and airframe does not allowenough space to mount all of the accessory units ona single external gearbox.

22. A drive is taken from the external gearbox (fig.7-5) to power the auxiliary gearbox which distributesthe appropriate gear ratio drive to the accessories inthe same manner as the external gearbox.

CONSTRUCTION AND MATERIALS

Gears23. The spur gears of the external or auxiliarygearbox gear train (fig. 7-4 and 7-5) are mountedbetween bearings supported by the front and rearcasings which are bolted together. They transmit thedrive to each accessory unit, which is normallybetween 5000 and 6000 r.p.m. for the accessoryunits and approximately 20,000 r.p.m. for thecentrifugal breather,

24. All gear meshes are designed with 'huntingtooth' ratios which ensure that each tooth of a geardoes not engage between the same set of opposingteeth on each revolution. This spreads any wearevenly across all teeth.

Accessory drives

69

Administrator
文本框
16.外部齿轮箱的总体布置由很多因素决定。为了减少飞机飞行中的阻力,减小迎风面积非常重要。因此齿轮箱“封装”在发动机的周围,从前面看,呈香蕉形状。为了维护方便,齿轮箱通常位于发动机的 下部,以方便地勤人员接近。但是直升机的安装设计则通常要求将齿轮箱安排在发动机上部才易于接近。
Administrator
文本框
外部齿轮箱 18.如果某个附件装置损坏而使转动受阻,就有可能由于齿轮系牙齿被剪切而引起外部齿轮箱内部的进一步损坏。为了防止发生二次损坏,在传动轴上,用机械加工方法加工出了一个称之为“剪力颈”的薄弱部位,这个部位的破坏可以保护其他传动机构。但是这种特点并不用于主要的发动机附件装置,例 如滑油泵,因为它们对于发动机的运转至为重要,任何故障都要求将发动机立即停机。
Administrator
文本框
19.由于起动机发出的扭矩是传动系统所遇到的最大扭矩,所以它是设计的基础。通常起动机的位置安排要使其与发动机的核心的传动线路最短。这就不必要去加强整个齿轮系,否则会增加齿轮箱的重量。当装有辅助齿轮箱时(第21段)。起动机要顺着齿轮系移开,让载荷很大的辅助齿轮箱传动装置能通过外部齿轮箱引出。这就要求在起动机和起动机/传动齿轮轴之间的正齿轮应有更大的齿面宽度来承受起动机施加的载荷(图7-5)。
Administrator
文本框
20.正如第7段所述,传动来自两个压气机轴的时候,就要求有两个独立的齿轮箱。它们分别装在压气机机匣的两侧,通常称为“低速”和“高速”外部齿轮箱。
Administrator
文本框
15.外部齿轮箱包括各附件的传动装置,来自起动机的传动装置,为各个附件装置提供安装座。而且,为了维护的目的,它还有通过齿轮箱用手转动发动机的机构。图7-4示出了那些可以在外部齿轮箱上看到的典型附件装置。
Administrator
文本框
辅助齿轮箱 21.在发动机和飞机机体的布局没有足够的空间在一个外部齿轮箱上安装所有的附件装置的情况下。辅助齿轮箱便是提供外加附件装置传动的一种方便的方法。
Page 78: Rolls royce jet engine

25. Spiral bevel gears are used for the connectionof shafts whose axes are at an angle to one anotherbut in the same plane. The majority of gears within agear train are of the straight spur gear type, thosewith the widest face carry the greatest loads. Forsmoother running, helical gears are used but theresultant end thrust caused by this gear tooth patternmust be catered for within the mounting of the gear.

Gearbox sealing26. Sealing of the accessory drive system isprimarily concerned with preventing oil loss. Theinternal gearbox has labyrinth seals where the staticcasing mates with the rotating compressor shaft. Forsome o! the accessories mounted on the externalgearbox, an air blown pressurized labyrinth seal is

Accessory drives

70

Fig. 7-4 An external gearbox and accessory units.

Administrator
文本框
22.辅助齿轮箱由外部齿轮箱(图7-5)来驱动,它为附件分配相应的齿轮传动比,其情况类似于外部齿轮箱。 结构和材料 齿轮 23.外部齿轮箱或辅助齿轮箱齿轮系(图7-4和图7-5)的正齿轮装在前后机匣支承的轴承之间。前后机匣则由螺栓连接在一起。这些正齿轮将传动传递到每一个附件装置。附件装置的转速通常在5000到6000转/分之间,而离心通风机则为20000转/分左右。
Administrator
文本框
24.所有齿轮的啮合都设计为“不规则”的齿轮传动比,以保证齿轮上的每一个齿在每转一圈时不与它对应的齿再度啮合。这样可以将磨损均匀地分布到所有的齿上。
Administrator
文本框
径向传动轴
Administrator
文本框
25.螺旋伞齿轮被用来连接那些彼此呈一定角度,但位于同平面内的那些轴。在一个齿轮系之中的多数齿轮是直齿正齿轮,齿面最宽的那些正齿轮可用来承受最大的载荷。对于要求较为平稳的运转来说,通常使用螺旋齿轮,但由这种齿轮的齿型造成的端面合成推力应当由齿轮的安装方式加以解决。
Administrator
文本框
飞机发电机
Administrator
文本框
起动机/ 传动齿轮轴 高压燃油泵 发动机发电机 转速表
Administrator
文本框
燃油流量 调节器
Administrator
文本框
后机匣
Administrator
文本框
前机匣
Administrator
文本框
低压燃油泵
Administrator
文本框
液压泵
Administrator
文本框
滑油泵
Administrator
文本框
发动机手摇把口盖
Administrator
文本框
通风口
Administrator
文本框
离心式 通风机
Administrator
文本框
图7-4 一种外部齿轮箱和一些附件装置
Administrator
文本框
起动机
Page 79: Rolls royce jet engine

employed. This prevents oil from the gearboxentering the accessory unit and also prevents con-tamination of the gearbox, and hence engine, in theevent of an accessory failure. The use of an air blownseal results in a gearbox pressure of about 3 lbs. persq. in. above atmospheric pressure. To supplement alabyrinth seal, an 'oil thrower ring' may be used. Thisinvolves the leakage oil running down the drivingshaft and being flung outwards by a flange on therotating shaft. The oil is then collected and returnedto the gearbox.

Materials27. To reduce weight, the lightest materials possibleare used. The internal gearbox casing is cast fromaluminium but the low environmental temperaturesthat an external gearbox is subjected to allows theuse of magnesium castings which are lighter still.The gears are manufactured from non-corrosionresistant steels for strength and toughness. They arecase hardened to give a very hard wear resistantskin and feature accurately ground teeth for smoothgear meshing.

Accessory drives

71

Fig. 7-5 An external gearbox with auxiliary gearbox drive.

Administrator
文本框
材料
Administrator
文本框
离心式通风机
Administrator
文本框
齿轮箱封严 26.附件驱动系统的封严主要在于考虑防止滑油流失。内部齿轮箱在静止的机匣与旋转的压气机轴的配合处用篦齿式封严。对于装在外部齿轮箱上的某些附件,采用了吹风增压的篦齿式封严。这是考虑万一某个附件损坏时,防止滑油从齿轮箱进入附件装置,以及防止齿轮箱甚至发动机的污染。吹风增压封严件的使用使齿轮箱的压力比大气压力大约高3磅/平方英寸。为补充篦齿式封严的作刖,可以使用“滑油甩油环”。这是利用漏出的滑油沿传动轴流动并沿着旋转轴上的凸边向外甩出这一现象。然后,将这部分滑油再收集起来并返回齿轮箱。
Administrator
文本框
27.为了减轻重最,要采用尽可能轻的材料。内部齿轮箱的机匣由铝合金铸成,而外部齿轮箱所处的环境温度低,所以它可以采用更轻的镁合金机匣。从强度和韧性出发,齿轮由非耐腐蚀的钢制成。齿轮经表面硬化,获得了硬度非常高的耐磨表层,同时为了齿轮平稳的啮合,齿是经过精确研磨的。
Administrator
文本框
起动机安装座
Administrator
文本框
辅助齿轮箱 传动机构
Administrator
文本框
辅助齿轮箱 传动轴
Administrator
文本框
通向辅助齿轮箱
Administrator
文本框
后机匣
Administrator
文本框
前机匣
Administrator
文本框
图7-5 一种带辅助齿轮箱传动装置的外部齿轮箱
Administrator
文本框
直齿正齿轮
Administrator
文本框
螺旋伞齿轮
Administrator
文本框
径向传动轴
Administrator
文本框
斜齿正齿轮
Page 80: Rolls royce jet engine

Rolls-Royce Tay

Bristol Theseus

This engine was conceived in 1940 as a 4000hp turbo-prop but was later scaled down to2000 hp. Named the Theseus the engine wastype tested in December 1946. the world's firstturbo-prop to reach this stage of development.After extensive flight testing in an AvroLincoln, four Theseus engines were installedin a Handley-Page Hermes 5.

Administrator
文本框
该发动机于1940年按4000马力涡轮螺桨发动机方案开始设计,但是后来缩型为2000马力。以“提修斯”(Theseus)命名的该发动机于1946年12月进行了定型试车,成为世界第一台能达到这一研制阶段的涡轮螺桨发动机。在阿弗罗公司的“林肯”(Avro Lincoln)飞机上进行了广泛的飞行试验之后,4台“提修斯”发动机装用到了汉德利-佩奇公司(Handley-Page)的“赫尔姆”(Hermes)5型飞机上。
Administrator
文本框
罗尔斯-罗伊斯公司 “泰”(Tay)发动机
Administrator
文本框
布里斯托尔公司 “提修斯”发动机
Page 81: Rolls royce jet engine

INTRODUCTION

1. The lubrication system is required to providelubrication and cooling for all gears, bearings andsplines. It must also be capable of collecting foreignmatter which, if left in a bearing housing or gearbox,can cause rapid failure. Additionally, the oil mustprotect the lubricated components which are manu-factured from non-corrosion resistant materials. Theoil must accomplish these tasks without significantdeterioration.

2. The requirements of a turbo-propeller engine aresomewhat different to any other types of aero gasturbine. This is due to the additional lubrication of theheavily loaded propeller reduction gears and theneed for a high pressure oil supply to operate thepropeller pitch control mechanism.

3. Most gas turbine engines use a self-containedrecirculatory lubrication system in which the oil isdistributed around the engine and returned to the oiltank by pumps. However, some engines use asystem known as the total loss or expendable systemin which the oil is spilled overboard after the enginehas been lubricated.

LUBRICATING SYSTEMS

4. There are two basic recirculatory systems,known as the 'pressure relief valve1 system and the'full flow' system. The major difference between themis in the control of the oil flow to the bearings. In bothsystems the temperature and pressure of the oil arecritical to the correct and safe running of the engine.Provision is therefore made for these parameters tobe indicated in the cockpit.

8: Lubrication

Contents Page

Introduction 73 Lubricating systems 73

Pressure relief valve systemFull flow systemTotal loss (expendable) system

Oil system components 77Lubricating oils 83

73

Administrator
文本框
滑油系统部件 润滑油
Administrator
文本框
绪言 1.对润滑系统的要求是为所有的齿轮、轴承和花键提供润滑和冷却。它应当能够收集外来物,因为如果留在轴承机匣或齿轮箱内,就会造成迅速的损坏。而且,滑油应当防护由非耐腐蚀材料制成的被滑润的部件。滑油应当完成这些任务而不致严重变质。
Administrator
文本框
2.对涡轮螺桨发动机润措系统的要求与其他类型 的航空燃气涡轮发动机多少有所不同。这是由于另 外还要润滑载荷很大的螺旋桨减速器齿轮,并且还 需要向螺旋桨桨距控制机构供给高压滑油。 3.大多数燃气涡轮发动机使用自容纳的循环式润滑 系统,它将滑油分配到发动机的各个部位,并用油泵将滑油送回滑油箱。但是,有些发动机使用一种称之为总损耗或可消耗的系统。在这种系统中,滑油润滑了发动机之后便溢出发动机外。
Administrator
文本框
润滑系统 4.共有两种基本的循环系统,即“减压活门”系统和“全流量”系统。它们的主要差别在于对供向轴承的滑油流量的控制。在这两种系统中对于发动机正确和安全运转最关键的是滑油的温度和压力。因此,在驾驶舱中有用于指示这些参数的设备。
Administrator
文本框
第八章 润滑
Administrator
文本框
目录
Administrator
文本框
绪言 润滑系统
Administrator
文本框
减压活门系统 全流量系统 总损耗(可消耗的)系统
Administrator
文本框
减压活门系统 5.在减压活门系统中,通过将供油路中的滑油压力限制到给定的设计值来控制向轴承腔供应的滑油流量。在设计上采用了弹簧加载的活门,当超过设计值时,它允许滑油从增压泵出口或增压泵进口直接返回滑油箱。
Page 82: Rolls royce jet engine

Pressure relief valve system5. In the pressure relief valve system the oil flow tothe bearing chambers is controlled by limiting thepressure in the feed line to a given design value. Thisis accomplished by the use of a spring loaded valvewhich allows oil to be directly returned from thepressure pump outlet to the oil tank, or pressurepump inlet, when the design value is exceeded. Thevalve opens at a pressure which corresponds to theidling speed of the engine, thus giving a constantfeed pressure over normal engine operating speeds.However, increasing engine speed causes thebearing chamber pressure to rise sharply. Thisreduces the pressure difference between the bearingchamber and feed jet, thus decreasing the oil flowrate to the bearings as engine speed increases. Toalleviate this problem, some pressure relief valvesystems use the increasing bearing chamberpressure to augment the relief valve spring load, Thismaintains a constant flow rate at the higher enginespeeds by increasing the pressure in the feed line asthe bearing chamber pressure increases.

6 Fig. 8-1 shows the pressure relief valve systemfor a turbo-propeller engine and indicates the basiccomponents that comprise an engine lubricationsystem. The oil pressure pump draws oil from thetank through a strainer which protects the pumpgears from debris which may have entered the tank,Oil is then delivered through a pressure filter to thepressure relief valve which maintains a constant oildelivery pressure to the feed jets in the bearingchambers. Some engines may have an additionalrelief valve (pressure limiting valve) which is fitted atthe oil pressure pump outlet. This valve is set to openat a much higher value than the pressure relief valveto return the oil to the inlet side of the oil pressurepump in the event of the system becoming blocked.A similar valve may also be fitted across the pressurefilter to prevent oil starvation of the bearing chambersshould the filter become partially blocked or the oilhaving a high viscosity under cold starting conditionspreventing sufficient flow through the filter. Provisionis also made to supply oil to the propeller pitchcontrol system, reduction gear and torquemeter

Lubrication

74

Fig. 8-1 A pressure relief valve type oil system.

Administrator
文本框
6.图8-1示出,涡轮螺桨发动机的减压活门系统,并指出了发动机润滑系统所包含的基本部件。滑油增压泵自油箱抽油,中间经过一个滤网,该滤网保护油泵的齿轮,不让可能进入油箱的碎片进入油泵。然后,滑油通过高压油滤进入减压活门,保持对轴承腔中的供油喷嘴的供油压力恒定。某些发动机可能有另外的减压活门(压力限制活门)装在滑油增压泵的出口。该活门设定打开的压力值要比减压活门的压力值高很多,它在系统发生堵塞时将滑油返回滑油增压泵的进口。类似的活门也可以装在跨越压力油滤的旁路中用来防止轴承腔缺油。在万一油滤发生部分堵塞,或者在冷天起动条件下滑油粘度高,妨碍足够流量的滑油流过油滤时,这种缺油现象就会出现。还有一些设备将滑油送往螺旋桨桨距控制系统,减速齿轮和扭矩计系统。回油泵将滑油经过滑油散热器送回滑油箱。在进入油箱时,滑油已经过油气分离,可以再次进行循环。
Administrator
文本框
在相当于发动机慢车转速的压力下,该活门打开,因此,在所有发动机正常工作转速下,它都提供恒定的供油压力。但是,增大发动机转速会使轴承腔压力急剧增加。这会降低轴承腔和供油喷嘴之间的压力差,从而随着发动机转速的增加而减少向轴承的供油流量。为了缓解这个问题,某些减压活门系统利用正在增大的轴承腔压力来加大减压活门的弹簧载荷。这样,通过随轴承腔压力增大而增大供油路中的压力来保持在更高发动机转速下恒定的滑油流量
Administrator
文本框
减压活门
Administrator
文本框
油气分离器盘
Administrator
文本框
扭矩计油泵
Administrator
文本框
空气净却 滑油散热器
Administrator
文本框
来自 滑油箱
Administrator
文本框
滑油泵组件
Administrator
标注
高压油滤
Administrator
标注
滤网
Administrator
文本框
离心式 通风机
Administrator
标注
供油 回油 通风滑油/空气雾 扭矩计滑油
Administrator
文本框
图8-1 一种减压活门式滑油系统
Page 83: Rolls royce jet engine

system. Scavenge pumps return the oil to the tankvia the oil cooler. On entering the tank, the oil is de-aerated ready for recirculation.

Full flow system7. Although the pressure relief valve systemoperates satisfactorily for engines which have a lowbearing chamber pressure, which does not undulyincrease with engine speed, it becomes anundesirable system for engines which have highchamber pressures. For example, if a bearingchamber has a maximum pressure of 90 lb. per sq.in. It would require a pressure relief valve setting of130 lb. per sq. in. to produce a pressure drop of 40lb. per sq. in. at the oil feed jet. This results in the

need for large pumps and difficulty in matching therequired oil flow at slower speeds.

8. The full flow system achieves the desired oil flowrates throughout the complete engine speed rangeby dispensing with the pressure relief valve andallowing the pressure pump delivery pressure tosupply directly the oil feed jets. Fig. 8-2 shows anexample of this system which may be found on aturbo-fan engine. The pressure pump size isdetermined by the flow required at maximum enginespeed. The use of this system allows smallerpressure and scavenge pumps to be used since thelarge volume of oil which is spilled by the pressurerelief valve system at maximum engine speed isobviated.

Lubrication

75

Fig. 8-2 A full flow type oil system.

Administrator
文本框
8.全流量系统可以在整个发动机转速范围内达到要求的滑油流量,它不用减压活门,而允许增压泵直接向滑油供油喷嘴供压。图8-2示出了这种系统的一个例子,它可以在涡轮风扇发动机上找到。增压油泵的尺寸由发动机最大转速下要求的滑油流量决定。由于不像减压活门系统那样在最大发动机转速下溢出大量的滑油,所以使用本系统允许使用较小的压力和较小的回油泵。
Administrator
文本框
全流量系统 7.虽然对于具有低轴承腔压力的发动机来说,轴承腔压力不会随发动机转速的增加而过量增加,减压活门系统可以满意地工作。但是,对于具有高轴承腔压力的发动机来说,它就成了不符合要求的系统。例如,假如轴承腔的最大压力为90磅/平方英寸,为了在滑油供油喷嘴处产生40磅/平方英寸的压力降,就要求减压活门设定压力为l30磅/平方英寸。这时就要使油泵很大,并且在较低的转速下难以与要求的滑油流量相匹配。
Administrator
文本框
燃油冷却滑油散热器 空气冷却滑油散热器
Administrator
文本框
滑油压力传感器和低压警告开关
Administrator
文本框
油气分离器盘
Administrator
文本框
节流后溢油 流回滑油箱
Administrator
标注
离心式通风机
Administrator
文本框
滑油泵组件
Administrator
文本框
高压油滤
Administrator
文本框
供油 回油 通风空气
Administrator
文本框
滑油压差开关
Administrator
标注
减压活门
Administrator
文本框
来自滑油箱
Administrator
文本框
图8-2 一种全流量式滑油系统
Page 84: Rolls royce jet engine

9. To prevent high oil pressures from damagingfilters or coolers, pressure limiting valves are fitted toby-pass these units. These valves normally onlyoperate under cold starting conditions or in the eventof a blockage. Advance warning of a blocked filtermay be indicated in the cockpit by a differentialpressure switch which senses an increase in thepressure difference between the inlet and outlet ofthe filter.

Total loss (expendable) system10. For engines which run for periods of shortduration, such as booster and vertical lift engines,

the total loss oil system is generally used. Thesystem is simple and incurs low weight penaltiesbecause it requires no oil cooler, scavenge pump orfilters. On some engines oil is delivered in acontinuous flow to the bearings by a plunger-typepump, indirectly driven from the compressor shaft; onothers it is delivered by a piston-type pump operatedby fuel pressure (fig. 8-3). In the latter, the oil supplyis automatically selected by the high pressure fuelshut-off valve (cock) during engine starting and isdelivered as a single shot to the front and rearbearings. On some engines provision is made for a

Lubrication

76

Fig. 8-3 A total loss (expendable) oil system.

Administrator
文本框
9.为了防止高的滑油压力损坏油滤或滑油散热器,安装了限压活门,使滑油绕过这些装置而经旁路回油。一般情况下,这些活门只有在冷起动条件下或当发生堵塞时才工作。通过压差开关可以在驾驶舱中提前给出油滤堵塞的警告指示,该开关感受油滤进口和出口的压力差。
Administrator
文本框
总损耗(可消耗的)系统 10.对于短时间运转的发动机,如助推发动机和垂直升力发动机,通常使用总损耗滑油系统。这种系统简单而且重量方而的负担较小,因为它不需要滑油散热器,回油泵或油滤。在某些发动机上,滑油由一个柱塞式泵连续地向轴承供油。该泵由上压气机轴间接驱动。在其它发动机上,滑油由燃油压力(图8-3)驱动的活塞式泵供应。对于后者,供油是由高 压燃油停车开关在发动机起动时自动选择的,向?后轴承只射油一次。在某些发动机上,还备有某种措施按预定的时间间隔第二次射油,但是只向后轴承射油。
Administrator
文本框
燃油装置轴承
Administrator
文本框
滑油箱
Administrator
文本框
燃油槽
Administrator
标注
前轴承
Administrator
文本框
油门装置
Administrator
标注
一次注油滑油泵
Administrator
文本框
压气机空气
Administrator
文本框
后轴承
Administrator
标注
空心出口导向叶片
Administrator
文本框
油箱压力 供滑油 滑油/空气雾 高压燃油 低压燃油
Administrator
文本框
滑油/空气雾引射喷口
Administrator
文本框
图8-3 一种总损耗(消耗性)滑油系统
Page 85: Rolls royce jet engine

second shot to be delivered to the rear bearing only,after a predetermined period.

11. After lubricating the fuel unit and front bearings,the oil from the front bearing drains into a collectortray and is then ejected into the main gas streamthrough an ejector nozzle. The oil that has passedthrough the rear bearing, drains into a reservoir atthe rear of the bearing where it is retained bycentrifugal force until the engine is shut down. This

oil then drains overboard through a central tube inthe exhaust unit inner cone.

OIL SYSTEM COMPONENTS

12. The oil tank (fig. 8-4) is usually mounted on theengine and is normally a separate unit although itmay also be an integral part of the external gearbox.It must have provision to allow the lubrication systemto be drained and replenished. A sight glass or adipstick must also be incorporated to allow the oil

Lubrication

77

Fig. 8-4 An oil tank.

Administrator
文本框
11.滑油在润滑了燃油装置和前轴承之后,由前轴承排入集油槽,然后通过一个引射喷口喷入主燃气流。流过后轴承的滑油排入轴承后面的收油池,滑油在离心力作用下留在那里直至发动机停车。然后该滑油由位于排气装置内锥中的中心管排出机外。
Administrator
文本框
滑油系统部件 12.滑油箱(图8-4)通常安装在发动机上,虽然它可以作为外部齿轮箱的一个整体构件,但一般是一个单独的装置。它应当带有能使润滑系统放油和加油的设备。还应当备有观察窗或者量杆,用来对滑油采统的油量进行检查。加油器可以是重力式的,也可以是压力加油式的。在某些发动机上,这两种形式兼备。对于设计上要作倒飞的飞机,还要有能提供连续供油的设备。由于在轴承腔中,空气和滑油混在一起,所以油箱内还有油气分离装置,将回油 中的空气除掉。
Administrator
文本框
观察窗玻璃
Administrator
文本框
滑油压力传感器
Administrator
文本框
高压油滤进口
Administrator
文本框
齿轮箱通风
Administrator
标注
通向发动机轴承
Administrator
文本框
来自散热器
Administrator
文本框
来自发动机轴承
Administrator
文本框
滤网
Administrator
文本框
通向齿轮箱
Administrator
文本框
油滤旁通活门
Administrator
文本框
通向增压滑油泵
Administrator
文本框
放油塞
Administrator
文本框
系统减压活门
Administrator
文本框
油滤放油活门
Administrator
文本框
供滑油 回油 空气和滑油雾
Administrator
文本框
图8-4 一种滑油箱
Administrator
文本框
滤芯
Administrator
文本框
油气分离器盘
Administrator
文本框
13.滑油泵对于发动机的有效工作极为重要。滑油泵损坏要求发动机急速停车。为此,滑油泵驱动轴没有薄弱的剪力颈(第7章),因为它们应当尽可能长期地连续供油,不管是否损坏。 14.因供给的滑油分布到发动机所有的润滑零件时,从而大量的封严空气(第9章)与其混合,增加了它的体积,而且,各轴承腔在不同的压力下工作。因此,为了防止溢出,通常每个轴承腔都要有一个回油泵。
Page 86: Rolls royce jet engine

system contents to be checked. The filler can beeither the gravity or pressure filling type; on someengines both types are fitted. Provision is also madefor a continuous supply of oil to be made available inaircraft which are designed to operate duringinverted flight conditions. Since air is mixed with theoil in the bearing chambers, a de-aerating device isincorporated within the oil tank which removes the airfrom the returning oil.

13. The oil pumps are vital to the efficient operationof the engine. Failure of the pumps will necessitate arapid shutdown of the engine. For this reason, the oilpump driveshafts do not incorporate a weak shear-neck (Part 7) because they must continue to supplyoil for as long as possible, regardless of damage.

14. As the feed oil is distributed to all the lubricatedparts of the engine a substantial amount of sealingair (Part 9) mixes with it and increases its volume.Additionally the bearing chambers operate underdiffering pressures. Therefore, to prevent flooding itis usually necessary to have $. scavenge pump foreach chamber.

15. Gear type pumps are normally used in recircu-latory oil systems but vane and gerotor pumps areemployed in some engines. The simplicity of single-shot pumps (para. 19) make them ideal for engineswhich run for a short duration and use the total losstype of oil system.

16. Gear pumps (fig. 8-5) consist of a pair of inter-meshing steel gears which are housed in a closefitting aluminium casing. When the gears are rotated,oil is drawn into the pump, carried round between theteeth and casing and delivered at the outlet.

17. Since a small quantity of incompressible oilbecomes trapped in the gear mesh, which can causea hydraulic lock and possible pump damage, a reliefslot is machined into the end faces of the casing toprovide an escape route for the oil.

18. Gear pumps are used both as pressure (feed)pumps and scavenge (return) pumps and are incor-porated within a common casing. The oil pumps packis driven by the accessory drive system (Part 7).

19. Single-shot pumps (fig. 8-6) have a quantity ofoil contained within a cylinder. When the piston isforced up the cylinder bore, under the control of thethrottle unit, the oil forces the outlet valves to openallowing a flow of oil to the parts required to belubricated. When the piston reaches the top of thecylinder bore the outlet valves close due to thereduced oil pressure. Recharging of the oil pump

cylinder is achieved by a spring forcing the piston toits original position. This reduces the pressurebetween the cylinder and the oil tank which allowsthe oil replenshing valves to open until the cylinder isrecharged.

20. The most common type of oil distribution deviceis a simple orifice which directs a metered amount ofoil onto its target. These jet orifices are positioned asclose to the target area as possible to overcome thepossibility of the local turbulent environmentdeflecting the jet of oil. The smallest diameter of a jetorifice is 0.04 inch which allows a flow of 12 gallonsper hour when operating at a pressure of 40 lb. persq. in. The use of restrictors upstream can reduce theflow rate if required.

21. All engines transfer heat to the oil by friction,churning and windage within a bearing chamber orgearbox. It is therefore common practice to fit an oilcooler in recirculatory oil systems. The coolingmedium may be fuel or air and, in some instances,both fuel-cooled and air-cooled coolers are used.

Lubrication

78

Fig. 8-5 Principle of a gear pump.

Administrator
文本框
17.由于少量不可压缩的滑油滞留在齿轮啮合处,它可能产生液压堵塞,并可能导致油泵损坏,所有在泵体的端面上加工一道减压槽,作为滑油泄出的流路。 18.齿轮泵可同时用作增压油泵(供油)和回油泵(回油),两者处于同一壳体之内。这种滑油泵组由附件驱动系统驱动(第7章)。 19.一次压射式油泵(图8-6)在其油缸中装有一定量的滑油。当活塞受压顺着油缸筒往上运动时.在油门装置的控制下,滑油迫使出口活门打开,使一股滑油流向需要润滑的零件。当活塞到达油缸筒的顶 部时,出口活门由于油压减低而关闭。滑油泵油缸 的重新装油是靠一根弹簧迫使活塞回到它原先的位置来实现的。因为活塞的移动减低了油缸和油箱之间的压力,使进油活门打开,直到油缸重新充满为止。 20.大多数普通的滑油分配装置是单孔式的,它将定量的滑油引向润滑对象。这些喷油孔安排在离对象尽可能近的地方,以克服局部环境的紊乱使滑油射流偏斜的可能性。喷油孔的最小直径为0.04英寸,当工作在40磅/平方英寸的压力下时,可通过的流量为每小时l2加仑。如果需要,可在上游使用限流器以减少流量。
Administrator
文本框
15.齿轮式油泵通常用于循环式滑油系统,但有些发动机也用旋板式和常压油泵。一次压射式油泵(第19段)由于简单,使其用于短时间工作并采用总损耗滑油系统的发动机中是非常理想的。 16.齿轮泵(图8-5)由一对相互啮合的铜齿轮构成,它们装在精密配合铝合金壳体之内。当两齿轮旋转时,滑油被吸入油泵,在齿和泵体之间流过,在出口处向外供油。
Administrator
文本框
机匣
Administrator
文本框
高压出口
Administrator
文本框
齿间集油容量 (在供油泵中的滑油或在回油泵中的空气/滑油)
Administrator
文本框
低压滑油 高压滑油
Administrator
文本框
低压进口
Administrator
文本框
图8-5 一种齿轮泵的工作原理
Administrator
文本框
21.所有的发动机都会因轴承腔或齿轮箱内的摩擦、搅动和风阻向滑油传热。因此,一般的做法是在循环滑油系统中装一个滑油散热器。冷却介质可以是燃油或空气,在某些情况下同时使用燃油冷却的和空气冷却的散热器。
Page 87: Rolls royce jet engine

22. Some engines which utilize both types of coolermay incorporate an electronic monitoring systemwhich switches in the air-cooled cooler only when itis necessary. This maintains the ideal oil temperatureand improves the overall thermal efficiency.

23. The fuel-cooled oil cooler (fig. 8-7) has a matrixwhich is divided into sections by baffle plates. A largenumber of tubes convey the fuel through the matrix,the oil being directed by the baffle plates in a seriesof passes across the tubes. Heat is transferred fromthe oil to the fuel, thus lowering the oil temperature.

24. The fuel-cooled oil cooler incorporates a bypassvalve fitted across the oil inlet and outlet. The valveoperates at a pre-set pressure difference across the

cooler and thus prevents engine oil starvation in theevent of a blockage. A pressure maintaining valve isusually located in the feed line of the cooler whichensures that the oil pressure is always higher thanthe fuel pressure. In the event of a cooler internalfault developing, the oil will leak into the fuel systemrather than the potentially dangerous leakage of fuelinto the oil system.

25. The air-cooled oil cooler is similar to the fuel-cooled type in both construction and operation; themain difference is that air is used as the coolingmedium.

26. Magnetic plugs, or chip detectors (fig. 8-8), arefitted on the scavenge (return) side to collect ferritic

Lubrication

79

Fig. 8-6 A single-shot oil pump.

Administrator
文本框
24.燃油冷却滑油散热器在滑油的进口和出口之间装有一个旁通活门。该活门在预先设定的散热器前后压差下工作,从而防止在堵塞的情况下发动机缺滑油。通常在散热器的输油路上还安装一个压力保持活门,它保证滑油压力总是高于燃油压力。在散热器发生内部故障的情况下,滑油会漏入燃油系统,而不是燃油漏入滑油系统发生潜在的危险。 25.空气冷却滑油散热器与燃油冷却式相比,两者在结构和工作上都相似。主要差别是利用空气作为冷却介质。
Administrator
文本框
22.某些同时使用两种散热器的发动机,可以设一套电子监控系统,只在需要的时候才将空气冷却的散热器打开。这样可保持理想的滑油温度和提高总的热效率。
Administrator
文本框
23.燃油冷却滑油散热器(图8-7)有一个蜂窝散热组件,由折流板分隔成段。大量的导管穿过蜂窝散热器输送燃油,滑油在折流板的引导下经一系列通道流过这些管子外面。热量由滑油传给燃油,因此降低了滑油温度。
Administrator
文本框
滑油箱
Administrator
文本框
滑油通向轴承
Administrator
文本框
活塞
Administrator
文本框
通向轴承 的滑油
Administrator
文本框
高压燃油 低压燃油
Administrator
文本框
由油门装置 控制
Administrator
文本框
油泵排油
Administrator
文本框
放油
Administrator
文本框
图8-6 一次压射式滑油泵
Administrator
文本框
油滤
Administrator
文本框
出口活门
Administrator
文本框
油泵再次充油
Administrator
文本框
滑油 供滑油 高压燃油 低压燃油
Administrator
文本框
出口活门
Page 88: Rolls royce jet engine

Lubrication

80

Fig. 8-7 A low pressure fuel-cooled oil cooler.

Fig. 8-8 A magnetic chip detector.

Administrator
文本框
燃油出口
Administrator
文本框
折流板
Administrator
文本框
低压燃油 供滑油
Administrator
文本框
蜂窝结构 散热组件
Administrator
文本框
滑油进口
Administrator
文本框
滑油旁路活门
Administrator
文本框
滑油出口
Administrator
文本框
滑油温度传感嚣
Administrator
文本框
燃油进口
Administrator
文本框
图8-7 一种低压燃油冷却滑油散热器
Administrator
文本框
回油
Administrator
文本框
磁性探屑器
Administrator
文本框
永久磁铁
Administrator
文本框
自封严壳体
Administrator
文本框
图8-8 一种磁性探屑器
Administrator
文本框
26.磁性堵头,即磁性探屑器(图8-8)装在回油路上,用来收集来自各个轴承腔的铁屑。它们基本上是插在滑油流道中的永久磁铁,固定在甘行封严的活门座上。设计中采用了一些特有的保险办法,以保证探屑器能正确地安置在活门座上。根据检查,它们可以提供故障临近的警告,而无需拆卸和检查油滤。它们设计成在维护检查时拆卸,用于状态监视的目的(第24章),而不发生滑油损失。另外,它们还可能接通驾驶舱的警告系统,提供飞行中的指示。
Page 89: Rolls royce jet engine

debris from each bearing chamber. They arebasically permanent magnets inserted in the oil flowand are retained in self-sealing valve housings.Safety features incorporated in the design ensurecorrect retention within the housing. Uponexamination they can provide a warning ofimpending failure without having to remove andinspect the filters. They are designed to be removedduring maintenance inspection, for condition,monitoring purposes (Part 24), without oil lossoccurring. Additionally they may be connected to acockpit warning system to give an in-flight indication.

27. In some engines, to minimize the effect of thedynamic loads transmitted from the rotatingassemblies to the bearing housings, a 'squeeze film'type of bearing is used (fig. 8-9). They have a smallclearance between the outer race of the bearing andhousing with the clearance being filled with oil. Theoil film dampens the radial motion of the rotatingassembly and the dynamic loads transmitted to thebearing housing thus reducing the vibration level ofthe engine and the possibility of damage by fatigue.

28. To prevent excessive air pressure within the oiltank, gearboxes and bearing chambers, a vent toatmosphere is incorporated within the lubrication

system. Any oil droplets in the air are separated outby a centrifugal breather prior to the air being ventedoverboard. Some breathers may incorporate aporous media, forming de-aerator segments, whichimproves the efficiency of the oil separation (fig, 8-10).

Lubrication

81

Fig. 8-9 A squeeze film bearing.

Fig. 8-10 A centrifugal breather.

Fig. 8-11 A thread-type oil filter.

Administrator
文本框
供滑油
Administrator
文本框
27.在某些发动机上,为了尽量减小从旋转组件传向轴承座的动力载荷的影响,采用了“挤压油膜”式轴承(图8-9)。它们在轴承外圈和轴承座之间留有很小的间隙,该间隙中充满了滑油。该油膜阻尼了旋转组件的径向运动及传向轴承座的动力载荷,因此减低了发动机的振动水平及疲劳损坏的可能性。
Administrator
文本框
28.为防止滑油箱、齿轮箱和轴承腔中的空气压力过高,在润滑系统中有通大气的通风口。在空气通往机外之前,空气中的任何油滴将被离心通风机分离出来。有些通风机中有多孔中间体,构成空气分离段,提高了油气分离的效率(图8-10)。
Administrator
文本框
挤压油膜
Administrator
标注
用于轴承润滑
Administrator
文本框
轴承外 座圈
Administrator
文本框
图8-9 一种挤压油膜轴承
Administrator
文本框
齿轮轴空气出口槽
Administrator
文本框
空气通大气
Administrator
文本框
油气分离机元件
Administrator
文本框
传动齿轮
Administrator
文本框
回油通向 齿轮箱
Administrator
文本框
滑油回向齿轮箱 空气/滑油雾 空气通大气
Administrator
文本框
图8-10 一种离心通风机
Administrator
文本框
图8-11 一种螺纹式滑油滤
Administrator
标注
空气/滑油雾进入孔
Page 90: Rolls royce jet engine

29. To prevent foreign matter from continuouslycirculating around the lubricating system, a numberof filters and strainers are positioned within thesystem.

30. Coarse strainers are usually fitted at the outletof the oil tank or immediately prior to the inlet of theoil pumps to prevent debris from damaging thepumps. A fine pressure filter is fitted at the pressure

pump outlet which retains any small particles whichcould block the oil feed jets. Thread-type filters (fig.8-11) are often fitted as a 'last chance' filterimmediately upstream of the oil jets. Sometimesperforated plates or gauze filters are used for thisapplication, Scavenge filters are fitted in each oilreturn line to collect any debris from the lubricatedcomponents. An example of a pressure andscavenge filter is shown in fig. 8-12. They are

Lubrication

82

Fig. 8-12 A typical pressure and scavenge filter.

Administrator
文本框
29.为了防止外来物在润滑系统中不断地循环,在系统中安排了若干油滤和滤网。 30.粗滤网通常安装在滑油箱的出口或紧接在滑油泵进口之前,防止碎片损坏油泵。在增压油泵出口安装细的高压油滤,它滤出可能会堵塞滑油供油喷嘴的任何细小颗粒。螺纹式油滤(图8-11)常常作为“最后一次机会”的油滤,装在紧靠滑油喷嘴之前,有时对于这种用途使用多扎板或滤网油滤。回油装在每一条滑油回油路上,用来收集从润滑部件下的任何碎片。高压和回油滤的例子示于图8-12。它们总是筒状的结构,并用褶绉的编织丝网,或者树脂浸渍纤维作为过滤介质。某些油滤有一个或多个丝绕的滤芯,但是作为细滤而言它们的过滤效 果不够。在油滤壳体上可以装一个“伸出指示器”,用以发出部分油滤堵塞的可见警告。
Administrator
文本框
折叠丝网油滤
Administrator
文本框
丝网支架
Administrator
文本框
树脂浸渍纤维
Administrator
文本框
图8-12 一种典型的高压油滤和回油滤
Page 91: Rolls royce jet engine

invariably of tubular construction with a pleatedwoven wire cloth, or a resin impregnated with fibres,as the filtering medium. Some filters comprise one ormore wire wound elements but these tend to beinsufficient for fine filtration. A 'pop up indicator' maybe fitted to the filter housing to give a visual warningof a partially blocked filter.

LUBRICATING OILS

31. Early gas turbines used thinner oils than thoseused in piston engines but were produced from thesame mineral crude oil. As gas turbines weredeveloped to operate at higher speeds and tempera-tures these mineral oils oxidized and blocked thefilters and oilways. The development of low viscosity(thin) synthetic oils overcame the major problemsencountered with the early mineral oils.

32. The choice of a lubricating oil is initially decidedby the need to start the engine at very low tempera-tures, when the viscosity of the oil is high, whilst

being able to survive in an engine environment whichexhibits very high temperatures. Having met thesefundamental requirements, the need to provideimproved lubrication characteristics using additivesmust also be investigated. Special laboratory andengine tests are done to prove the suitability of aparticular oil for a specific type of engine.Assessments are made as the extent to which itdeteriorates and the corrosive effects it may have onthe engine.

33. Most gas turbines use a low viscosity oil due tothe absence of reciprocating parts and heavy dutygearing. This reduces the power required for starting,particularly at low temperatures. In fact normal startscan be made in temperatures as low as -40 deg. C.without having to pre-heat the oil.

34. Turbo-propeller engines use a slightly higherviscosity oil due to the additional requirements of thereduction gear and propeller pitch changemechanism.

Lubrication

83

Administrator
文本框
润滑油 31.早期燃气轮机使用的滑油比活塞发动机使用的滑油为稀,但均为同种矿物原油精炼而得的滑油。当燃气轮机发展到在更高的转速和温度下工作时,这些矿物滑油氧化并堵塞油滤及油路。低粘度(稀的)合成滑油的研制克服了早期矿物滑油所遇到的主要问题。 32.润滑油的选择首先决定于在很低温度下起动发动机的需要,此时滑油的粘度很高,而且又要在发动机环境温度很高的情况下能够继续工作。在满足了这些基本要求之后,还应当对使用添加剂来改进润滑特性的必要性加以研究。建立了专门的实验室,并进行了发动机的试验,以便验证特定的滑油对于给定类型的发动机的适用性。并且对滑油恶化的程度及对发动机的腐蚀作用作了评估。
Administrator
文本框
33.由于燃气涡轮发动机没有往复运动零件及重载荷齿轮,所以大多数发动机使用低粘度润滑油。这就减少了起动特别在低温条件下起动需要的功率。实际上,可以在温度低达-40℃的条件下正常起动,而无需对滑油预热。 34.涡轮螺桨发动机由于减速齿轮和螺旋浆变距机构的额外要求,使用粘度稍高的滑油。
Page 92: Rolls royce jet engine

Rolls-Royce RB162-86

Armstrong Siddeley Mamba

The Mamba axial-flow turbo-prop wasconceived in 1945 as a 1000 hp engine. Firstrun in April 1946, the single Mamba eventuallywent into service with the Short Seamew at1770 ehp. A further development was theDouble Mamba, a combination of two singleMambas in one power unit. Providing up to3875 ehp, the Double Mamba saw servicewith the Fairey Gannet.

Administrator
文本框
“马姆巴”(Mamba)轴流式涡轮螺桨发动机是于1945年作为一台1000马力的发动机开始设计的。1946年4月首次运转,“马姆巴”发动机在肖特公司的“海鸥”(Short Seamew)飞机上投入使用,功率为1770当量马力。进一步发展为双“马姆巴”,由两台“马姆巴”组台在一个动力装置中发出3875当量马力。双“马姆巴”发动机装在“塘鹅”(Fairey Gannet)飞机上使用。
Administrator
文本框
罗尔斯-罗伊斯公司RBl62-86发动机
Administrator
文本框
阿姆斯特朗-西德利公司 “马姆巴”发动机
Page 93: Rolls royce jet engine

9: Internal air system

Contents Page

Introduction 85Cooling 86

Turbine coolingBearing chamber coolingAccessory cooling

Sealing 89Labyrinth seals Ring seals Hydraulic seals Carbon seals Brush seals Hot gas ingestion

Control of bearing loads 91Aircraft services 93

INTRODUCTION

1. The engine internal air system is defined asthose airflows which do not directly contribute to theengine thrust. The system has several importantfunctions to perform for the safe and efficientoperation of the engine. These functions include

internal engine and accessory unit cooling, bearingchamber sealing prevention of hot gas ingestion intothe turbine disc cavities, control of bearing axialloads, control of turbine blade tip clearances (Part 5)and engine anti-icing (Part 13). The system alsosupplies air for the aircraft services. Up to one fifth ofthe total engine core mass airflow may be used forthese various functions.

2. An increasing amount of work is done on the air,as it progresses through the compressor, to raise its

85

Administrator
文本框
绪言 1.发动机的内部空气系统定义为那些对发动机推力的产生无直接影响的空气流。对于发动机的安全和有效工作,该系统具有几项很重要的功能。这些功能包括:发动机的内部冷却和附件装置的冷却,轴承腔封严,防止热燃气吸入涡轮盘的空腔,控制轴承的轴向载荷,控制涡轮叶片的叶尖间隙(第5章),及发动机防冰(第13章)。该系统还为飞机的服务提供空气。高达发动机核心总空气质量流量的五分之一可能用于这些不同的功能。
Administrator
文本框
第九章 内部空气系统
Administrator
文本框
目录 绪言 冷却
Administrator
文本框
涡轮冷却 轴承腔冷却 附件冷却
Administrator
文本框
封严 篦齿式封严件 环形封严件 液压封严件 石墨封严件 刷式封严件 热燃气吸入
Administrator
文本框
轴承载荷控制 飞机服务
Administrator
文本框
2.当空气逐级流过压气机时,对空气做的功在增加,从而提高了其压力和温度。因此,为了减少发动机的性能损失,空气应当按照每个特定的功能要求尽可能从压气机前几级抽取。冷却空气经由通风系统排出机外或在最高可能的压力下进入发动机的主燃气流,这时可以恢复一小部分性能。
Page 94: Rolls royce jet engine

pressure and temperature. Therefore, to reduceengine performance losses, the air is taken as earlyas possible from the compressor commensurate withthe requirement of each particular function. Thecooling air is expelled overboard via a vent system orinto the engine main gas stream, at the highestpossible pressure, where a small performancerecovery is achieved.

COOLING

3. An important consideration at the design stage ofa gas turbine engine is the need to ensure thatcertain parts of the engine, and in some instancescertain accessories, do not absorb heat to the extentthat is detrimental to their safe operation. Theprincipal areas which require air cooling are thecombustor and turbine. Refer to Part 4 for combustorcooling techniques.

4. Cooling air is used to control the temperature ofthe compressor shafts and discs by either cooling orheating them. This ensures an even temperature dis-tribution and therefore improves engine efficiency bycontrolling thermal growth and thus maintainingminimum blade tip and seal clearances. Typicalcooling and sealing airflows are shown in fig. 9-1.

Turbine cooling5. High thermal efficiency is dependent upon highturbine entry temperature, which is limited by theturbine blade and nozzle guide vane materials.Continuous cooling of these components allows theirenvironmental operating temperature to exceed thematerial's melting point without affecting the bladeand vane integrity. Heat conduction from the turbineblades to the turbine disc requires the discs to becooled and thus prevent thermal fatigue and uncon-trolled expansion and contraction rates.

Internal air system

86

Fig. 9-1 General internal airflow pattern.

Administrator
文本框
涡轮冷却 5.高的热效率取决于高的涡轮进口温度,它受涡轮 叶片和导向叶片材料的限制。对这些部件进行连续 不断的冷却可以允许它们的环境工作温度超过材料 的熔点而不影响叶片和导向叶片的整体性。从涡轮 叶片向涡轮盘的热传导要求对轮盘加以冷却,从而 防止热疲劳和不可控的膨胀率和收缩率。
Administrator
文本框
冷却 3.在燃气涡轮发动机设计阶段的一项重要考虑是保证发动机的某些零件以及在有的情况下的某些附件吸收的热达不到危及其安全工作的程度。需要空气冷却的主要区域是燃烧室和涡轮。参见第4章燃烧室冷却技术。
Administrator
文本框
4.冷却空气用于控制压气机轴和盘的温度,既可以对其冷却,也可以为它们加热。这样,就保证了温度的均匀分布,并通过控制热膨胀,保持最小的叶尖和封严间隙,改善了发动机效率。典型的冷却和封严空气流示于图9-1。
Administrator
文本框
低压压气机
Administrator
文本框
高压压气机
Administrator
文本框
外涵道
Administrator
文本框
定位轴承
Administrator
文本框
高压涡轮
Administrator
文本框
低压涡轮轴承
Administrator
文本框
空气进口
Administrator
文本框
低压压气机前轴承
Administrator
文本框
低压压气机后轴承
Administrator
标注
高压压气机前轴承
Administrator
文本框
引气口
Administrator
文本框
图9-1 内部空气流的简图
Administrator
标注
高压涡轮轴承
Administrator
文本框
空气出口
Administrator
文本框
低压涡轮
Administrator
文本框
低压空气
Administrator
文本框
高压中间空气
Administrator
文本框
高压空气
Page 95: Rolls royce jet engine

Internal air system

87

Fig. 9-2 Nozzle guide vane and turbine blade cooling arrangement.

Administrator
文本框
涡轮叶片
Administrator
文本框
导向器叶片
Administrator
文本框
高压冷却空气 低压冷却空气
Administrator
文本框
预旋喷嘴
Administrator
文本框
图9-2 导向叶片和涡轮叶片的冷却布置图
Administrator
文本框
6.图9-2示出了气冷式高压导向叶片和涡轮叶片的布置,图中示出了冷却空气流向。涡轮导向叶片和涡轮叶片的寿命不仅取决于它们的结构形式,而且还与冷却方法有关,因此内部流道的气流设计很重要。在整个燃气涡轮发展历程中,曾经对涡轮导向叶片和涡轮叶片使用过许多的冷却方法。在一般的情况下,单通道内部(对流)冷却具有很大的实用效果。但是,在研究发展中又实现了多通道的内部冷却涡轮叶片,带外部气膜冷却冲击式冷却导向叶片,这种外部气膜冷却在导向叶片和转子叶片均用,如图9-3和图9-4所示。
Page 96: Rolls royce jet engine

6. An air cooled high pressure nozzle guide vaneand turbine blade arrangement illustrating thecooling airflow is shown in fig. 9-2. Turbine vane andturbine blade life depends not only on their form butalso on the method of cooling, therefore the flowdesign of the internal passages is important. Therehave been numerous methods of turbine vane andturbine blade cooling which have been usedthroughout the history of gas turbines. Generally,single pass internal (convection) cooling was of greatpractical benefit but development has lead to multi-pass internal cooling of blades, impingement coolingof vanes with external air film cooling of both vanesand blades, these are shown in fig. 9-3. and fig. 9-4.

7. The 'pre-swirl nozzles' (fig. 9-2) reduce thetemperature and pressure of the cooling air fed to thedisc for blade cooling. The nozzles also impart a

substantial whirl velocity to assist efficient entry ofthe air into the rotating cooling passages.

8. Cooling air for the turbine discs enters theannular spaces between the discs and flowsoutwards over the disc faces. Flow is controlled byinterstage seals and, on completion of the coolingfunction, the air is expelled into the main gas stream(fig. 9-5); see para. 23., Hot gas ingestion.

Bearing chamber cooling9. Air cooling of the engine bearing chambers is notnormally necessary since the lubrication system(Part 8) is adequate for cooling purposes.Additionally, bearing chambers are located, wherepossible, in the cooler regions of the engine. Ininstances where additional cooling is required, it isgood practice to have a double skinned bearinghousing with cooling air fed into the intermediatespace.

Internal air system

88

Fig. 9-3 Development of high pressure turbine blade cooling.

Administrator
文本框
7.“预旋喷嘴”(图9-2)降低了供往轮盘用于叶片冷却的空气的压力和温度。这些喷嘴还使空气得到很大的周向速度,以帮助空气有效地进入旋转的冷却通道。 8.冷却涡轮盘的冷却空气进入轮盘之间的空腔。并往外流过轮盘的表面。气流由级间封严件控制,在完成冷却功能之后,排入主燃气流(图9-5),参见第23段热燃气吸入部分。
Administrator
文本框
低压冷却空气
Administrator
文本框
高压冷却空气
Administrator
文本框
单通道,内部冷却 (60年代)
Administrator
文本框
单通道,多路内部冷却及气膜冷却(70年代)
Administrator
文本框
五通道,多路内部冷却, 广泛使用气膜冷却
Administrator
文本框
图9-3 高压涡轮叶片冷却的发展
Administrator
文本框
轴承腔冷却 9.在正常情况下,不需要用空气来冷却发动机的轴承腔,因为润滑系统(第8章)对于冷却目的来说是足够的。而且,只要有可能,轴承腔总是会安排在发动机较冷的部位。在需要额外冷却的情况下,好的做法是设一个双层壁的轴承座,让冷却空气通入其中间的空腔。
Page 97: Rolls royce jet engine

Accessory cooling10. A considerable amount of heat is produced bysome of the engine accessories, of which theelectrical generator is an example, and these mayoften require their own cooling circuit. When air isused for cooling, the source may be the compressoror atmospheric air ducted from intake louvres in theengine cowlings.

11. When an accessory unit is cooled during flightby atmospheric air it is usually necessary to providean induced circuit for use during static groundrunning when there would be no external airflow. Thisis achieved by allowing compressor delivery air topass through nozzles situated in the cooling air outletduct of the accessory. The air velocity through thenozzles create a low pressure area which forms anejector, so inducing a flow of atmospheric air throughthe intake louvres. To ensure that the ejector systemonly operates during ground running, the flow of airfrom the compressor is controlled by a valve. Agenerator cooling system with an ejector is shown infig. 9-6.

SEALING

12. Seals are used to prevent oil leakage from theengine bearing chambers, to control cooling airflows

and to prevent ingress of the mainstream gas into theturbine disc cavities.

13. Various sealing methods are used on gasturbine engines. The choice of which method isdependent upon the surrounding temperature andpressure, wearability, heat generation, weight, spaceavailable, ease of manufacture and ease of installa-tion and removal. Some of the sealing methods aredescribed in the following paragraphs. A hypotheticalturbine showing the usage of these seals is shown infig. 9-5.

Labyrinth seals14. This type of seal is widely used to retain oil inbearing chambers and as a metering device tocontrol internal airflows. Several variations oflabyrinth seal design are shown in fig. 9-7.

15. A labyrinth seal comprises a finned rotatingmember with a static bore which is lined with a softabradable material, or a high temperaturehoneycomb structure. On initial running of the enginethe fins lightly rub against the lining, cutting into it togive a minimum clearance. The clearance variesthroughout the flight cycle, dependent upon thethermal growth of the parts and the natural flexing ofthe rotating members. Across each seal fin there is apressure drop which results in a restricted flow of

Internal air system

89

Fig. 9-4 High pressure nozzle guide vane construction and cooling.

Administrator
文本框
附件冷却 10.发动机的一些附件会产生大量的热,其中发电机即是一例。这些附件常常需要有它们自己的冷却通路。当用空气进行冷却时,气源可以是压气机,或者是从发动机整流罩中进气道的引气口处引入的外界空气。
Administrator
文本框
11.当一个附件装置在飞行中由外界空气冷却的时候,通常需要配备一条诱导通路,以便在地面静态运转没有外部空气流的时候使用。这是将压气机输出的空气流经位于附件冷却空气出口导管处的几个喷口而实现的。流经这些喷口的空气速度造成一个低压区,这个低压区形成了一个引射器,由此来引射一股大气空气流流经进气道中的引气口。为了保证该引射器系统仅仅在地面工作,来自压气机的空气流由一个活门控制。带引射器的发电机冷却系统示于图9-6。
Administrator
文本框
封严 12.封严件用于防止滑油从发动机轴承腔漏出,控制冷却空气流和防止主气流的燃气进入涡轮盘空腔。
Administrator
文本框
13.在燃气涡轮发动机上使用了多种封严方法。选择何种方法取决于周围的温度和压力、可磨蚀性、发热量、重量、可用的空间,易于制造及易于安装和拆卸。下列各段叙述了某些封严方法。图9-5所示为一台假想的涡轮,用来表明这些封严的使用方法。
Administrator
文本框
冲击冷却管
Administrator
文本框
叶根平台气膜冷却孔
Administrator
文本框
冷却空气
Administrator
文本框
图9-4 高压涡轮导向叶片的结构和冷却
Page 98: Rolls royce jet engine

Internal air system

90

Fig. 9-5 A hypothetical turbine cooling and sealing arrangement.

Administrator
文本框
篦齿式封严件 14.这种封严件广泛用来挡住轴承腔中的滑油,它还用作控制内部空气流的限流装置。几种篦齿式封严设计示于图9-7。
Administrator
文本框
预旋喷嘴
Administrator
文本框
低压空气 排出机外
Administrator
文本框
导向器时片
Administrator
文本框
涡轮叶片
Administrator
文本框
刷式 封严件
Administrator
文本框
高压冷却空气进入燃气流
Administrator
文本框
液压封严件
Administrator
文本框
极间篦齿式封严件
Administrator
文本框
浮动环 封严件
Administrator
文本框
图9-5 一种假设的涡轮冷却和封严的安排
Administrator
文本框
涡轮轴
Administrator
文本框
涡轮盘
Administrator
文本框
级间蜂窝封严件
Administrator
文本框
涡轮盘
Administrator
文本框
涡轮盘
Administrator
文本框
低压空气 高压空气
Administrator
文本框
低压冷却空气
Administrator
标注
高压冷却空气
Administrator
文本框
15.篦齿式封严件包括一个带篦齿的旋转件和一个静止的座孔,座孔嵌衬有一层软的可磨材料衬带,或装上一个耐高温的蜂窝结构。在发动机开始运转时,封严齿轻轻地摩擦并切入这个衬带,使它们之间的间隙成为最小。由于零件的热膨胀(伸长)和旋转件的自然挠曲,在整个飞行循环中间隙是在变化的。每个封严篦齿的前后存在一定的压力降,使得封严空气从封严篦齿的一侧流到另一侧受到限制。当这种封严件用于轴承腔封严时,它只允许空气从轴承腔的外侧流入内侧,从而防止了滑油泄漏。这个气流还可诱发正压力,它有助于滑油回油系统。
Administrator
文本框
16.两根旋转轴之间的封严件,由于两根轴同时发生弯曲,所以更易导致篦齿与摩擦材料之间的摩擦。这会产生过量的热,使轴损坏。为了防止这一点,使用了一种不产生热的封严件,这种封严件中的可磨蚀衬带由旋转中的滑油环带来取代。当轴弯曲时,篦齿浸入滑油并保持封严件不产生热(图9-7中左侧第1图)。
Page 99: Rolls royce jet engine

sealing air from one side of the seal to the other.When this seal is used for bearing chamber sealing,it prevents oil leakage by allowing the air to flow fromthe outside to the inside of the chamber. This flowalso induces a positive pressure which assists the oilreturn system.

16. Seals between two rotating shafts are morelikely to be subject to rubs between the fins andabradable material due to the two shafts deflectingsimultaneously. This will create excessive heat whichmay result in shaft failure. To prevent this, a non-heatproducing seal is used where the abradable lining isreplaced by a rotating annulus of oil. When the shaftsdeflect, the fins enter the oil and maintain the sealwithout generating heat (fig. 9-7).

Ring seals17. A ring seal (fig. 9-7) comprises a metal ringwhich is housed in a close fitting groove in the statichousing. The normal running clearance between thering and rotating shaft is smaller than that which canbe obtained with the labyrinth seal. This is becausethe ring is allowed to move in its housing wheneverthe shaft comes into contact with it.

18. Ring seals are used for bearing chambersealing, except in the hot areas where oildegradation due to heat would lead to ring seizurewithin its housing.

Hydraulic seals19. This method of sealing is often used betweentwo rotating members to sea a bearing chamber.Unlike the labyrinth or ring seal, it does not allow acontrolled flow of air to traverse across the seal,

20. Hydraulic seals (fig. 9-7) are formed by a sealfin immersed in an annulus of oil which has beencreated by centrifugal forces. Any difference in airpressure inside and outside of the bearing chamberis compensated by a difference in oil level either sideof the fin.

Carbon seals21. Carbon seals (fig. 9-7) consist of a static ring ofcarbon which constantly rubs against a collar on arotating shaft. Several springs are used to maintaincontact between the carbon and the collar. This typeof seal relies upon a high degree of contact and doesnot allow oil or air leakage across it. The heat causedby friction is dissipated by the oil system.

Brush seals22. Brush seals (fig. 9-7) comprise a static ring offine wire bristles. They are in continuous contact witha rotating shaft, rubbing against a hard ceramiccoating. This type of seal has the advantage of with-standing radial rubs without increasing leakage.

Hot gas ingestion23. It is important to prevent the ingestion of hotmainstream gas into the turbine disc cavities as thiswould cause overheating and result in unwantedthermal expansion and fatigue. The pressure in theturbine annulus forces the hot gas, between therotating discs and the adjacent static parts, into theturbine disc rim spaces. In addition, air near the faceof the rotating discs is accelerated by friction causingit to be pumped outwards. This induces a comple-mentary inward flow of hot gas.

24. Prevention of hot gas ingestion is achieved bycontinuously supplying the required quantity ofcooling and sealing air into the disc cavities tooppose the inward flow of hot gas. The flow andpressure of the cooling and sealing air is controlledby interstage seals (fig. 9-5),

CONTROL OF BEARING LOADS

25. Engine shafts experience varying axial gasloads (Part 20) which act in a forward direction on thecompressor and in a rearward direction on theturbine. The shaft between them is therefore alwaysunder tension and the difference between the loadsis carried by the location bearing which is fixed in astatic casing (fig. 9-8). The internal air pressure acts

Internal air system

91

Fig. 9-6 A generator cooling system.

Administrator
文本框
刷式封严件 22.刷式封严件(图9-7中左侧第4图)有一个由很多细钢丝制成的刷组成的静止环。它们不断地与旋转轴相接触,与硬的陶瓷涂层相摩擦。这种封严件的优点是可以承受径向摩擦而不增加渗漏。
Administrator
文本框
18.环形封严件用于轴承腔的封严,但是高温区除外,由于高温会使滑油结焦,导致环形件卡在机匣中。 液压封严件 19.这种封严方法常常应用于两个旋转件之间来封严轴承腔。与篦齿式或环形封严件不同之处在于它不允许受控的空气流穿过封严件。 20.液压封严件(图9-7中左侧第3图)由一个封严齿浸在一个滑油环带中形成,这个滑油环带是由离心力造成的。轴承腔内外的任何空气压差由齿两 侧的滑油油面差补偿。
Administrator
文本框
石墨封严件 21.石墨封严件(图9-7中右侧第3图)含有一个静止的石墨环构件,它不断地与旋转轴的套环相摩擦。使用了几个弹簧,使石墨与套环保持接触。这种类型的封严件全依靠接触的良好程度,它不允许任何滑油或空气漏过。因摩擦造成的热由滑油系统 带走。
Administrator
文本框
环形(又称浮动环)封严件 17.环形封严件(图9-7中右侧第2图)有一个金属环,它安置在静止机匣紧密结合的槽中。该环和旋转轴之间的正常运转间隙比篦齿式封严件所能达到的间隙为小。这是因为无论何时,当轴接触这个环的时候,环可以在其所在的机匣内移动。
Administrator
文本框
从压气机 放出的空气
Administrator
文本框
压力控制活门
Administrator
标注
发电机
Administrator
文本框
来自进气道放气口
Administrator
文本框
图9-6 一种发电机冷却系统
Administrator
文本框
引射器
Administrator
文本框
出口导管
Page 100: Rolls royce jet engine

Internal air system

92

Fig. 9-7 Typical seals.

Administrator
文本框
热燃气吸入 23.防止高温主燃气流吸人涡轮盘的空腔是非常重要的,因为这会导致过热和引起有害的热膨胀和疲劳。涡轮环腔内的压力迫使旋转的轮盘和相邻的静止零件之间的高温燃气进入涡轮盘轮缘的空间。而且,靠近旋转轮盘表面的空气由于摩擦而加速,使它被向外抽走。这就会诱发一股向里填补的高温燃气流。
Administrator
文本框
24.通过不断地向轮盘空腔供入足量的冷却和封严空气,来阻挡高温燃气的向里流动,达到防止燃气吸入的目的。冷却和封严空气的流量和压力由级间封严件(图9-5)控制。
Administrator
文本框
摩擦衬环
Administrator
文本框
滑油旋转腔道
Administrator
文本框
液体和摩擦衬环篦齿式封严件
Administrator
文本框
级间连续槽 (篦齿式) 空气封严件
Administrator
文本框
螺纹式(篦齿式)滑油封严件
Administrator
文本框
浮动环式滑油封严件
Administrator
文本框
轴间液压封严件
Administrator
文本框
石墨件
Administrator
文本框
弹簧
Administrator
文本框
石墨封严件
Administrator
文本框
陶瓷涂层
Administrator
文本框
刷式封严件
Administrator
文本框
图9-7 几种典型的封严件
Administrator
文本框
封严空气 滑油 旋转组件
Page 101: Rolls royce jet engine

upon a fixed diameter pressure balance seal toensure the location bearing is adequately loadedthroughout the engine thrust range.

AIRCRAFT SERVICES

26. To provide cabin pressurization, airframe anti-icing and cabin heat, substantial quantities of air are

bled from the compressor. It is desirable to bleed theair as early as possible from the compressor tominimize the effect on engine performance.However, during some phases of the flight cycle itmay be necessary to switch the bleed source to alater compressor stage to maintain adequatepressure and temperature.

Internal air system

93

Fig. 9-8 Control of axial bearing load.

Administrator
文本框
轴承载荷控制 25.发动机轴承受交变的轴向燃气载荷(第20章),在压气机中是向前的,在涡轮上是向后的。压气机与涡轮之间的轴便经常处于拉伸应力之下,载荷之间的差额则由装在静止机匣上的定位轴承(又称止推轴承)承受(图9-8)。内部空气的压力作用在一个固定直径的压力平衡封严件上,以保证在整个发动机推力范围内,定位轴承承受的载荷是适当的。
Administrator
文本框
飞机服务 26.为了提供座舱增压、飞机机体防冰和座舱供热,从压气机中引出了大量的空气。最好是尽可能从压气机前几级引气,以减小对发动机性能的影响。但是,在飞行循环的某些阶段,可能需要将引气部位变换到压气机的后面级,以维持足够的压力和温度。
Administrator
文本框
压气机向前的载荷
Administrator
文本框
涡轮向后的载荷
Administrator
文本框
增大面积导致 增大向前的载荷
Administrator
文本框
封严件向前的载荷
Administrator
文本框
压力平衡封严件
Administrator
文本框
定位轴承
Administrator
文本框
内部空气
Administrator
文本框
图9-8 轴承轴向载荷的控制
Page 102: Rolls royce jet engine

Rolls-Royce Gem 60

Rolls-Royce AJ65 Avon

Work commenced early in 1945 on the AJ65axial flow turbo-jet with a design thrust of 6500lb. This figure was reached in 1951 with the100 series RA3. In 1953 the considerablyredesigned 200 series RA14 was type testedat 9500 lb thrust. Development culminated inthe 300 series RB146 which produced 17.110lb thrust with afterburning.

Administrator
文本框
罗尔斯-罗伊斯公司 “宝石”(Gem)60发动机
Administrator
文本框
设计推力为6500磅的轴流式涡轮喷气发动机AJ65的设计工作于1945年初开始进行,指标于1951年在100系RA3发动机达到。1953年,基本重新设计的200系RA14进行了定型试验,推力为9500磅。最终制成300系RB146,带加力的推力为17,110磅。
Administrator
文本框
罗尔斯-罗伊斯公司 AJ65“埃汶”(Avon))发动机
Page 103: Rolls royce jet engine

10: Fuel system

Contents Page

Introduction 95Manual and automatic control 96Fuel control systems 99

Pressure control (turbo-propeller engine)Pressure control (turbo-jet engine)Flow controlCombined acceleration and speedcontrolPressure ratio control

Electronic engine control 111Speed and temperature control amplifiersEngine supervisory control

Low pressure fuel system 112Fuel pumps 112

Plunger-type fuel pump Gear-type fuel pump

Fuel spray nozzles 114Fuel heating 116Effect of a change of fuel 116Gas turbine fuels 117

Fuel requirements Vapour locking and boiling Fuel contamination control

INTRODUCTION

1. The functions of the fuel system are to providethe engine with fuel in a form suitable for combustionand to control the flow to the required quantitynecessary for easy starting, acceleration and stablerunning, at all engine operating conditions. To dothis, one or more fuel pumps are used to deliver the

fuel to the fuel spray nozzles, which inject it into thecombustion system (Part 4) in the form of anatomized spray. Because the flow rate must varyaccording to the amount of air passing through theengine to maintain a constant selected engine speedor pressure ratio, the controlling devices are fullyautomatic with the exception of engine powerselection, which is achieved by a manual throttle or

95

Administrator
文本框
燃油的技术条件 蒸气堵塞及沸腾 燃油污染控制
Administrator
文本框
第十章 燃油系统
Administrator
文本框
1.燃油系统的功能是以适合于燃烧的形式向发动机供应燃油,并按易于起动、加速和在发动机所有工作状态下稳定运转所需要的油量控制燃油流量。为此,用一台或几台油泵向燃油喷嘴供油,喷嘴将油雾化并注入燃烧系统(第4章)。为了保持选定的发动机转速或压比恒定,燃油流量必须随流过发动机的空气流量而变化,除了发动机通过手动油门或功率杆实现功率选择之外,所有控制装置是完全自动的。燃油截止活门(开关)操纵杆也可用于使发动机停车,虽然在某些情况下,这两种手动控制由一根操纵杆的动作完成。
Administrator
文本框
目 录
Administrator
文本框
绪言
Administrator
文本框
绪言 手动及自动控制 燃油控制系统
Administrator
文本框
压力控制(涡轮螺桨发动机) 压力控制(涡轮喷气发动机) 流量控制 组台式加速及转速控制 压力比控制
Administrator
文本框
发动机电子控制
Administrator
文本框
转速及温度控制放大器 发动机管理控制
Administrator
文本框
低压燃油系统 燃油泵
Administrator
文本框
柱塞式燃油泵 齿轮式燃油泵
Administrator
文本框
燃油喷嘴 燃油加温 燃油改变的影响 燃气涡轮发动机燃油
Administrator
文本框
2.为了防止发动机燃气温度、压气机出口压力、及旋转组件的转速超出它们的最大极限值,一些自动安全控制器也是必要的。
Page 104: Rolls royce jet engine

power lever. A fuel shut-off valve (cock) control leveris also used to stop the engine, although in someinstances these two manual controls are combinedfor single-lever operation.

2. It is also necessary to have automatic safetycontrols that prevent the engine gas temperature,compressor delivery pressure, and the rotatingassembly speed, from exceeding their maximumlimitations.

3. With the turbo-propeller engine, changes inpropeller speed and pitch have to be taken intoaccount due to their effect on the power output of theengine. Thus, it is usual to interconnect the throttlelever and propeller controller unit, for by so doing thecorrect relationship between fuel flow and airflow ismaintained at all engine speeds and the pilot is givensingle-lever control of the engine. Although themaximum speed of the engine is normallydetermined by the propeller speed controller, over-speeding is ultimately prevented by a governor in thefuel system.

4. The fuel system often provides for ancillaryfunctions, such as oil cooling (Part 8) and thehydraulic control of various engine control systems;for example, compressor airflow control (Part 3).

MANUAL AND AUTOMATIC CONTROL

5. The control of power or thrust of the gas turbineengine is effected by regulating the quantity of fuelinjected into the combustion system. When a higherthrust is required, the throttle is opened and thepressure to the fuel spray nozzles increases due tothe greater fuel flow. This has the effect of increasingthe gas temperature, which in turn increases theacceleration of the gases through the turbine to givea higher engine speed and a correspondingly greaterairflow, consequently producing an increase inengine thrust.

6. This relationship between the airflow inducedthrough the engine and the fuel supplied is, however,complicated by changes in altitude, air temperatureand aircraft speed. These variables change thedensity of the air at the engine intake and conse-quently the mass of air induced through the engine.A typical change of airflow with altitude is shown infig. 10-1. To meet this change in airflow a similarchange in fuel flow (fig. 10-2) must occur, otherwisethe ratio of airflow to fuel flow will change and willincrease or decrease the engine speed from thatoriginally selected by the throttle lever position.

7. Described in this Part are five representativesystems of automatic fuel control; these are thepressure control and flow control systems, which are

Fuel system

96

Fig. 10-1 Airflow changing with altitude.

Fig. 10-2 Fuel flow changing with altitude.

Administrator
文本框
4.通常燃油系统还有一些辅助功能,如滑油冷却 (第8章)和发动机的各种控制系统的液压控制;例 如,压气机空气流量控制(第3章)。 手动和自动控制 5.燃气涡轮发动机的功率或推力的控制受注入燃 烧系统的燃油量调节的影响。当需要增大推力时,油门开大,由于增大燃油流量,燃油雾化喷嘴的压力增大。这便产生了增高燃气温度的作用,它进而又增加了通过涡轮的燃气加速度,提高发动机转速,并相应增加空气流量,从而增大发动机的推力。 6.而且,高度、空气温度和飞机速度的变化使流过发动机的空气流量和供应的燃油之间的关系更为复杂。这些变量改变着发动机进口的空气密度,从而改变流过发动机的空气质量。图10-1所示为典型的空气流量随高度的变化曲线。为了适应空气流量的这一变化,燃油流量(图10-2)应当发生相似的变化。否则空气流量与燃油流量之比将会变化,使 发动机转速增大或减小而偏离油门杆位置选定的原定值。
Administrator
文本框
3.对于涡轮-螺桨发动机,由于螺旋桨转速及桨距的变化对发动机功率输出有影响,应将它们纳入考虑。因此,通常将油门杆和螺旋桨控制器相互连接起来。这样,就可以在发动机所有转速下在燃油流量和空气流量之间保持正确的关系,驾驶员控制发动机只要一根油门杆就行。虽然,通常发动机的最大转速是由螺旋桨转速控制器决定的,但其超转最终是用燃油系统中的调节器来防止。
Administrator
文本框
图10-1 空气流量随高度的变化
Administrator
文本框
图10-2 燃油流量随高度的变化
Administrator
文本框
高度x1000英尺
Administrator
文本框
高度x1000英尺
Administrator
文本框
7.本章介绍5种典型的自动燃油控制系统,即液压机械式的压力控制和流量控制系统,和机械式的加速及转速控制和压比控制系统。除了压比控制系统采用了齿轮泵之外,其他各个系统均采用可调行程、多柱塞式燃油泵向喷嘴供油。
Administrator
标注
空气耗量 (海平面静止状态最大值的%数)
Administrator
标注
500海里/小时 发动机恒定转速
Page 105: Rolls royce jet engine

Fuel system

97

Fig. 10-3 Simplified fuel systems for turbo-propeller and turbo-jet engines.

Administrator
文本框
高压轴调节器
Administrator
文本框
低压轴调节器
Administrator
文本框
Administrator
文本框
油门杆
Administrator
标注
高压燃油泵
Administrator
标注
油门装置
Administrator
文本框
高压停车开关
Administrator
文本框
进气道空气温度
Administrator
标注
燃油控制装置
Administrator
文本框
压力活门
Administrator
标注
燃油喷嘴
Administrator
文本框
螺旋桨控制装置
Administrator
文本框
虚线表示从发动机来的传感信号
Administrator
文本框
图10-3 涡轮螺桨和涡轮喷气发动机的两种燃油系统简图
Administrator
文本框
高压燃油泵
Administrator
标注
燃油流量调节器
Administrator
标注
低压轴调节器
Administrator
文本框
高压停车开关
Administrator
文本框
高压压气机出口压力限制器
Administrator
标注
温度控制作动筒
Administrator
文本框
排气温度放大器
Administrator
文本框
排气温度
Administrator
文本框
高压 压气机进口
Administrator
标注
高压轴调节器
Administrator
文本框
进气道空气温度
Administrator
文本框
燃油喷嘴
Administrator
标注
油门杆
Administrator
标注
高压压气机出口
Administrator
文本框
8.某些发动机装了电子控制系统,通常这种系统涉 及使用电子线路来测量并解释变化着的发动机工作 状态,以便自动调节燃油泵的输出。在由燃气涡轮 发动机驱动的直升机上,而且这些发动机应用了自 由动力涡轮原理(第5章),则在发动机上装有附加 的手动和自动控制器来调节自由动力涡轮,从而调 节直升机旋翼的转速。
Administrator
文本框
燃油控制系统 9.典型的涡轮螺桨发动机和涡轮喷气发动机的高压燃油控制系统的简图示于图10-3,基本上每一个系统中都有一台高压油泵,一个油门控制器,和许多个燃油喷嘴。另外,为了对发动机的要求作出反应,其中还有一定数量的传感装置,以便对燃油流量提供自动控制。在涡轮螺桨发动机上,对燃油和螺旋桨系统作了协调,使燃油/转速配合适当。
Administrator
文本框
10.改变通向喷嘴的燃油流量的常规方法是调节高压燃油泵的输出。它经由伺服系统对下列几项或所有因素的影响作出反应: (1)油门移动。 (2)空气的温度和压力。 (3)快速加速和减速。 (4)发动机转速、发动机燃气温度和压气机出口压力信号。
Page 106: Rolls royce jet engine

Fuel system

98

Fig. 10-4 A pressure control system (turbo-propeller engine).

Administrator
文本框
流量控制装置
Administrator
文本框
低压开关
Administrator
文本框
空气进口压力
Administrator
文本框
溢流活门
Administrator
文本框
低压油滤
Administrator
文本框
Administrator
文本框
控制活塞
Administrator
文本框
油门开关
Administrator
文本框
油门旁路调节器
Administrator
文本框
高压开关
Administrator
文本框
伺服活塞
Administrator
文本框
反压活门
Administrator
文本框
至压差开关
Administrator
文本框
燃油泵
Administrator
文本框
溢流活门
Administrator
文本框
燃油总管
Administrator
文本框
发动机转速调节器
Administrator
文本框
Administrator
文本框
图10-4 压力控制系统(涡轮螺桨发动机)
Administrator
文本框
燃油喷嘴
Administrator
文本框
低压燃油
Administrator
文本框
油泵供油(高压油)
Administrator
文本框
油门出口压力
Administrator
文本框
喷嘴压力
Administrator
文本框
伺服压力
Administrator
文本框
调节器压力
Administrator
文本框
燃烧室压力
Administrator
文本框
空气进口压力
Administrator
文本框
压力控制(涡轮螺桨发动机) 11.压力控制系统(图10-4)是装在涡轮螺浆发动机上的一种典型的系统,发动机的加速率受螺旋桨转速控制器的限制。燃油泵的输出由在流量控制装置(F.C.U.)中的溢流活门及发动机转速调节器自动控制。这些活门通过改变燃油泵的伺服压力调节油泵的行程,以向发动机供应合适的燃油流量。
Administrator
文本框
12.在稳定运转状态,在给定的空气进口压力和低于调节转速时,流量控制装置中的溢流活门处于感测位置,在燃油泵伺服活塞前后造成力的平衡,保证油门活门压力稳定。 13.当油门缓缓打开时,油门活门的压力降低,使流量控制装置的溢流活门关闭,导致伺服压力增加,燃油泵供油增加。当油门的压力恢复之后,溢流活门回到感测位置,即控制位置,油泵使其输出保持稳定,以获得选定的油门位置下的发动机转速。油门关小时。过程与此相反。
Page 107: Rolls royce jet engine

hydro-mechanical, and the acceleration and speedcontrol and pressure ratio control systems, which aremechanical. With the exception of the pressure ratiocontrol system, which uses a gear-type pump, all thesystems use a variable-stroke, multi-plunger typefuel pump to supply the fuel to the spray nozzles.

8. Some engines are fitted with an electronicsystem of control and this generally involves the useof electronic circuits to measure and translatechanging engine conditions to automatically adjustthe fuel pump output. On helicopters powered by gasturbine engines using the free-power turbineprinciple (Part 5), additional manual and automaticcontrols on the engine govern the free-power turbineand, consequently, aircraft rotor speed.

FUEL CONTROL SYSTEMS

9. Typical high pressure (H.P.) fuel control systemsfor a turbo-propeller engine and a turbo-jet engineare shown in simplified form in fig. 10-3, eachbasically consisting of an H.P. pump, a throttlecontrol and a number of fuel spray nozzles. Inaddition, certain sensing devices are incorporated toprovide automatic control of the fuel flow in responseto engine requirements. On the turbo-propellerengine, the fuel and propeller systems are co-ordinated to produce the appropriate fuel/r.p.m.combination.

10. The usual method of varying the fuel flow to thespray nozzles is by adjusting the output of the H.P.fuel pump. This is effected through a servo system inresponse to some or all of the following:

(1) Throttle movement.(2) Air temperature and pressure.(3) Rapid acceleration and deceleration.(4) Signals of engine speed, engine gas

temperature and compressor deliverypressure.

Pressure control (turbo-propeller engine)11. The pressure control system (fig. 10-4) is atypical system as fitted to a turbo-propeller enginewhere the rate of engine acceleration is restricted bya propeller speed controller. The fuel pump output isautomatically controlled by spill valves in the flowcontrol unit (F.C.U.) and the engine speed governor.These valves, by varying the fuel pump servopressure, adjust the pump stroke to give the correctfuel flow to the engine.

12. At steady running conditions, at a given airintake pressure and below governed speed, the spillvalve in the F.C.U. is in a sensitive position, creating

a balance of forces across the fuel pump servopiston and ensuring a steady pressure to the throttlevalve.

13. When the throttle is slowly opened, thepressure to the throttle valve falls and allows theF.C.U. spill valve to close, so increasing the servopressure and pump delivery. As the pressure to thethrottle is restored, the spill valve returns to itssensitive or controlling position, and the fuel pumpstabilizes its output to give the engine speed for theselected throttle position. The reverse sequenceoccurs as the throttle is closed.

14. A reduction of air intake pressure, due to areduction of aircraft forward speed or increase inaltitude, causes the F.C.U. capsule to expand, thusincreasing the bleed from the F.C.U. spill valve. Thisreduces fuel pump delivery until the fuel flowmatches the airflow and the reduced H.P. pumpdelivery (throttle inlet pressure), allows the spill valveto return to its sensitive position. Conversely, anincrease in air intake pressure reduces the bleedfrom the spill valve and increases the fuel flow. Thecompensation for changes in air intake pressure issuch that fuel flow cannot be increased beyond thepre-determined maximum permissible for staticInternational Standard Atmosphere (I.S.A.) sea-levelconditions.

15. The engine speed governor prevents the enginefrom exceeding its maximum speed limitation. Withincreasing engine speed, the centrifugal pressurefrom the fuel pump rotor radial drillings increases andthis is sensed by the engine speed governordiaphragm. When the engine reaches its speedlimitation, the diaphragm is deflected to open thegovernor spill valve, thus overriding the F.C.U. andpreventing any further increase in fuel flow. Somepressure control systems employ a hydro-mechanical governor (para. 23).

16. The governor spill valve also acts as a safetyrelief valve. If the fuel pump delivery pressureexceeds its maximum controlling value, the servopressure acting on the orifice area of the spill valveforces the valve open regardless of the enginespeed, so preventing any further increase in fueldelivery pressure.

Pressure control (turbo-jet engine)17. In the pressure control system illustrated in fig.10-5, the rate of engine acceleration is controlled bya dashpot throttle unit. The unit forms part of the fuelcontrol unit and consists of a servo-operated throttle,which moves in a ported sleeve, and a control valve.

Fuel system

99

Administrator
文本框
15.发动机转速调节器防止发动机超过其最大转速极限值。随着发动机转速的增加,燃油泵转子径向孔中的离心压力增加。该压力由发动机转速调节器的膜片感测。当发动机到达其转速极限时。该膜片挠曲,打开调节器的溢流活门,从而取代了流量控制装置,并防止燃油流量进一步增加。有些压力控制系统使用了液压机械调节器(23段)。 16.调节器的溢流活门还起着安全回油活门的作 用。当燃油泵供油压力超过其最大控制值时,不论发动机转速的大小,作用在溢流活门小孔面积上的伺服压力迫使活门打开,从而防止燃油供油压力进一步增加。
Administrator
文本框
14.由于飞机飞行速度降低或高度增加,进气道空气压力减小,导致流量控制装置膜片膨胀,因而流量控制装置溢流活门的回油增加。这样减少了燃油泵的供油,直至燃油流量与空气流量和减少了的高压油泵的输出(油门进口压力)相适应,使溢流活门返同其感测位置。反之,进气道空气压力的增加就减少溢流活门的回油,增加燃油流量。如此,对进口空气压力改变所作的的补偿是这样的,也即燃油流量的增加不得超出在国际标准大气(ISA)海平面静止状态下所预先规定的最大容许值。
Page 108: Rolls royce jet engine

Fuel system

100

Fig. 10-5 A pressure control system (turbo-jet engine).

Administrator
文本框
压力控制(涡轮喷气发动机) 17.在图10-5所示的压力控制系统中,发动机的加速率由阻尼油门装置控制。该装置为燃油控制装置的一部分,由一个伺服机构驱动的油门活门和一个控制活门所组成。伺服机构驱动的油门活门在一个有开孔的套筒中移动,而控制活门则在油门活门的内孔中自由滑动,并通过一个齿条和小齿轮机构与驾驶员的油门杆相联接。油门杆的移动导致油门活门逐渐打开套筒上的孔,增加燃油流量。图10-6所示为油门活门及控制活门在它们各种控制位置下的情况。
Administrator
文本框
真空膜盒
Administrator
标注
伺服滥流活门
Administrator
文本框
低压
Administrator
文本框
溢流活门
Administrator
文本框
旋转式 溢流活门
Administrator
文本框
Administrator
文本框
流量控制
Administrator
文本框
图10-5一种压力控制系统(涡轮喷气发动机)
Administrator
文本框
压降控制膜片
Administrator
标注
电磁线圈
Administrator
标注
来自放大器
Administrator
文本框
低压转速限制器和燃气温度控制
Administrator
文本框
燃油泵
Administrator
文本框
油门开关
Administrator
文本框
油门杆
Administrator
文本框
伺服弹簧
Administrator
标注
控制活门
Administrator
标注
带孔套筒
Administrator
文本框
起动燃油喷嘴
Administrator
文本框
反压活门
Administrator
文本框
主燃油喷嘴
Administrator
文本框
阻尼油门
Administrator
文本框
关 起动
Administrator
文本框
Administrator
文本框
Administrator
文本框
高压停车活门
Administrator
文本框
油门出口压力 调节器压力 温度微调信号 进气道空气压力
Administrator
文本框
燃油控制装置
Administrator
文本框
伺报控制膜片
Administrator
文本框
高压轴调节器 (液压机械式)
Administrator
文本框
低压燃油 油泵供油(高压燃油) 油门控制压力 油门伺服压力 伺服压力
Administrator
文本框
18.在稳定状态,阻尼油门活门保持平衡,因为油门控制压力加上弹簧力与油门伺服压力互相抵消。压力降掩制膜片前后的压力处于平衡,油泵伺服压力调节燃油泵,以供应恒定的燃油流量。
Page 109: Rolls royce jet engine

The control valve slides freely within the bore of thethrottle valve and is linked to the pilot's throttle by arack and pinion mechanism. Movement of the throttlelever causes the throttle valve to progressivelyuncover ports in the sleeve and thus increase thefuel flow. Fig. 10-6 shows the throttle valve andcontrol valve in their various controlling positions.

18. At steady running conditions, the dashpotthrottle valve is held in equilibrium by throttle servopressure opposed by throttle control pressure plusspring force. The pressures across the pressure dropcontrol diaphragm are in balance and the pumpservo pressure adjusts the fuel pump to give aconstant fuel flow.

19. When the throttle is opened, the control valvecloses the low pressure (L.P.) fuel port in the sleeveand the throttle servo pressure increases. Thethrottle valve moves towards the selected throttleposition until the L.P. port opens and the pressurebalance across the throttle valve is restored. Thedecreasing fuel pressure difference across thethrottle valve is sensed by the pressure drop controldiaphragm, which closes the spill valve to increasethe pump servo pressure and therefore the pumpoutput. The spill valve moves into the sensitiveposition, controlling the pump servo mechanism sothat the correct fuel flow is maintained for theselected throttle position.

20. During initial acceleration, fuel control is asdescribed in para. 19; however, at a predeterminedthrottle position the engine can accept more fuel andat this point the throttle valve uncovers an annulus,so introducing extra fuel at a higher pressure (pumpdelivery through one restrictor). This extra fuel furtherincreases the throttle servo pressure, whichincreases the speed of throttle valve travel and therate of fuel supply to the spray nozzle.

21. On deceleration, movement of the control valveacts directly on the throttle valve through the servospring. Control valve movement opens the flow portsthrough the control valve and throttle valve, to bleedservo fuel through the L.P. port. Throttle controlpressure then moves the throttle valve towards theclosed position, thus reducing the fuel flow to thespray nozzles.

22. Changes in air intake pressure, due to a changein aircraft altitude or forward speed, are sensed bythe capsule assembly in the fuel control unit. Withincreased altitude and a corresponding decrease inair intake pressure, the evacuated capsule opens thespill valve, so causing a reduction in pump stroke

Fuel system

101

Fig. 10-6 Acceleration control by dashpotthrottle.

Administrator
文本框
19.当油门打开,控制活门关闭套筒上的低压燃油孔,油门伺服压力增加。油门活门向选定的油门位置方向移动,直到低压孔打开,油门活门前后的压力恢复平衡为止。由压力降控制膜片感测油门活门前后降低着的炼油压差,关闭溢流活门,以增大油泵伺服压力,进而增加油泵输出。溢流活门移到感测位置,控制油泵伺服机构,使选定的油门位置下的正确的燃油流量得以保持。
Administrator
文本框
Administrator
文本框
20.在加速开始时,燃油控制如第l9段所述;但是,在预定的油门位置,发动机可得到更多的燃油,而且 在这一点,油门活门打开一个环形通道,引入额外的较高压力的燃油(油泵通过一个限制器供油)。这部分额外的燃油进一步增加了油门的伺服压力,这压力增加了油门活门的移动速度和向喷嘴的供油率。 21.在减速时,控制活门的移动通过伺服弹簧直接作用在油门活门上。控制活门的移动通过控制活门和油门活门,打开燃油的出口,通过低压孔放出伺服燃油。因此,油门控制压力使油门活门向关闭位置移动,因此,油门减少向喷嘴的供油量。 22.进气到空气压力由于飞机高度或飞行速度的变化而引起的变化,由燃油控制装置中的膜片组件感测。随着高度的增加,进气道空气压力相应降低,真空膜片打开溢流活门,导致油泵行程减小,直到燃油流量与空气流量匹配为止。反之,进气道空气压力增加,关闭溢流活门,增加供油量。
Administrator
文本框
图10-6 由阻尼油门控制的加速性控制
Administrator
文本框
关闭位置
Administrator
文本框
油门杆
Administrator
文本框
油门开关
Administrator
文本框
控制活门
Administrator
文本框
开始加速
Administrator
文本框
最终加速
Administrator
文本框
环腔
Administrator
文本框
燃油压力
Administrator
文本框
油泵供油 油门出口
Administrator
文本框
低压 油门伺服 油门控制
Page 110: Rolls royce jet engine

Fuel system

102

Fig. 10-7 A proportional flow control system.

Administrator
文本框
燃油节流柱塞
Administrator
文本框
液压机械调节器
Administrator
文本框
燃油泵
Administrator
文本框
伺服活塞
Administrator
标注
敏感活门
Administrator
标注
比例活门
Administrator
文本框
高度传感器
Administrator
标注
比例活门装置
Administrator
文本框
压降控制
Administrator
文本框
限制器
Administrator
文本框
加速控制装置
Administrator
文本框
功率限制器
Administrator
文本框
空气开关
Administrator
文本框
燃油控制装置
Administrator
文本框
油门及增压活门装置
Administrator
标注
油门开关及停车开关
Administrator
文本框
分布配重
Administrator
文本框
燃油喷嘴
Administrator
文本框
慢车活门
Administrator
标注
最小油量活门
Administrator
文本框
电磁线圈
Administrator
文本框
低压轴转速信号
Administrator
文本框
温度控制 信号放大器
Administrator
文本框
慢车转速调节器
Administrator
文本框
燃气温度 热电偶
Administrator
文本框
压力分布
Administrator
文本框
低压燃油 油泵供油(高压油) 油门进口 油门出口 初级燃油 主燃油
Administrator
文本框
控制燃油压力
Administrator
标注
比例流量 伺服控制
Administrator
文本框
加速控制装置伺服 调节器
Administrator
文本框
减少压气机供气 空气开关
Administrator
文本框
控制空气压力
Administrator
文本框
图10-7 一种比例式流量控制系统
Administrator
标注
进气道空气 压气机供气
Administrator
文本框
23.高压压气机轴的转速用液压机械调节器调节,它采用与发动机的转速成正比的液压油压力作为其控制参数。旋转式溢流活门感测发动机的转速,然后用控制压力来限制油泵的行程,借以防止高压轴旋转组件超转。控制压力不受燃油比重变化的影响。
Administrator
文本框
24.在低的高压轴转速下,旋转溢流活门保持打开,但是当发动机转速增加时,离心载荷使活门向关闭方向移动,抵消膜片载荷。这样便限制了向活门低压侧的回油,直到在调节转速下,调节器压力使伺服控制膜片挠曲,并打开伺服溢流活门,由此来控制燃油流量,进而控制高压轴转速。
Page 111: Rolls royce jet engine

until the fuel flow matches the airflow. Conversely, anincrease in air intake pressure closes the spill valveto increase the fuel flow.

23. H.P. compressor shaft r.p.m. is governed by ahydro-mechanical governor which uses hydraulicpressure proportional to engine speed as itscontrolling parameter. A rotating spill valve sensesthe engine speed and the controlling pressure isused to limit the pump stroke and so prevent over-speeding of the H.P. shaft rotating assembly. Thecontrolling pressure is unaffected by changes in fuelspecific gravity.

24. At low H.P. shaft speeds, the rotating spill valveis held open, but as engine speed increases,centrifugal loading moves the valve towards theclosed position against the diaphragm loads. Thisrestricts the bleed of fuel to the L.P. side of the valveuntil, at governed speed, the governor pressuredeflects the servo control diaphragm and opens theservo spill valve to control the fuel flow and therebythe H.P. shaft speed.

25. If the engine gas temperature attempts toexceed the maximum limitation, the current in theL.P. speed limiter and temperature control solenoid isreduced. This opens the spill valve to reduce thepressure on the pressure drop control diaphragm.The flow control spill valve then opens to reduce thepump servo pressure and fuel pump output.

26. To prevent the L.P. compressor from over-speeding, multi-spool engines usually have an L.P.compressor shaft speed governor. A signal of L.P.shaft speed and intake temperature is fed to anamplifier and solenoid valve, the valve limiting thefuel flow in the same way as the gas temperaturecontrol (para. 25).

27. The system described uses main and startingspray nozzles under the control of an H.P. shut-offvalve. Two starting nozzles are fitted in thecombustion chamber, each being forward of anigniter plug. When the engine has started, the fuelflow to these nozzles is cut off by the H.P. shut-offvalve.

28. To ensure that a satisfactory fuel pressure to thespray nozzles is maintained at high altitudes, a backpressure valve, located downstream of the throttlevalve, raises the pressure levels sufficiently toensure satisfactory operation of the fuel pump servosystem.

Flow control29. A flow control fuel system is generally morecompact than a pressure control system and is notsensitive to flow effect of variations downstream ofthe throttle. The fuel pump delivery pressure isrelated to engine speed; thus, at low engine speedspump delivery pressure is quite low. The fuel pumpoutput is controlled to give a constant pressuredifference across the throttle valve at a constant airintake condition. Various devices are also used toadjust the fuel flow for air intake pressure variations,idling and acceleration control, gas temperature andcompressor delivery pressure control.

30. A variation of the flow control system is the pro-portional flow control system (fig 10-7), which is moresuitable for engines requiring large fuel flows andwhich also enables the fuel trimming devices toadjust the fuel flow more accurately. A smallcontrolling flow is created that has the same charac-teristics as the main flow, and this controlling or pro-portional flow is used to adjust the main flow.

31. A different type of spill valve, referred to as akinetic valve, is used in this system. This valveconsists of two opposing jets, one subjected to pumpdelivery pressure and the other to pump servopressure, and an interrupter blade that can be movedbetween the jets (fig. 10-8). When the blade is clearof the jets, the kinetic force of the H.P. fuel jet causesthe servo pressure to rise (spill valve closed) and thefuel pump moves to maximum stroke to increase thefuel flow. When the blade is lowered between thejets, the pressure jet is deflected and the servopressure falls, so reducing the pump stroke and thefuel flow, When the engine is steadily running, theblade is in an intermediate position allowing a slowbleed from servo and thus balancing the fuel pumpoutput.

32. All the controlling devices, except for the enginespeed governor, are contained in one combined fuelcontrol unit. The main parts of the control unit are thealtitude sensing unit (A.S.U.), the accelerationcontrol unit (A.C.U.), the throttle and pressurizingvalve unit, and the proportioning valve unit.

33. At any steady running condition below governedspeed, the fuel pump delivery is controlled to a fixedvalue by the A.S.U. The spill valve in this unit is heldin the controlling position by a balance of forces,spring force and the piston force. The piston issensitive to the pressure difference across thesensing valve, the pressure difference being createdby fuel flowing from the proportioning valve back tothe fuel pump inlet.

Fuel system

103

Administrator
文本框
25.如果发动机燃气温度要超过最大极限值,在低压转速限制器及温度控制器的线圈中的电流减小,使溢流活门打开,以减小作用在压力降控制膜片上的压力。然后,流量控制溢流活门打开,使油泵伺服压力和燃油泵输出减小。 26.为防止低压压气机超转,通常在多转子发动机上装有一个低压压气机轴转速调节器。低压轴转速及进气口温度信号被输入放大器和电磁活门,该活门以控制燃气温度(第25段)的同样方法来限制燃油流量。
Administrator
文本框
27.在上述的系统中采用了由高压截止活门控制的主喷嘴和起动喷嘴。在燃烧室内装有2个起动喷嘴,每个喷嘴都位于点火电嘴之前。当发动机起动之后,向这些喷嘴供应的燃油由高压截止活门切断。 28.为了在高空条件下保证能维持供应喷嘴的燃油压力适当,位于油门活门下游的反压活门将压力提高,足以保证燃油泵伺服系统工作顺利。 流量控制 29.燃油流量控制系统通常比压力控制系统更为紧凑,它对于油门下游流量变化的影响反应不敏感。燃油泵供油压力与发动机转速相关;因此,在发动机低转速下,供油压力相当低。控制燃油泵的输出是为了在恒定的进气道条件下保持油门活门前后的压力差恒定。还采用其他各种装置,依据进气道空气 压力变化、慢车和加速控制,燃气温度和压气机出口压力控制来调节燃油流量。
Administrator
文本框
30.比例式流量控制系统(图10-7)是流量控制系统的一种,它更适合用于发动机要求大燃油流量的场合,它还使燃油微调装置能更精确地调节燃油流量。这种系统能形成一股小的控制流量,它与主流量具有相同的特性,该控制流量(即比例流量)被用来调节主流量。
Administrator
文本框
31.在本系统中采用了称为动力活门的一种变型溢流活门。该活门中有2个对置的喷嘴,一个接受油泵的供油压力,另一个接受油泵的伺服压力。该活门中还有一个遮断叶片,它可以在两个喷嘴之间移动(图10-8)。当叶片离开此二喷嘴时,高压燃油射流的动力使伺服压力增高(溢流活门关闭),油泵移到最大行程来增大燃油流量。当叶片降低到二喷嘴之间,压力射流被其偏转,伺服压力下降,从而减小油泵行程及燃油流量。当发动机稳定运转时,叶片处于中间位置,允许从伺服机构缓慢回油,使燃油泵输出保持平衡。
Page 112: Rolls royce jet engine

34. The proportioning valve diaphragm is held openin a balanced condition allowing fuel to pass to theA.S.U. This means that the restrictor outlet pressureis equal to the throttle outlet pressure and, as theirinlet pressures are equal, it follows that the pressuredifference across the restrictors and the throttle areequal; therefore, a constant fuel flow is obtained.

35. When the throttle is slowly opened, thepressure difference across the throttle valve and theproportioning flow restrictors decreases and the pro-portioning valve diaphragm adjusts its position. Thisreduces the proportional flow, which closes theA.S.U. spill valve and increases the servo pressure.The fuel pump increases its delivery and this restoresthe pressure difference across the throttle valve and

equalizes the pressure difference across therestrictors. The proportional flow is restored to itsoriginal value and the balance of forces in the A.S.U.returns the spill valve to the controlling position.

36. A variation of air intake pressure, due to achange of aircraft forward speed or altitude, issensed by the capsule in the A.S.U. A pressurereduction causes the A.S.U. capsule to expand, thusincreasing the bleed from the spill valve. Thisreduces fuel pump delivery until the fuel flowmatches the airflow and results in a lower pressuredifference across the throttle valve and the propor-tioning valve restrictors. The reduced proportionalflow restores the balance in the A.S.U. which returnsthe spill valve to its controlling position. Conversely,an increase in aircraft forward speed increases theair Intake pressure, which reduces the bleed from thespill valve and increases the fuel flow.

37. During a rapid acceleration, the suddendecrease in throttle pressure difference is sensed bythe A.S.U., causing the spill valve to close, Such arapid increase in fuel supply would, however, createan excessive gas temperature and also cause thecompressor to surge (Part 3). This occurs becausethe inertia of the rotating assembly results in anappreciable time lag in the rate of airflow increase. Itis essential therefore, to have an acceleration controlto override the A.S.U. to give a corresponding lag inthe rate of fuel flow increase.

38. The rapid initial increase of fuel flow causes arise in the pressure difference across the fuelmetering plunger and this is sensed by a diaphragmin the pressure drop control section. At a fixed valueof over fuelling, the pressure drop control diaphragmopens its servo spill valve to override the A.S.U, andmaintains a constant pressure difference across themetering plunger.

39. The increased fuel supply causes the engine toaccelerate and the fuel metering plunger gives themaximum permissible fuel flow to match theincreasing compressor delivery pressure. This itachieves through the A.C.U. servo system, which isunder the control of a spill valve operated bycompressor delivery air pressure acting on acapsule.

40. As the compressor delivery pressure continuesto rise, the capsule is compressed to open the spillvalve and to bleed pressure from above the meteringplunger. Pump delivery pressure acting underneaththe plunger causes it to lift, this increases the area ofthe main fuel flow passage.

Fuel system

104

Fig. 10-8 Servo pressure control by kineticvalve.

Administrator
文本框
32.除发动机转速调节器之外,所有控制装置都包容在一个综合燃油控制装置之内。控制装置的主要组成部分是高度传感装置(A.S.U.),加速控制装置(A.C.U.),油门和增压活门装置,以及比例活门装置。 33.在低于调节转速下的任意稳定运转条件时,燃油泵供油由高度传感装置控制为一个固定值。在这个装置中的滥流活门通过各种力、弹簧力和活塞力的平衡保持在控制位置。活塞感测传感活门前后的压差,这个压差是由从比例活门流回燃油泵进口的燃油流产生的。
Administrator
文本框
34.比例活门膜片在平衡状态下保持在打开位置,使燃油流过高度传感装置。这说明,限制器出口压力等于油门出口压力。而且当它们的进口压力相等时,限制器和油门前后的压差相等,因而燃油流量保持恒定。 35.当油门缓慢打开时,油门活门和比例式流量限制器前后的压差减小,同时比例式活门膜片调节其位置。它降低了比例流量,这比例流量又使高度传感装置溢流活门关闭,并增大伺服压力。燃油泵增加了它的供油量,这使得油门活门前后的压差得以恢复,并使各限制器前后的压差相等。比例流量恢复到其原先值。高度传感装置中力的平衡使溢流活门返回到控制位置。 36.由于飞机飞行速度或高度的改变导致的进气道空气压力的改变由高度传感装置中的膜片感测。压力的降低导致高度传感装置膜片膨胀,因而增大了滥流活门的回油。这降低了燃油泵的供油量,直到燃油流量与空气流量相匹配为止,供油量的降低导致油门活门及比例活门限制器前后的压差降低。降低后的比例流量使高度传感装置恢复平衡,这又使溢流活门返回到其控制位置。反之,飞机飞行速度增加,会使进气道空气压力增加,它减少溢流活门的回油,并增大燃油流量。
Administrator
文本框
37.当快速加速时,高度传感装置感测到油门压差突然降低,导致溢流活门关闭。然而,燃油供应如此急速的增加会产生过高的燃气温度,并导致压气机喘振(第3章)。这种情况发生的原因是,旋转组件的惯性使得空气流量增加的速率有相当大的时间滞后。因而必须有一套加速控制器来超控高度传感装置,使燃油流量增加的速率也有相应的滞后。
Administrator
文本框
活门开 (油泵供油减少)
Administrator
文本框
活门关 (油泵供油增加)
Administrator
文本框
活门中间位置 (油泵供油不变)
Administrator
文本框
高压燃油
Administrator
文本框
图10-8 由动力活门驱动的伺服压力控制
Administrator
文本框
伺服
Page 113: Rolls royce jet engine

41. The pressure drop control spill valve closes toincrease the fuel pump delivery and maintains thecontrolling pressure difference across the plunger.The fuel flow, therefore, progressively rises as airflowthrough the compressor increases. The degree ofoverfuelling can be automatically changed by the airswitch, which increases the pressure signal on to thecapsule. The full value of compressor deliverypressure is now passed on to the A.C.U. capsuleassembly, thus increasing the opening rate of themetering plunger.

42. As the controlled overfuelling continues, thepressure difference across the throttle valveincreases. When it reaches the controlling value, theA.S.U. takes over due to the increasing proportionalflow and again gives a steady fuel flow to the spraynozzles.

43. The engine speed governor can be of thepressure control type described in para. 15, or ahydro-mechanical governor as described in para. 23.

44. The control of servo pressure by the hydro-mechanical governor is very similar to that of thepressure control governor, except that the governorpressure is obtained from pump delivery fuel passingthrough a restrictor and the restricted pressure iscontrolled by a rotating spill valve; this type ofgovernor is unaffected by changes in fuel specificgravity.

45. At low engine speeds, the rotating spill valve isheld open; however, as engine speed increases,centrifugal loading moves the valve towards theclosed position against the diaphragm loads. Thisrestricts the bleed of H.P. fuel to the L.P. side of thedrum until, at governed speed, the governorpressure deflects the diaphragm and opens the fuelpump servo pressure spill valve to control themaximum fuel flow and engine speed.

46. If the engine gas temperature exceeds itsmaximum limitation, the solenoid on the proportion-ing valve unit is progressively energized. This causesa movement of the rocker arm to increase theeffective flow area of one restrictor, thus increasingthe proportional flow and opening the A.S.U. spillvalve to reduce servo pressure. The fuel flow is thusreduced and any further increase of gas temperatureis prevented.

47. To prevent the L.P. compressor from over-speeding, some twin-spool engines have an L.P.shaft r.p.m. governor. A signal of L.P. shaft speed isfed to an amplifier and solenoid valve, which limits

the fuel output in the same way as the gastemperature control.

48. An idling speed governor is often fitted toensure that the idling r.p.m. does not vary withchanging engine loads. A variation of idling r.p.m.causes the rocker arm to move and alter the propor-tional flow, and the A.S.U. adjusts the pump deliveryuntil the correct idling r.p.m. is restored.

49. On some engines, a power limiter is used toprevent overstressing of the engine. To achieve this,compressor delivery pressure acts on the powerlimiter capsule. Excess pressure opens the powerlimiter atmospheric bleed to limit the pressure on theA.C.U. capsule and this controls the fuel flow throughthe metering plunger.

50. To enable the engine to be relit and to preventflame-out at altitude, the engine idling r.p.m. is madeto increase with altitude. To achieve this, someengines incorporate a minimum flow valve that addsa constant minimum fuel flow to that passing throughthe throttle valve.

Combined acceleration and speed control51. The combined acceleration and speed controlsystem (fig. 10-9) is a mechanical system withoutsmall restrictors or spill valves. It is also an all-speedgovernor system and therefore needs no separategovernor unit for controlling the maximum r.p.m. Thecontrolling mechanism is contained in one unit,usually referred to as the fuel flow regulator (F.F.R.).An H.P. fuel pump (para. 85) is used and the fuelpump servo piston is operated by H.P. fuel on oneside and main spray nozzle (servo) pressure on thespring side.

52. The F.F.R. is driven by the engine through agear train and has two centrifugal governors, knownas the speed control governor and the pressure dropcontrol governor. Two sliding valves are also rotatedby the gear train. One valve, known as the variablemetering sleeve, has a triangular orifice, known asthe variable metering orifice (V.M.O.), and this sleeveis given axial movement by a capsule assembly. TheV.M.O. sleeve moves inside a non-rotating governorsleeve that is moved axially by the speed controlgovernor. The other valve, known as the pressuredrop control valve, is provided with axial movementby the pressure drop control governor and has atriangular orifice, known as the pressure drop controlorifice, and a fixed-area rectangular orifice. Thespeed control governor is set by the throttle leverthrough a cam, a spring and a stirrup arm inside theregulator.

Fuel system

105

Administrator
文本框
38.燃油流量快速地开始增加导致燃油节流柱塞前后的压差增加,这由压降控制部分的膜片感测。在过量供油的某个定值下,压降控制膜片打开它的伺服溢流活门,超控高度传感装置的控制,并使节流柱塞前后的压差保持恒定。 39.增大了的燃油供应量导致发动机加速,同时,燃油节流柱塞供应允许的最大燃油流量,使之与增加着的压
Administrator
文本框
气机出口压力相匹配。这一功能是通过加速控制装置的伺服系统而实现的。该伺服系统由溢流活门控制,而该活门由作用在膜片上的压气机出口空气压力来操作。 40.当压气机供气压力继续提高时,膜片受压缩,将溢流活门打开,从节流柱塞上方释放压力。作用在柱塞下方的油泵的供油压力将其升起,这样便增大了主燃油流动通道的面积。
Administrator
文本框
41.压降控制溢流活门关闭,使燃油泵供油增加,并保持柱塞前后的控制压差。因此,燃油流量随着压气机空气流量的增加逐渐增加。通过负责增大膜片上压力信号的空气开关能自动改变过量供油的程 度。现在,压气机供气压力的全部数值已传递给加速控制装置的膜片组件,从而增加了节流柱塞的开启率。 42.当受控的过量供油继续进行时,油门活门前后的压差增大。当其到达控制值时,高度传感装置由于增加了比例流量而起作用,重新为喷嘴提供稳定的燃油流量。 43.发动机转速调节器可以是第15段所述的压力控制式,也可以是第23段所述的液压机械式的。 44.液压机械调节器的伺服压力控制,与压力控制调节器非常相似,但调节器压力由油泵供油流过一个限制器之后取得,限制压力受旋转式溢流活门的控制;这种调节器不受燃油比重改变的影响。
Administrator
文本框
45.在低的发动机转速下,旋转溢流活门保持打开位置;但是,当发动机转速增加时,离心载荷在抵消膜片载荷后将活门向关闭位置移动。这便限制了高压燃油向鼓筒的低压侧回油,直到在调节转速下,调节器压力使膜片挠曲,打开燃油泵伺服压力溢流活门,以控制最大燃油流量及发动机转速为止。
Administrator
文本框
46.如果发动机的燃气温度超过丁它的最大极限值,比例活门装置上的线圈逐渐充电。这样便导致摇臂移动,增大一个限流器的有效通流面积,以增大比例流量并打开高度传感装置溢流活门,以减小伺服压力。因此,燃油流量随之减小,防止了燃气温度的进一步增高。
Page 114: Rolls royce jet engine

Fuel system

106

Fig. 10-9 A combined acceleration and speed control system.

Administrator
文本框
52.燃油流量调节器由发动机通过齿轮系驱动。它有2个离心调节器,即转速控制调节器和压力降控制调节器。齿轮系还带动2个滑阀旋转。一个阀是可调节流套筒,带有三角形孔,即可调节流孔,该套筒在膜盒组件作用下产生轴向移动。可调节流孔套筒在一个不旋转的调节器套筒中移动,后者靠转速控制调节器作轴向运动。另一个阀,即压力降控制阀,由压力降控制调节器轴向驱动。它也有一十三角形小孔,即压力降控制孔和一个固定面积的长方孔。转速控制调节器的位置南油门杆通过调节器内的一个凸轮、一根弹簧和一个托架臂设定。
Administrator
文本框
47.为防止低压压气机超转,某些双转子发动机上装有一个低压轴转速调节器。低压轴的转速信号被送入一个放大器和电磁活门,它按燃气温度控制相同的方法来限制燃油的输出。 48.通常装有慢车转速调节器,以保证慢车转速不随发动机载荷的变化而改变。慢车转速的
Administrator
文本框
变化,引起摇臂移动并改变比倒流量,此时高度传感装置调节油泵供油,直到恢复正确的慢车转速为止。 49.在某些发动机中,采用了功率限制器来防止发动机过应力。为了实现这项功能,压气机供气压力作用在功率限制器膜盒上。过高的压力打开功率限制器的大气放气口,以限制加速控制装置膜盒上的压力,进而通过节流柱塞控制燃油流量。
Administrator
文本框
50.为了保证发动机能再点火,防止高空熄火,发动机慢车转速设汁得随高度增加而增加。为了实现这一点,某些发动机上装一个最小油量活门。给流过油门活门的油量增加一个恒定的最小燃油流量。
Administrator
文本框
组合式加速及转速控制 51.组合式加速和转速控制系统(图10-9)是一种机械系统,没有小型限制器或溢流活门。它也是一种全转速调节器系统,因而不需要单独的控制最大转速的调节器装置。控制机构装入一个装置之内,通常称为燃油流量调节器。采用了一个高压燃油泵(第85段),燃油泵伺服活塞的一侧由高压燃油驱动,在弹簧那一侧由主喷嘴(随动)压力驱动。
Administrator
文本框
功率限制器
Administrator
文本框
伺服活塞
Administrator
文本框
燃油泵
Administrator
文本框
高压停车开关
Administrator
文本框
分布配重
Administrator
文本框
燃油喷嘴
Administrator
文本框
低压轴 调节器
Administrator
文本框
膜盒组件
Administrator
文本框
托架臂
Administrator
文本框
可调节流油孔 (V.M.O.)
Administrator
文本框
燃油流量 调节器
Administrator
文本框
图10-9一种组合式加速和转速控制系统
Administrator
文本框
通向油门
Administrator
文本框
湿度控制 作动筒
Administrator
文本框
燃气温度 热电偶
Administrator
标注
转速控制调节器
Administrator
标注
压降控制孔
Administrator
文本框
压降控制调节器
Administrator
文本框
温度控制 信号放大器
Administrator
文本框
控制燃油压力 初级燃油 主燃油
Administrator
文本框
高压压气机进口 高压压气机供气 减少压气机供气
Administrator
文本框
控制空气压力
Administrator
文本框
进气口
Administrator
文本框
分布压力 低压燃油 油泵供油(高压燃油)
Page 115: Rolls royce jet engine

53. At any steady running condition, the enginespeed is governed by the regulator controlling thefuel flow. The fuel pump delivery is fixed at a constantvalue by applying the system pressure difference tothe fuel pump servo piston. This is arranged tobalance the servo piston spring forces.

54. When the air intake pressure is at a constantvalue, the rotating V.M.O. sleeve is held in a fixedaxial position by the capsule loading. The fixedthrottle setting maintains a set load on the speedcontrol governor and, as the r.p.m. is constant, thegovernor sleeve is held in a fixed position.

55. The fuel pump delivery is passed to the annulussurrounding the V.M.O.; the annulus area iscontrolled by the governor sleeve, and the exposedarea of the orifice is set by the axial position of theV.M.O. sleeve. Consequently, fuel passes to theinside of the sleeve at a constant flow and thereforeat a constant pressure difference.

56. The pressure drop control valve, which alsoforms a piston, senses the pressure differenceacross the V.M.O. and maintains the fuel flow at afixed value in relation to a function of engine speed,by controlling the exposed area of the pressure dropcontrol orifice.

57. When the throttle is slowly opened, the load onthe speed control governor is increased, so movingthe governor sleeve to increase the V.M.O. annulusarea. The effect of opening the V.M.O. is to reducethe pressure difference and this is sensed by thepressure drop control governor, which opens thepressure drop valve. The reduced system pressuredifference is immediately sensed by the fuel pumpservo piston, which increases the pump stroke andconsequently the fuel output. The increasedcompressor delivery pressure acts on the capsuleassembly, which gradually opens the V.M.O. so thatthe fuel flow and engine speed continue to increase.At the speed selected, centrifugal forces acting onthe speed control governor move the governorsleeve to reduce the V.M.O. annulus area. Theresultant increased pressure difference is sensed bythe pressure drop control governor, which adjusts thepressure drop valve to a point at which the pumpservo system gives an output to match the enginerequirements. The function of the governors and thecontrol of the fuel flow is shown diagrammatically infig. 10-10.

58. During a rapid acceleration, the initial degree ofoverselling is mechanically controlled by a stop thatlimits the opening movement of the speed control

governor sleeve. A similar stop also prevents the fuelsupply from being completely cut off by the governorsleeve during a rapid deceleration.

59. Changes in altitude or forward speed of theaircraft vary the fuel flow required to maintain aconstant engine speed. To provide this control, thecapsule assembly senses changes in H.P.compressor inlet and delivery pressures and adjuststhe V.M.O. accordingly. For instance, as the aircraftaltitude increases, the compressor delivery pressurefalls and the capsule assembly expands to reducethe V.M.O. The increased system pressure drop issensed by the fuel pump servo piston, which adjuststhe pump output to match the reduced airflow and somaintain a constant engine speed. Conversely, anincrease in aircraft forward speed causes thecapsule assembly to be compressed and increasethe V.M.O. The reduced system pressure dropcauses the fuel pump to increase its output to matchthe increased airflow.

60. To prevent the maximum gas temperature frombeing exceeded, fuel flow is reduced in response tosignals from thermocouples sensing the temperature(Part 12). When the maximum temperature isreached, the signals are amplified and passed to arotary actuator which adjusts the throttle mechanism.This movement has the same effect on fuel flow asmanual operation of the throttle.

61. To ensure that the engine is not overstressed,the H.P. compressor delivery pressure is controlledto a predetermined value. At this value, a pressurelimiting device, known as a power limiter, reduces thepressure in the capsule chamber, thus allowing thecapsule assembly to expand and reduce the V.M.O.so preventing any further increase in fuel flow.

62. A governor prevents the L.P. compressor shaftfrom exceeding its operating limitations and also actsas a maximum speed governor in an event of afailure of the F.F.R. The governor provides a variablerestrictor between the regulator and the main fuelspray nozzle manifold. Should the L.P. compressorreach its speed limitation, flyweights in the governormove a sleeve valve to reduce the flow area, Theincreased system pressure drop is sensed by thefuel pump servo piston, which reduces the fuel flowto the spray nozzles.

63. This fuel system has no pressurizing valve todivide the flow from the fuel pump into main andprimary fuel flows. Primary fuel pressure is takenfrom the fixed-area orifice of the pressure dropcontrol valve. This pressure is always higher than the

Fuel system

107

Administrator
文本框
53.在任何稳定运转状态,发动机转速由控制燃油流量的调节器控制。靠油泵伺服活塞上施加的系统压力差,使燃油泵的供油被固定在一个恒定值。该压力差用于平衡伺服活塞的弹簧力。
Administrator
文本框
54.当进气道空气压力为一恒定值时,膜盒载荷使旋转的可调节流孔套筒保持在一个固定的轴向位置。由于油门位置是固定的,它在转速控制调节器上保持一个固定的载荷,因而只要转速恒定,调节器套简便处于一个固定的位置。
Administrator
文本框
55.燃油泵将油输入围绕可调节流孔的环腔;环腔面积由调节器套筒控制,孔露出的面积由可调节流孔套筒的轴向位置来设定。同时,燃油以恒定的流量流入套筒里面,因而压力差是恒定的。 56.压力降控制活门,它也是一个活塞,感测可调节流孔前后的压差,并通过控制压力降控制孔的暴露面积来保持燃油流量为一个定值,并与发动机的转速成涵数关系。 57. 当油门缓缓打开时,作用在转速控制调节器上的载荷增加,因此移动调节器套筒,增大可调节流孔环腔面积。打开可调节流孔的效果是减少压差,它由压力降控制调节器感测,并打开压力降活门。系统压力差的降低立即由燃油泵伺服活塞感测,它增大了油泵行程,从而增加燃油输出。增加了的压气机供气压力作用在膜盒组件上,该组件逐渐打开可调节流孔。这样,燃油流量和发动机转速继续增加。在选定的转速下,作用在转速控制调节器上的离心 力移动调节器套筒,来减小可调节流孔环腔的面积。
Administrator
文本框
所增加的压差由压力降控制调节器感测。它将压力降活门调整到油泵伺服系统的输出与发动机的要求相符合的程度。调节器的功能及其对燃油流量的控制示于图10-10。
Administrator
文本框
58.当快速加速时,开始时的过量供油量由一个止动销作机械控制,它限制转速控制调节器套筒上孔口的开启移动。另一个相似的止动销也用来防止在快速减速时燃油供应被调节器套筒完全切断。
Page 116: Rolls royce jet engine

Fuel system

108

Fig. 10-10 Governor movement and fuel flow control.

Administrator
文本框
62.有一调节器防止低压压气机轴超出它的工作极限值,它还在燃油流量调节器损坏时起最大转速调节器的作用。在调节器和主燃油喷嘴总管之间,该调节器有一个可调的限制器。一旦低压压气机达到其转速极限之后,调节器中的配重移动套筒活门。将流通面积减少。增加的系统压力降由燃油泵伺服活塞感测,使供向喷嘴的燃油流量减步。
Administrator
文本框
59.飞机的高度或飞行速度的改变使保持恒定的发动机转速所要求的燃油流量改变。为了实施这种控制,膜盒组件感测高压压气机进口和出口的压力变化,并相应地调节可调节流孔。例如,飞机的高度增加,压气机出口压力降低,膜盒组件发生膨胀,使可调节流孔面积减小。增加的系统压力降由燃油泵伺服活塞感测,它调整油泵的输出,与减小了的空气流量相适应,从而保持发动机转速恒定。反之,飞机飞行速度增加导致膜盒组件受压缩.可调节流孔增大。减小的系统压力降使油泵增加输出,与空气流量的增加相适应。
Administrator
文本框
60.为防止最高燃气温度超过限制,燃油流量根据感测温度的热电偶信号而减少(第12章)。当最高温度达到之后,信号被放大,送到旋转作动筒,它调节油门机构。这一运动对燃油流量具有和用手操纵油门同样的作用。
Administrator
文本框
63.燃油系统中没有将来自油泵的燃油分成主燃油和初级燃油的增压活门。初级燃油的压力取自压力降控制活门的固定面积小孔。该压力通常高于主燃油压力,而且它不能由压力降控制活塞来切断。因而,它可以在所有高度下提供满意的慢车燃油流量。
Administrator
文本框
61.为了保证发动机不发生过应力,高压压气机出口压力由一个预先设定的值加以控制。在这一值时,压力限制装置,即功率限制器,降低膜盒室内的压力,因而允许膜盒组件膨胀,减小可调节流孔。借以防止燃油流量进一步增加。
Administrator
文本框
可调节流油孔
Administrator
文本框
油泵供油(高压燃油) 主燃油 初级燃油 进气口 压气机供气
Administrator
文本框
图10-10 调节器的移动和燃油流量控制
Administrator
文本框
调节器套筒移动以增大 可调节流孔的面积
Administrator
文本框
油门打开
Administrator
文本框
压降控制器感测压力差打开压降活门
Administrator
文本框
减少作用在伺服活塞上的调节器前后压差以增大泵的输出及发动机的转速
Administrator
文本框
增大作用在膜盘上的压气机出口压力,以进一步增加燃油流量
Administrator
文本框
在所选择的发动机转速上,调节器控制可调节流孔及压降控制孔的面积,从而稳定调节器前后压差 油泵供应满足发动机要求的燃油
Administrator
文本框
油门
Administrator
标注
转速调节器
Administrator
文本框
压降控制调节器
Administrator
文本框
调节器
Administrator
文本框
膜盒组件
Administrator
文本框
调节器套筒
Administrator
文本框
通向燃油喷嘴
Administrator
文本框
压降控制活门
Administrator
文本框
燃油泵
Administrator
文本框
伺服活塞
Administrator
标注
压降控制孔
Administrator
文本框
64.对于具有喷水特点的发动机(第17章),由活塞和重调凸轮驱动一个重调装置(图10-11),增大作用在油门控制弹簧和托架臂上的载荷,以此在喷水时选择较高的发动机转速。为了防止功率限制器(图10-9)抵消喷水的效果,限制器中有一个膜盒负责根据水的压力来提高功率限制器起作用时所对应的压气机出口压力。
Administrator
文本框
分布压力及控制压力
Page 117: Rolls royce jet engine

main fuel pressure and it is not shut off by thepressure drop control piston. It therefore gives a sat-isfactory idling fuel flow at all altitudes.

64. On engines featuring water injection (Part 17), areset device (fig. 10-11), operated by a piston andreset cam, increases the loading on the throttlecontrol spring and stirrup arm, thus selecting a higherengine speed during water injection. To prevent thepower limiter (fig, 10-9) cancelling the effect of waterinjection, a capsule in the limiter is subjected to waterpressure to raise the compressor delivery pressureat which the power limiter operates.

Pressure ratio control65. The pressure ratio control (fig. 10-12) is amechanical system similar to the combined acceler-ation and speed control system, but uses the ratio ofH.P. compressor delivery pressure to air intakepressure (P4/P1) as the main controlling parameter.It needs no separate governor unit for controlling themaximum r.p.m. The controlling mechanism iscontained in one unit, which is usually referred to asa fuel flow regulator (F.F.R.). A gear-type pump isused, as described in para. 88, and the pump outputto the F.F.R. is controlled by a pressure drop spillvalve.

66. The F.F.R. is driven by the engine through agear train and has two rotating valves. One valve,

known as a variable metering sleeve, has atriangular orifice, known as the variable meteringorifice (V.M.O.), and this sleeve is given axialmovement by a capsule assembly. The other valve,known as the pressure drop control valve, isprovided with axial movement by a centrifugalgovernor, known as a pressure drop controlgovernor, Both valves form variable restrictors whichcontrol the fuel flow to the spray nozzles.

67. Control of the V.M.O. area is a function of apressure ratio control unit housed in the F.F.R. Apressure ratio control valve, subjected to P4 and P1,pressures, regulates the movement of the F.F.R.capsule and thus controls the V.M.O. area to producethe pressure ratio dictated by the throttle or powerlever.

68. At any steady running condition, the output ofthe fuel pump is greater than the engine requirement.The pressure drop spill valve is open to allow surplusfuel to return to the inlet side of the pump. This actioncontrols the fuel delivery to that demanded by theF.F.R.

69. When the throttle is slowly opened, the throttle-controlled orifice is increased and the controlpressure falls, thus allowing the pressure ratiocontrol valve to move towards the closed position(acceleration stop). F.F.R. capsule chamber pressure

Fuel system

109

Fig. 10-11 Effect of water reset on speed control governor.

Administrator
文本框
66.燃油流量调节器由发动机通过齿轮系驱动,它有2个旋转活门。其中一个是可调节流套筒,其上有三角形孔,即可调节流孔。该套筒由膜片组件带动作轴向移动。另一个活门为压力降控制活门,由一个离心式凋节器带动作轴向移动,该调节器被称 作压力降控制调节器。这2个活门构成可调限流器,它们控制向喷嘴供应的燃油流量。 67.可调节流孔面积的控制是压力比控制装置的一种功能,它位于燃油流量调节器中。压力比控制活门感受P4和P1压力,调节燃油流量调节器膜盘的移动,进而控制可调节流孔的面积。以产生油门或功率操纵杆所给定的压力比。 68.在任何一个稳定的运转状态,燃油泵的供油输出总是大于发动机的需求。压力降溢流活门的打开,可使过剩的燃油返回到油泵的进口侧。这个动作接燃油流量调节器所要求的值控制供油量。
Administrator
文本框
压力比控制 65.压力比控制系统(图10-12)是相似于组合式加速和转速控制系统的一个机械系统,但它采用高压压气机出口压力与进气道空气压力之比(P4/P1)作为主要的控制参数。对于控制最大转速,它不需要单独的调节装置。该控制机构包容在一个装置之内,通常归类于燃油流量调节器。采用了如第88段所述的一种齿轮泵,该油泵向燃油流量调节器的输出由压力降溢流活门控制。
Administrator
文本框
托架臂
Administrator
文本框
油门控制弹簧
Administrator
文本框
图10-11 喷水调整对转速控制调节器的影响
Administrator
文本框
转建控制调节器调整装置(使用喷水时)
Administrator
文本框
转速控制调节器调整装置(未用喷水时)
Administrator
文本框
水 高压 空气
Administrator
文本框
活塞
Administrator
文本框
转速控制调节凸轮
Administrator
文本框
油门输入杆
Administrator
文本框
调整凸轮
Page 118: Rolls royce jet engine

Fuel system

110

Fig. 10-12 A pressure ratio control system.

Administrator
文本框
真空膜盒
Administrator
文本框
去低压系统 来自低压系统 减压活门 作动筒 放大器
Administrator
标注
燃油泵及 活门组件
Administrator
标注
降低高压压气机 出口压力(部分P4) 燃油流量调节器 膜盒腔内压力 控制压力
Administrator
文本框
燃气温度热电偶
Administrator
标注
低压轴转速
Administrator
标注
压力降 溢流活门
Administrator
标注
可调限流器
Administrator
文本框
可调节流孔
Administrator
文本框
燃油量调节器
Administrator
文本框
可调节流套筒
Administrator
文本框
图10-12 一种压力比控制装置
Administrator
文本框
微调活门
Administrator
标注
地面慢车电磁阀
Administrator
文本框
Administrator
文本框
通气口
Administrator
文本框
油门杆
Administrator
文本框
油门控制孔
Administrator
文本框
压比控制器
Administrator
标注
减速止动钉
Administrator
标注
加速止动钉
Administrator
文本框
压比控制活门
Administrator
文本框
真空膜盒
Administrator
文本框
慢车调节器
Administrator
标注
控制膜盒
Administrator
标注
压降控制调节器
Administrator
标注
燃油流量调节器膜盒
Administrator
文本框
喷嘴
Administrator
文本框
高压燃油 停车活门
Administrator
文本框
压降控制孔
Administrator
文本框
燃油压力
Administrator
文本框
空气压力控制
Administrator
标注
低压燃油 油泵供油(高压燃油) 高压燃油去燃油 流量调节器进口 初级燃油 主燃油
Administrator
标注
进气道(P1) 高压压气机进口(P3) 高压压气机出口(P4)
Administrator
文本框
P1控制孔
Administrator
文本框
辅助油门开关
Administrator
文本框
69.当油门缓慢打开时,被油门控制的孔增大,控制压力下降,因而允许压力比控制活门向关闭位置移动(停止加速)。燃油流量调节器膜盒腔的压力增加,膜盒带动节流套筒,来增大可调节流孔的面积。打开可调节流孔的效果是减小压力差。压力差由压力降调节器感测,它打开压力降控制孔。降低了的系统压力差直接由压力降溢流活门感测,它向关闭位置移动,由此增加燃油输出。增加的燃油流量使发动机加速,随之增大压力比(P4/P1)。当达到要求的压力比之后,压力比控制活门打开,燃油流量调节器膜盘腔的压力降低。膜盒组件发生膨胀,移动可调节流孔套筒,以减小孔的面积。由此增加的压力差由压力降控制调节器感测,它将压力降控制孔调节到某一点上,在这一点时能使压力降溢流活门给出的燃油供油量符台稳态运转的要求。
Page 119: Rolls royce jet engine

increases and the capsule moves the meteringsleeve to increase the V.M.O. area. The effect ofopening the V.M.O. is to reduce the pressuredifference and this is sensed by the pressure dropgovernor, which opens the pressure drop controlorifice. The reduced system pressure difference isimmediately sensed by the pressure drop spill valve,which moves towards the closed position and conse-quently increases the fuel output. The increased fuelflow accelerates the engine with a subsequentincrease in pressure ratio (P4/P1). When therequired pressure ratio is reached, the pressure ratiocontrol valve opens and the F.F.R. capsule chamberpressure reduces. The capsule assembly expands,moving the V.M.O. sleeve to reduce the orifice area.The resultant increased pressure difference issensed by the pressure drop control governor, whichadjusts the pressure drop control orifice to a point atwhich the pressure drop spill valve gives a fueloutput consistent with steady running requirements.

70. During a rapid acceleration, the degree ofoverselling is mechanically controlled by the acceler-ation stop, which limits the movement of the pressureratio control valve. A similar stop prevents the fuelsupply from being completely cut off during a rapiddeceleration.

71. When accelerating to a higher P4/P1 ratio, thethrottle control orifice is increased. The reducedpressure allows the pressure ratio control capsule tocontract so that the valve contacts the accelerationstop. F.F.R. capsule chamber pressure increasesand the capsule moves to increase the V.M.O. area.This action continues until the required P4/P1 ratio isreached. The increased P4 pressure allows thepressure ratio control capsule to re-expand and thevalve to return to the steady running position.

72. A change in altitude of the aircraft requires avariation in fuel flow to match the engine thrust andaircraft climb requirement. The normal effect of analtitude increase is to decrease the P1 and P4pressures, thus opening the pressure ratio controlvalve and allowing the F.F.R. capsule to expand toreduce the V.M.O. area and, in consequence, thefuel flow. However, to match the engine thrust andaircraft climb requirement it is necessary to increasethe P4/P1 ratio with increasing altitude. This is doneby a trimmer valve and a capsule that is subjected toP1 pressure. As P1 pressure decreases, the trimmervalve moves across the P1 controlled orifice toreduce the control pressure. This is sensed by thecontrol capsule, which, by acting on the pressureratio control valve, slows the closure of the V.M.O. as

altitude is increased. This maintains the thrustrequirement with the throttle at a fixed position.

73. To prevent the maximum L.P. compressor r.p.m.and engine gas temperature from being exceeded, avalve, known as the auxiliary throttling valve, is fittedin the outlet from the fuel pump, Under steadyrunning conditions, the valve is held open by springforce, When limiting conditions are reached, the fuelflow is reduced in response to speed andtemperature signals from the engine. The signals areamplified and passed to a rotary actuator thatreduces the area of a variable restrictor. The effect ofthis is to increase the fuel pressure, which partiallycloses the throttling valve. H.P. fuel pressure actingon the face of the pressure drop spill valve isincreased and the spill valve opens to reduce the fuelflow to the spray nozzles.

74. H.P. shaft speed is also governed by theauxiliary throttling valve. Should other controllingdevices fail and pump speed increases, the fuelpressure closes the throttling valve and opens thepressure drop spill valve to reduce the fuel flow.

75. With the throttle closed, idling condition isdetermined by controlling the amount of air beingvented through the idling adjuster and the groundidling solenoid valve, With both bleeds in operation,satisfactory flight idling for the air off-takes isensured. By closing the solenoid valve a lower powercondition for ground idling is obtained.

76. This fuel system, like the combined accelerationand speed control system, has no pressurizing valveto divide the flow from the fuel pump into main andprimary flows.

ELECTRONIC ENGINE CONTROL

77. As stated in para. 8, some engines utilize asystem of electronic control to monitor engineperformance and make necessary control inputs tomaintain certain engine parameters within predeter-mined limits. The main areas of control are engineshaft speeds and exhaust gas temperature (E.G.T.)which are continuously monitored during engineoperation. Some types of electronic control functionas a limiter only, that is, should engine shaft speed orE.G.T. approach the limits of safe operation, then aninput is made to the fuel flow regulator (F.F.R.) toreduce the fuel flow thus maintaining shaft speed orE.G.T. at a safe level. Supervisory control systemsmay contain a limiter function but, basically, by usingaircraft generated data, the system enables a moreappropriate thrust setting to be selected quickly and

Fuel system

111

Administrator
文本框
72.飞机高度的变化要求燃油流量发生变化,以满足发动机推力和飞机爬升的要求。正常情况下,高度增加会降低压力P1和P4,因此会打开压力比控制活门并使燃油流量调节器膜盒膨胀,以减小可调节流孔的面积,进而减少供油。但是,为了满足发动机推力和飞机爬升的要求,需要随着高度的增加增大P4/P1。这个功能是由微调活门和一个感受压力P1的膜盒来实现。当压力P1减小时,微调活门移过P1控制孔,以减小控制压力。该压力由控制膜盒感测,靠作用在压力比控制活门上的压力,控制膜盒能随着高度的增加延缓可调节流孔的关闭过程。这样在保持油门处于固定位置的情况下,满足了推力的要求。
Administrator
文本框
73.为了防止超过低压压气机的最大转速和发动机燃气温度。在燃油泵出口处装了一个活门,即辅助节流活门。在稳态运转状态下,该活门在弹簧力作用下保持打开。当到达极限状态时,燃油流量依据发动机的转速和温度信号而减少。信号被放大,并传至旋转作动筒,来减小可调限流器的面积。这个动作的效果是增大燃油压力,此压力又部分地关小节流活门。作用在压力降溢流活门表面上的高压燃油的压力增加,溢流活门打开,因而减步向喷嘴供应的燃油流量。
Administrator
文本框
70.当快速加速时,过量供油的多少由加速止动销机械地加以控制。该止动销限制压力比控制活门的移动。另一个类似的止动销防止快速减速时供油被完全切断。 71.当加速到较高的压力比P4/P1时,油门控制孔增大。减小了的压力允许压力比控制膜盒收缩,因
Administrator
文本框
而活门碰到加速止动销。燃油流量调节器膜盒腔内压力增加,膜盒移动,将可调节流孔的面积增加。这个动作一直继续进行到达到要求的压力比P4/P1时为止。增加的P4压力使压力比控制膜盒重新膨胀,活门返回到稳定运转位置。
Administrator
文本框
74.高压轴转速也由此辅助节流活门调节。万一其他控制装置失灵,而且油泵转速增加时,燃油压力将此节流活门关闭,并打开压力降溢流活门,从而减小燃油流量。
Administrator
文本框
75.随着油门关闭,慢车状态由控制经慢车调节器和地面慢车电磁阀进行通风的空气量来确定。在工作中通过此二者同时放气,保证了在发动机有空气提取时仍有满意的空中慢车。通过关闭电磁阀可获得地面慢车时的低功率状态。
Page 120: Rolls royce jet engine

accurately by the pilot. The control system thenmakes small control adjustments to maintain enginethrust consistent with that pre-set by the pilot,regardless of changing atmospheric conditions. Fullauthority digital engine control (FAD.E.G.) takes overvirtually all of the steady state and transient controlintelligence and replaces most of the hydromechani-cal and pneumatic elements of the fuel system. Thefuel system is thus reduced to a pump and controlvalve, an independent shut-off cock and a minimumof additional features necessary to keep the enginesafe in the event of extensive electronic failure.

78. Full authority fuel control (F.A.F.C.) provides fullelectronic control of the engine fuel system in thesame way as F.A.D.E.C., but has none of thetransient control intelligence capability used tocontrol the compressor airflow system as the existingengine control system is used for these.

Speed and temperature control amplifiers79. The speed and temperature control amplifierreceives signals from thermocouples measuringE.G.T. and from speed probes sensing L.P. and insome cases, L.P. shaft speeds (N1 and N2). Theamplifier basically comprises speed and temperaturechannels which monitor the signals sensed. If eitherN1, N2 or E.G.T. exceed pre-set datums, theamplifier output stage is triggered to connect anelectrical supply to a solenoid valve (para. 47) or avariable restrictor (para. 73) which override the F.F.R.and cause a reduction in fuel flow. The limiter willonly relinquish control back to the F.F.R. if the inputconditions are altered (altitude, speed, ambienttemperature or throttle lever position). The limitersystem is designed to protect against parametersexceeding their design values under normaloperation and basic fuel system failures.

Engine supervisory control80. The engine supervisory control (E.S.C.) systemperforms a supervisory function by trimming the fuelflow scheduled by the fuel flow governor (F.F.G.) tomatch the actual engine power with a calculatedengine power for a given throttle angle. The E.S.C.provides supervisory and limiting functions by meansof a single control output signal to a torque motor inthe F.F.G. In order to perform its supervisory functionthe E.S.C. monitors inputs of throttle angle, enginebleed state, engine pressure ratio (E.P.R.) and airdata computer information (altitude, Mach numberand temperatures). From this data the supervisorychannel predicts the value of N1 required to achievethe command E.P.R. calculated for the throttle angleset by the pilot. Simultaneously a comparison ismade between the command E.P.R. and the actual

E.P.R. and the difference is compared with aprogrammed datum.

81. During acceleration the comparitor connects thepredicted value of N1 to the limiter channel until thedifference between the command and actual E.P.R.is approximately 0.03 E.P.R. At this point thepredicted L.P. shaft speed is disconnected and theE.P.R. difference signal is connected to the limiterchannel.

82. The final output from the supervisory channel,in the form of an error signal, is supplied to a 'lowestwins' circuit along with the error signals from thelimiter channel. While the three error signals remainpositive (N1 and E.G.T. below datum level and actualE.P.R. below command E.P.R.) no output is signalledto the torque motor. If, however, the output stage ofthe E.S.C. predicts that E.G.T. will exceed datum orthat N1 will either exceed its datum or the predictedlevel for the command E.P.R., then a signal is passedto the torque motor to trim the fuel flow.

LOW PRESSURE FUEL SYSTEM

83. An L.P. system (fig.10-13) must be provided tosupply the fuel to the engine at a suitable pressure,rate of flow and temperature, to ensure satisfactoryengine operation. This system may include an L.P.pump to prevent vapour locking and cavitation of thefuel, and a fuel heater to prevent ice crystals forming.A fuel filter is always used in the system and in someinstances the flow passes through an oil cooler (Part8). Transmitters may also be used to signal fuelpressure, flow and temperature (Part 12).

FUEL PUMPS

84. There are two basic types of fuel pump, theplunger-type pump and the constant-delivery gear-type pump; both of these are positive displacementpumps. Where low pressures are required at the fuelspray nozzles, the gear-type pump is preferredbecause of its lightness.

Plunger-type fuel pump85. The pump shown in fig. 10-14 is of the single-unit, variable-stroke, plunger-type; similar pumpsmay be used as double units depending upon theengine fuel flow requirements.

86. The fuel pump is driven by the engine gear trainand its output depends upon its rotational speed andthe stroke of the plungers. A single-unit fuel pumpcan deliver fuel at the rate of 100 to 2,000 gallons perhour at a maximum pressure of about 2,000 lb. per

Fuel system

112

Administrator
文本框
76.与组合式加速和转速控制系统相似,这一燃油系统也没有采用增压活门来将燃油从油泵分配到主油路及初级油路。 发动机电子控制 77.如第8段所述,某些发动机采用电子控制系统来监视发动机的性能并提供必要的控制输入量,将一些发动机参数保持在预定的极限值之内。控制的主要领域是发动机轴转速及排气温度,这些都是在发动机工作中要连续监视的。有些类型的电子控制器仅仅起一个限制器功用。即一旦发动机轴转速或排气温度接近安全工作极限,那么就会向燃油流量调节器提供一
Administrator
文本框
个输入量,使燃油流量减步,将轴转速或排气温度保持在安全水平上。监督控制系统可以具有限制器的功能,但是基本上它利用飞机提供的数据保证驾驶员能够快速而又精确地选择更为适当的推力位置。然后,控制系统进行微调,保持发动机的推力符合驾驶员预先设定的值,而不管大气条件如何变化。全权限数字式发动机控制器(F.A.D.E.C.)实际上接管了所有的稳态和瞬态的控制智能,并取代了燃油系统中绝大多数的液压机械和气动元件。因此,燃油系统简化到一个油泵、一个控制活门、一个单独的停车开关,以及在大量电子损坏的情况下必须要用来保证发动机安全的步量的附加装置。 78.全权限燃油控制器(F.A.F.C.)以与全权数字式发动机控制器相同的方式对发动机的燃油系统进行全电子式控制,但是它没有用来控制压气机空气流量系统的瞬态控制智能能力,而现在正用的发动机控制系统却具有这种能力。
Administrator
文本框
转速及温度控制放大器 79.转速和温度控制放大器接受来自热电偶和转速传感器的信号。热电偶感测排气温度,而转速传感器感测低压轴的转速,在某些情况下感测中压轴的转速(N1和N2)。
Administrator
文本框
放大器基本是由转速和温度通道组成的,它监视感测到的信号。如果N1,N2或排气温度中任何一个超过了预先设定的数据,放大器输出级被触发,向电磁阀(第47段)或可调限静器(第73段)通电,它们超控燃油流量调节器,促使燃油流量减少。当输入条件(高度、速度、外界温度或油门杆位置)改变时,限流器只是将控制功能变回燃油流量调节器。这种限制器系统的设计是为了在正常工作和基本燃油系统损坏情况下,防止参数超过它们的设计值。
Page 121: Rolls royce jet engine

Fuel system

113

Fig. 10-14 A plunger-type fuel pump.

Fig. 10-14 A low pressure system.

Administrator
文本框
柱塞式燃油泵 85.图10-14所示为一个可调行程的柱塞式单个油泵,类似的油泵也可以用一对油泵,这取决于发动机对燃油流量的要求。 86.燃油泵由发动机齿轮系驱动,其输出量取决于其转速及柱塞的行程。单台燃油泵每小时可供油100-200加仑,最大油压约为2000磅/平方英寸左右。驱动这一油泵可能需要60马力。
Administrator
文本框
发动机管理控制 80.发动机管理控制系统通过微调燃油流量来执行其监控功能,而燃油流量是由燃油流量调节器按程序控制的。这样就能使发动机的实际功率与给定油门角度下发动机的设计功率相匹配。发动机管理控制装置通过向燃油流量调节器中的力矩马达发送一个控制输出信号来实施管理及限制功能。为了实现其管理功能,发动机管理控制装置监视下列输入量:油门角度、发动机引气状况、发动机压比、计算机大气数据信息(高度、马赫数和温度)。依据这些数据,管理通道预计N1的值。N1是为了达到指令性的发动机压比所需要的转速,而这个发动机压比是按照驾驶员设定的油门角度而计算出来的。同时,将指令性的发动机压比与实际的发动机压比作比较,其差值与一编入程序的数据相比较。
Administrator
文本框
81.在加速过程中,比较器将N1的预计值与限制器通道接通,直到指令性的和实际的发动机压比之差约为0.03发动机压比时为止。在这一点,低压轴转速预计值与限制器通道脱开,而将发动机压比之差值信号与限制器通道相连。
Administrator
文本框
82.管理通道的最终输出,以一个误差信号的形式,与限制器通道中的误差信号一起送至“最低获胜者”线路。若这三个误差信号都为正值(N1和排气温度低于基准数据水平,和发动机实际压比低于指令性压比),不向力矩马达发送信号。但是,如果发动机管理控制装置的输出级预测到排气温度将超过基准数据,或者相对于指令性发动机压比,N1将超过基准数据或超过预计的水平,那么,将有一个信号被发送到力矩马达,用于微调燃油流量。
Administrator
文本框
低压燃油系统 83.必须配备一个低压系统(图10-13),来以适当的压力、流量、和温度向发动机供油,以保证发动机工作良好。该系统可以包括一个低压油泵以防止燃油的汽化阻塞及燃油的气穴,以及一个燃油加温器以防止冰晶的形成。系统中通常都有油滤。在某些情况下,燃油流过滑油散热器(第8章)。还可以装一些传感器。用来测取燃油压力、流量和温度信号(第12章)。
Administrator
文本框
燃油泵 84.燃油泵有两种基本类型,即柱塞式泵和等排量齿 轮泵;这两种都是正排量泵。对于燃油喷嘴要求低 油压的场合,齿轮式油泵由于重量轻,被优先采用。
Administrator
文本框
燃油加温器
Administrator
文本框
低压油泵
Administrator
文本框
飞机供油
Administrator
文本框
滑油出口
Administrator
文本框
燃油冷却 滑油散热器
Administrator
文本框
滑油进口
Administrator
文本框
空气进口
Administrator
文本框
自动燃油 温度控制
Administrator
文本框
空气出口
Administrator
文本框
燃油滤
Administrator
文本框
来自控制系统的低压回油
Administrator
标注
去高压 燃油泵
Administrator
文本框
流量表
Administrator
文本框
温度传感器
Administrator
文本框
低压燃油 空气 滑油
Administrator
文本框
图10-13 一种低压燃油系统
Administrator
文本框
凸轮盘
Administrator
文本框
柱塞
Administrator
文本框
伺服活塞
Administrator
文本框
油泵 传动轴
Administrator
文本框
转子
Administrator
文本框
燃油出口
Administrator
文本框
燃油进口
Administrator
文本框
图10-l4 一种柱塞式燃油泵
Administrator
标注
低压燃油 油泵供油(高压燃油) 伺服压力
Page 122: Rolls royce jet engine

square inch. To drive this pump, as much as 60horsepower may be required.

87. The fuel pump consists of a rotor assemblyfitted with several plungers, the ends of which projectfrom their bores and bear on to a non-rotatingcamplate. Due to the inclination of the camplate,movement of the rotor imparts a reciprocating motionto the plungers, thus producing a pumping action.The stroke of the plungers is determined by the angleof inclination of the camplate. The degree ofinclination is varied by the movement of a servopiston that is mechanically linked to the camplateand is biased by springs to give the full strokeposition of the plungers. The piston is subjected toservo pressure on the spring side and on the otherside to pump delivery pressure; thus variations in thepressure difference across the servo piston cause itto move with corresponding variations of thecamplate angle and, therefore, pump stroke.

Gear-type fuel pump88. The gear-type fuel pump (fig. 10-12) is drivenfrom the engine and its output is directly proportionalto its speed. The fuel flow to the spray nozzles iscontrolled by recirculating excess fuel delivery backto inlet. A spill valve, sensitive to the pressure dropacross the controlling units in the system, opens andcloses as necessary to increase or decrease thespill.

FUEL SPRAY NOZZLES

89. The final components of the fuel system are thefuel spray nozzles, which have as their essentialfunction the task of atomizing or vaporizing the fuel toensure its rapid burning. The difficulties involved inthis process can be readily appreciated when oneconsiders the velocity of the air stream from thecompressor and the short length of combustionsystem (Part 4) in which the burning must becompleted.

90. An early method of atomizing the fuel is to passit through a swirl chamber where tangentiallydisposed holes or slots imparted swirl to the fuel byconverting its pressure energy to kinetic energy. Inthis state, the fuel is passed through the dischargeorifice which removes the swirl motion as the fuel isatomized to form a cone-shaped spray. This is called'pressure jet atomization'. The rate of swirl andpressure of the fuel at the fuel spray nozzle areimportant factors in good atomization. The shape ofthe spray is an indication of the degree ofatomization as shown in fig. 10-15. Later fuel spraynozzles utilize the airspray principle which employs

high velocity air instead of high velocity fuel to causeatomization. This method allows atomization at lowfuel flow rates (provided sufficient air velocity exists)thus providing an advantage over the pressure jetatomizer by allowing fuel pumps of a lighter con-struction to be used.

91. The atomizing spray nozzle, as distinct from thevaporizing burner (Part 4), has been developed infive fairly distinct types; the Simplex, the variable port(Lubbock), the Duplex or Duple, the spill type and theairspray nozzle.

92. The Simplex spray nozzle shown in fig. 10-16was first used on early jet engines. It consists of achamber, which induces a swirl into the fuel, and afixed-area atomizing orifice. This fuel spray nozzlegave good atomization at the higher fuel flows, that

Fuel system

114

Fig. 10-15 Various stages of fuel atomization.

Administrator
文本框
92.单油路喷嘴示于图10-16,它首先在早期的喷气发动机上使用。它有一个内腔,使燃油产生旋涡,还有个固定面积的雾化孔。这种燃油喷嘴,在较高的燃油流量,即在较高的燃油压力时,能提供良好的雾化质量。但是,在低的发动机转速以及尤其在高空状态下,由于要求的油压
Administrator
文本框
87.燃油泵由一个装有若干柱塞的转子组件构成。柱塞的端头从其孔中向外突出,顶在不旋转的凸轮盘上。由于凸轮盘的斜度,转子的运动使各个柱塞作往复运动,由此产生了泵的作用。柱塞的行程由凸轮盘的倾斜角决定。倾斜的度数依据伺服活塞的运动而改变。伺服活塞与凸轮盘机械相连,由弹簧力使之压到一端,使柱塞选到全行程位置。活塞在弹簧那一侧受伺服压力,另一侧受油泵供油压力;因而伺服活塞前后压力差的变化会使它发生移动相应地使凸轮盘角度发生变化,进而改变油泵行程。
Administrator
文本框
齿轮式燃油泵
Administrator
文本框
88.齿轮式燃油泵(图10-12)由发动机驱动,其输出量与其转速成正比。向喷嘴供应的燃油流量通过将过量的供油返回到进口来控制。溢流活门感受系统中的控制装置前后的压力差,按需要开、关,以增加或减少回油。 燃油喷嘴 89.燃油喷嘴是燃油系统中最终的组件。其基本功能是执行燃油雾化或汽化的任务,以保证燃油快速燃烧。当考虑到来自压气机的空气流的速度以及应当在其中完成燃烧的燃烧系统(第4章)的长度很短,这一过程中的诸多困难是很容易明白的。 90.燃油雾化的早期方法是将其通过一个旋涡室,在此处切向分布的孔或槽通过将压力能转变为动能使燃油产生旋涡。在这种情况下,燃油经过出油孔,旋涡消除。使燃油雾化形成了锥形喷油。这被称之为“压力喷射雾化”。对于良好的雾化来说,燃油喷嘴中燃油的旋涡程度和压力是重要因素。喷射的形状是雾化程度的指标,如图10-15所示。后来的燃油喷嘴采用了空气喷雾原理,它使用高速的空气取代高速的燃油来进行雾化。这种方法可以在低的燃油流量下使燃抽雾化(只要具备足够的空气速度)。因此,与压力喷嘴相比其优点是可以使用轻结构的燃油泵。
Administrator
文本框
在低燃油压力下形成了称为‘油泡’的连续油膜
Administrator
文本框
图10-15 燃油雾化的各个阶段
Administrator
标注
在中等燃油压力下薄膜在边缘处破裂形成“喇叭口”的形状
Administrator
标注
在高燃油压力下“喇叭口”的形状向孔口缩短,形成雾化极好的喷射
Administrator
文本框
91.与蒸发式喷嘴(第4章)不同,雾化喷嘴已发展成了5个不同的品种:即单油路喷嘴(Simplex),可调进口(Lubbock)喷嘴,双油路喷嘴(Duplex或Duple),溢流式和空气雾化式喷嘴。
Page 123: Rolls royce jet engine

is, at the higher fuel pressures, but was very unsatis-factory at the low pressures required at low enginespeeds and especially at high altitudes. The reasonfor this is that the Simplex was, by the nature of itsdesign, a 'square law' spray nozzle; that is, the flowthrough the nozzle is proportional to the square rootof the pressure drop across it. This meant that if theminimum pressure for effective atomization was 30lb. per square inch, the pressure needed to givemaximum flow would be about 3,000 lb. per squareinch. The fuel pumps available at that time wereunable to cope with such high pressures so thevariable port spray nozzle was developed in an effortto overcome the square law effect.

93. Although now only of historical value, thevariable port or Lubbock fuel spray nozzle (fig. 10-17) made use of a spring-loaded piston to control thearea of the inlet ports to the swirl chamber. At low fuelflows, the ports were partly uncovered by themovement of the piston; at high flows, they were fullyopen. By this method, the square law pressure rela-tionship was mainly overcome and good atomizationwas maintained over a wide range of fuel flows. Thematching of sets of spray nozzles and the sticking ofthe sliding piston due to dirt particles were, however,difficulties inherent in the design, and this type waseventually superseded by the Duplex and the Duplefuel spray nozzles.

94. The Duplex and the Duple spray nozzlesrequire a primary and a main fuel manifold and havetwo independent orifices, one much smaller than theother. The smaller orifice handles the lower flows andthe larger orifice deals with the higher flows as thefuel pressure increases. A pressurizing valve may beemployed with this type of spray nozzle to apportionthe fuel to the manifolds (fig. 10-18). As the fuel flow

and pressure increases, the pressurizing valvemoves to progressively admit fuel to the mainmanifold and the main orifices. This gives acombined flow down both manifolds. In this way, theDuplex and Duple nozzles are able to give effectiveatomization over a wider flow range than the Simplexspray nozzle for the same maximum fuel pressure.Also, efficient atomization is obtained at the low flowsthat may be required at high altitude. In the combinedacceleration and speed control system (para. 51),the fuel flow to the spray nozzles is apportioned inthe F.F.R.

95. The spill type fuel spray nozzle can bedescribed as being a Simplex spray nozzle with apassage from the swirl chamber for spilling fuelaway. With this arrangement it is possible to supplyfuel to the swirl chamber at a high pressure all thetime, As the fuel demand decreases with altitude orreduction in engine speed, more fuel is spilled awayfrom the swirl Chamber, leaving less to pass throughthe atomizing orifice. The spill spray nozzles'constant use of a relatively high pressure means thateven at the extremely low fuel flows that occur athigh altitude there is adequate swirl to provideconstant and efficient atomization of the fuel.

96. The spill spray nozzle system, however,involves a somewhat modified type of fuel supplyand control system from that used with the previoustypes. A means has to be provided for removing the

Fuel system

115

Fig. 10-16 A Simplex fuel spray nozzle.

Fig. 10-17 A variable port or Lubbock fuelspray nozzle.

Administrator
文本框
94.双油路喷嘴要求有一初级和一主燃油油路,有两个独立的孔,一个孔比另一个孔小很多。较小的孔处理低燃油流量,较大的孔随着燃油压力的增加供应较高的燃油流量。这种喷嘴采用了一个增压活门,将燃油分配到不同的油路(图10-18)。当燃油流量及压力增加时,增压活门移动,逐渐使燃油进入主油路和主油孔。这就使燃油由两条油路合成一股,与单油路喷嘴相比,在相同的最大燃油压力下用这种方法后双油路喷嘴能够在较宽的流量范围内 实现有效雾化。而且在高空条件下如果要求低燃油流量时,也可获得有效的雾化。在组合式加速和转速控制系统中(第51段),向喷嘴的供油由燃油流量调节器分配。 95.溢流式燃油喷嘴可以说成是一个单油路喷嘴加上一条从旋涡室引出的通道,此通道将溢出的燃油引开。按照这种结构,就可以在所有时间以高压向旋祸室供油。当高度或发动机转速要求燃油减少时,更多的燃油就会从旋涡室溢出,只留较少部分流过雾化孔。溢流喷嘴总是使用比较高的压力说明,即使在高空遇到的极低的燃油流量下,仍有足够的旋涡保证燃油恒定和有效的雾化。
Administrator
文本框
较低,这种喷嘴就很不适合。其原因是这种单油路喷嘴本质上是种按“平方律”设计的喷嘴;即,燃油流过喷嘴的流量与喷嘴前后的压力降的平方根成正比。这就是说,如果有效雾化的最小压力是30磅/平方英寸,那么提供最大流量所需的压力将大约为3000磅/平方英寸。在那个年代的燃油泵承受不了如此高的压力,因而在克服平方律效应的过程中便发展了可调喷口的喷嘴。
Administrator
文本框
93.目前看,可凋进口燃油喷嘴(图10-17)只有历史价值,它采用了弹簧加载的活塞来控制旋涡室的进口面积。在低的燃油流量下,活塞的移动将该进口部分地打开;在高流量下,进口被完全打开。用这一方法,基本上克服了平方律压力关系问题,在很宽的燃油流量范围内保持了良好的雾化。但是设计上存在固有的困难,如成套喷嘴的匹配,脏物颗粒使滑动活塞卡滞等。这种类型的喷嘴最终被双油路喷嘴所取代。
Administrator
文本框
弹簧调节
Administrator
文本框
96.然而,这种溢流喷嘴系统涉及一种多少改型过的供油和控制系统,这种系统在改型前曾用于先前的几种喷嘴。必须要有一种手段来排去溢流和在各种发动机工作状态下控制溢流的总量。这种系统的缺点是当大量燃油回流到进进口时可能会产生过多的热量。这种热量最终会导致燃油变质。
Administrator
文本框
防止孔口积碳 的空气流
Administrator
文本框
切向孔
Administrator
文本框
漩涡室
Administrator
文本框
油滤
Administrator
文本框
燃油压力 压气机供气
Administrator
文本框
图10-16 一种单油路燃油喷嘴(Simplex)
Administrator
文本框
油滤
Administrator
文本框
Administrator
文本框
切向孔
Administrator
文本框
控制杆
Administrator
文本框
图10-17 一种可调进口(或Lubbock) 的燃油喷嘴
Administrator
文本框
燃油进口
Administrator
文本框
活塞
Page 124: Rolls royce jet engine

spill and also for controlling the amount of spill flowat various engine operating conditions. Adisadvatage of this system is that excess heat maybe generated when a large volume of fuel is beingrecirculated to inlet. Such heat may eventually leadto a deterioration of the fuel.

97. The airspray nozzle (fig. 10-19), carries aproportion of the primary combustion air (Part 4) withthe injected fuel. By aerating the spray, the local fuel-rich concentrations produced by other types of spraynozzle are avoided, thus giving a reduction in bothcarbon formation and exhaust smoke. An additionaladvantage of the airspray nozzle is that the low

pressures required for atomization of the fuel permitsthe use of the comparatively lighter gear-type pump.

98. A flow distributor (fig. 10-20) is often required tocompensate for the gravity head across the manifoldat low fuel pressures to ensure that all spray nozzlespass equal quantities of fuel.

99. Some combustion systems vaporize the fuel(Part 4) as it enters the combustion zone.

FUEL HEATING

100. On many engines, a fuel-cooled oil cooler(Part 8) is located between the L.P. fuel pump andthe inlet to the fuel filter (fig. 10-13), and advantageis taken of this to transfer the heat from the oil to thefuel and thus prevent blockage of the filter elementby ice particles. When heat transference by thismeans is insufficient, the fuel is passed through asecond heat exchanger where it absorbs heat from athermostatically controlled airflow taken from thecompressor.

EFFECT OF A CHANGE OF FUEL

101. The main effect on the engine of a changefrom one grade of fuel to another arises from thevariation of specific gravity and the number of heatunits obtainable from a gallon of fuel. As the numberof heat units per pound is practically the same for allfuels approved for gas turbine engines, a comparisonof heat values per gallon can be obtained bycomparing specific gravities.

102. Changes in specific gravity have a definiteeffect on the centrifugal pressure type of enginespeed governor (para. 15), for with an increase inspecific gravity the centrifugal pressure acting on thegovernor diaphragm is greater. Thus the speed atwhich the governor controls is reduced, and inconsequence the governor must be reset.

103. With a decrease in specific gravity, thecentrifugal pressure on the diaphragm is less and thespeed at which the governor controls is increased; inconsequence, the pilot must control the maximumr.p.m. by manual operation of the throttle to preventoverspeeding the engine until the governor can bereset. The hydro-mechanical governor (para. 23) isless sensitive to changes of specific gravity than thecentrifugal governor and is therefore preferred onmany fuel systems.

104. The pressure drop governor in the combinedacceleration and speed control system (para. 51) isdensity compensated, by using a buoyant material

Fuel system

116

Fig. 10-18 A Duple fuel spray nozzle andpressurizing valve.

Administrator
文本框
来自油门的燃油进口
Administrator
文本框
97.空气雾化喷嘴(图10-19)使喷射的燃油携带一部分燃烧室的一股空气(第4章)。空气雾化喷油使其它种类喷嘴产生的局部富油得以避免。因此既减少了积碳的形成,又减少了排气冒烟。空气雾化喷嘴另一个优点是燃油雾化要求的压力低,可以采用重量较轻的齿轮泵。 98.为了保证所有喷嘴流过等量的燃油,通常要求使用流量分配器(图10-20)以补偿在低燃油压力下油路中的重力压头。 99.某些燃烧系统使燃油在进入燃烧区时汽化(第4章)。
Administrator
文本框
燃油加温 100.在许多发动机上,燃油冷却的滑油散热器(第8章)安排在低压燃油泵和燃油油滤进口之间(图10-13),优点是热可由滑油传给燃油,防止油滤元件被冰粒堵塞。当用这种方法传热不足时,燃油应流 过第二个热变换器,此时燃油从恒温控制的空气流吸收热量,空气流则引自压气机。 燃油改变的影响 101.从一种燃油换为另一种燃油对发动机的主要影响是比重和一加仑燃油所发出的热值的变化。对于核准用于燃气涡轮发动机的所有燃油来说,实际上每磅燃油的热值都是相同的,只要对比重加以比较就可以获得每加仑燃油热值的比较值。 102.比重的变化对离心压力式发动机转速调节器(第15段)有明显的影响,因为比重的增加使作用在调节器膜片上的离心压力增大。这样就减小了调节器控制的转速,所以凋节器应当重新调整。 103.当比重减小时,作用在膜片上的离心压力减小,使调节器控制的转速增加,结果,驾驶员必须通过手操纵油门来控制最大转速,防止发动机超转,直到调节器得以重新调整为止。液压机械式调节器(第23段)与离心式调节器相比,对比重不那么敏感,所以为许多燃油系统所选用。
Administrator
文本框
104. 组合式加速和转速控制系统(第51段)中的压力降调节器是密度补偿式的,它采用轻浮材料做调节器的配重,因而燃油是按质量流量而不是接容积流量计量。
Administrator
文本框
发动机停车开关
Administrator
标注
压力增加时 增压活门打开
Administrator
文本框
防止孔积碳的空气流
Administrator
文本框
油滤
Administrator
标注
图10-18 双油路燃油喷嘴和增压活门
Administrator
文本框
初级孔
Administrator
文本框
主燃油
Administrator
文本框
压气机供气
Administrator
文本框
主燃油
Administrator
文本框
主孔
Page 125: Rolls royce jet engine

for the governor weights, resulting in fuel beingmetered on mass flow rather than volume flow.

105. Changes to a lower grade of fuel can lead toproduction of carbon, giving a greater flameluminosity and temperature, leading to highercombustor metal temperatures and reducedcombustor and turbine life.

GAS TURBINE FUELS

106. Fuels for aircraft gas turbine engines mustconform to strict requirements to give optimumengine performance, economy, safety and overhaullife. Fuels are classed under two headings, kerosine-type fuel and wide-cut gasoline-type fuel.

Fuel system

117

Fig. 10-19 An airspray nozzle.

Fig. 10-20 Fuel flow distributor.

Administrator
文本框
105.改用低品级燃油会导致产生积碳、增加火焰亮度和温度、导致燃烧室金属温度增高和减少燃烧室和涡轮的寿命。 燃气涡轮发动机燃油 106.航空燃气涡轮发动机的燃油应当符合严格的技术条件,以获得最佳的发动机性能、经济性、安全性和翻修寿命。通常燃油分为两火类,即煤油型燃油和宽馏分汽油型燃油。
Administrator
文本框
分布配重
Administrator
文本框
弹簧
Administrator
文本框
环腔
Administrator
文本框
内部漩涡片
Administrator
文本框
图10-20 燃油流量分配器
Administrator
文本框
图10-19 一种空气雾化喷嘴
Administrator
文本框
漩涡室
Administrator
文本框
喷嘴
Administrator
文本框
出口漩涡片
Administrator
文本框
供油臂
Administrator
文本框
分布配重组件
Administrator
文本框
主燃油总管
Administrator
文本框
副燃油总管
Administrator
文本框
燃油喷嘴 分布活门
Administrator
文本框
燃油/空气
Administrator
文本框
压气机供气
Administrator
文本框
燃油
Administrator
文本框
燃油的技术条件 107.通常,燃气涡轮发动机的燃油应当具备下列品质: (1)在所有工作状态下是“可以油泵输送 的”,并易于流动。 (2)在所有地面状态下允许发动机起动,并获得满意的空中再点火特性。 (3)在所有状态下能够有效燃烧。 (4)具备尽可能高的热值。 (5)对燃烧系统或对涡轮叶片产生最低的有害影响。 (6)对燃油系统各种部件产生最小的腐蚀影响。 (7)对燃油系统的运动零件提供足够的润滑。 (8)将失火的危险减到最低限度。
Administrator
文本框
108.燃油的泵送品质取决于与燃油的温度有关的燃油粘度或稠度。燃油应当能够在低达约 -50℃的温度下良好工作。当燃油温度降低时,可能形成冰晶,造成燃油系统中的燃油滤或一些小孔的堵塞。采用燃油加温及防冰添加剂可缓和这个问题。
Page 126: Rolls royce jet engine

Fuel requirements107. In general, a gas turbine fuel should have thefollowing qualities:

(1) Be 'pumpable' and flow easily under alloperating conditions.

(2) Permit engine starting at all groundconditions and give satisfactory flightrelighting characteristics.

(3) Give efficient combustion at all conditions.(4) Have as high a calorific value as possible.(5) Produce minimal harmful effects on the

combustion system or the turbine blades.(6) Produce minimal corrosive effects on the

fuel system components.(7) Provide adequate lubrication for the moving

parts of the fuel system.(8) Reduce fire hazards to a minimum.

108. The pumping qualities of the fuel depend uponits viscosity or thickness, which is related to fueltemperature, Fuel must be satisfactory down toapproximately -50 deg. C. As the fuel temperaturefalls, ice crystals may form to cause blockage of thefuel filter or the orifices in the fuel system. Fuelheating and anti-icing additives are available toalleviate this problem.

109. For easy starting, the gas turbine enginedepends upon the satisfactory ignition of theatomized spray of fuel from the fuel spray nozzles,assuming that the engine is being motored at therequired speed. Satisfactory ignition depends uponthe quality of fuel in two ways:

(1) The volatility of the fuel; that is, its ability tovaporize easily, especially at lowtemperatures.

(2) The degree of atomization, which dependsupon the viscosity of the fuel, the fuelpressure applied, and the design of theatomizer.

110. The calorific value (fig. 10-21) of a fuel is anexpression of the heat or energy content per poundor gallon that is released during combustion. Thisvalue, which is usually expressed in British thermalunits, influences the range of an aircraft. Where thelimiting factor is the capacity of the aircraft tanks, thecalorific value per unit volume should be as high aspossible, thus enabling more energy, and hencemore aircraft range, to be obtained from a givenvolume of fuel. When the useful payload is thelimiting factor, the calorific value per unit of weightshould be as high as possible, because more energycan then be obtained from a minimum weight of fuel.

Other factors which affect the choice of heat per unitof volume or weight, must also be taken into consid-eration; these include the type of aircraft, theduration of flight, and the required balance betweenfuel weight and payload.

Fuel system

118

111. Turbine fuels tend to corrode the componentsof the fuel and combustion systems mainly as a resultof the sulphur and water content of the fuel. Sulphur,when burnt in air, forms sulphur dioxide; when mixedwith water this forms sulphurous acid and is verycorrosive, particularly on copper and lead. Because itis impracticable to completely remove the sulphurcontent, it is essential that the sulphur be kept to acontrolled minimum. Although free water is removedprior to use, dissolved water, i.e. water in solution,cannot be effectively removed, as the fuel would re-absorb moisture from the atmosphere when stored ina vented aircraft or storage tank (para. 118).

112. All gas turbine fuels are potentially dangerousand therefore handling and storage precautionsshould be strictly observed.

Vapour locking and boiling113. The main physical difference between kerosineand wide-cut fuels is their degree of volatility, the lattertype of fuel having a higher volatility, thus increasingthe problem of vapour locking and boiling. Withkerosine-type fuels, the volatility is controlled by distil-lation and flash point, but with the wide-cut fuels it iscontrolled by distillation and the Reid VapourPressure (R.V.P.) test. In this test, the absolutepressure of the fuel is recorded by special apparatuswith the fuel temperature at 37.8 deg. C. (100 deg. F.).

114. Kerosine has a low vapour pressure and willboil only at extremely high altitudes or high tempera-

Fig. 10-21 Relationship between calorificvalue and specific gravity.

Administrator
文本框
109.对于易于起动问题,假设燃气涡轮发动机已被带动到要求的转速,则取决于该发动机能否将燃油喷嘴喷出的雾化燃油良好点火。良好点火取决于燃油下列两个方面的品质: (1)燃油挥发性;即其易于汽化的能力,特别是在低温下。 (2)雾化程度,它取决于燃油的粘度、所用的燃油压力、喷嘴的设计。
Administrator
文本框
110.燃油的热值(图10-21)是每磅或者每加仑燃油于燃烧过程中释放出来的热量或能量的一种表达方式。该值通常用英热单位来表示,它影响一架飞机的航程。当限制因素是飞机油箱的容量时,单位容积的热值应当尽可能高,这样,对于给定容积的燃油来说,能使获得的能量更多,因而飞机的航程更远。当有效载荷是限制因素的时候,单位重量的热值应尽可能高,因为可以从最低重量的燃油获得较多的能量。影响单位容积或单位重量热值选择的其他因素也应当予以考虑;这些有:飞机的种类,飞行时间的长短,以及在燃油重量和有效载荷之间必要 的折衷。 111.涡轮发动机燃油对燃油部件和燃烧系统起腐蚀作用主要是燃油中含有硫和水的结果。硫在空气中燃烧时构成二氧化硫;它与水混合就生成硫酸,腐蚀性很强,特别是对于铜和铅。由于不可能完全去除硫的成分,实质上是要将硫控制到最低限度。虽然在使用前游离水已经除去,而溶解水,即溶液中的水,是不能有效地除去的,况且当燃油储存在通风的飞机上或储油箱中时(第118段),燃油还会从大气中吸收潮气。
Administrator
文本框
112.所有燃气涡轮发动机的燃油都是潜在危险品,因此在处理和储存时要严格遵守注意事项。
Administrator
文本框
图10-21 热值和比重的关系
Administrator
标注
净热值 英制热量单位/磅(×1000)
Administrator
文本框
燃油比重
Administrator
标注
净热值 英制热量单位/英加仑(×1000)
Page 127: Rolls royce jet engine

tures, whereas a wide-cut fuel wilt boil at a muchlower altitude.

115. The fuel temperature during flight dependsupon altitude, rate of climb, duration at altitude andkinetic heating due to forward speed. When boilingdoes occur, the vapour loss can be very high,especially with wide-cut fuels, and this may causevapour locking with consequent malfunctions of theengine fuel system and fuel metering equipment.

116. To obviate or reduce the risk of boiling, it isusual to pressurize the fuel tanks. This involvesmaintaining an absolute pressure above the fuel inexcess of its vapour pressure at any specifictemperature. This may be accomplished by using aninert gas or by using the fuel vapour pressure with acontrolled venting system.

117. For sustained supersonic flight, some measureof tank insulation is necessary to reduce kineticheating effects, even when lower volatility fuels areused.

Fuel contamination control118. Fuel can be maintained in good condition bywell planned storage and by making routine aircrafttank drain checks. The use of suitable filters,fuel/water separators and selected additives willrestrict the contamination level, e.g. free water andsolid matter, to a practical minimum. Keeping the fuelfree of undissolved water will prevent serious icingproblems, reduce the microbiological growth andminimize corrosion. Reducing the solid matter willprevent undue wear in the fuel pumps, reducecorrosion and lessen the possibility of blockageoccurring within the fuel system.

Fuel system

119

Administrator
文本框
蒸气堵塞及沸腾 113.在煤油和宽馏分燃油之间主要的物理差别是它们的挥发性,宽馏分燃油具有较高的挥发性,因而增加了蒸发堵塞和沸腾的问题。对于煤油型燃油,其挥发性由馏分和闪点控制,而宽馏分燃油则用馏分和Reid蒸发压力(R.V.P.)试验控制。在该试验中,燃油的绝对压力用专用的仪器在燃油温度为37.8℃(华氏100度)时记录下来。 114.煤油具有低的蒸发压力,只有在极高的高空或高温下才沸腾,而宽馏分燃油则在低得多的高空便会沸腾。
Administrator
文本框
116.为了避免或减少沸腾的危险,通常要对燃油箱增压。这就涉及到在任何特定的温度下,均要使燃油的绝对压力高于其蒸发压力。通过采用惰性气体或采用可控制的通风系统来保持燃油的蒸发压力就可以做到这一点。 117.对于持续的超音速飞行,需要采用某种油箱绝热的措施,以减小动力加热的影响,即使对于采用低挥发性燃油也应如此。 燃油污染控制 118.通过良好有计划的储存及从事常规的飞机油箱放油检查,就可使使燃油保持良好状况。采用适当的油滤、油/水分离器和有选择的添加剂将能把污染的水平,例如游离水、固态物限制到实际可能的最低限度。保持燃油没有不溶解水可以防止严重的结冰问题,及降低微生物的滋长和减低腐蚀。减少固态物质将防止燃油泵不应有的磨损,减步腐蚀和在燃油系统中发生堵塞的可能性。
Administrator
文本框
115.飞行中的燃油温度取决于高度、爬升率、在高空中飞行的持续时间,及由于飞行速度产生的动力加热。当发生沸腾时,蒸发损失将非常高,特别是对于宽馏分燃油,这就会造成蒸气堵塞,随之发生发动机燃油系统和燃油计量设备的失灵。
Page 128: Rolls royce jet engine

Rolls-Royce RB211-535C

Metrovick G2

Following the successful operation at sea ofthe Metrovick F2-based 2500 hp Gatric marinegas turbine, the Royal Navy ordered fourlarger sets with a maximum operational ratingof 4500 shp. Developed from the MetrovickF2/4 Beryl axial-flow aircraft engine; the G2swere installed in the Motor Gunboats 'BoldPioneer1 and 'Bold Pathfinder; the formergoing to sea in 1951.

Administrator
文本框
在以“梅特罗维克”(Metrovick)F2为基础研制而来的2500马力的“盖特里克”(Gatric)船用燃气轮机在海上成功使用之后,英国皇家海军订购了4台更大的装置,其最大输出功率为4500轴马力。G2自“梅特罗维克”F2/4“绿玉”(BeryI)轴流式航空发动机发展而来,装用在摩托炮艇“勇先锋”(Bold Pioneer 1)号和“勇敢的开拓者(Blod Pathfinder)号上。前者于l951年出海。
Administrator
文本框
罗尔斯-罗伊斯公司RB211-535C发动机
Administrator
文本框
“梅特罗维克” G2发动机
Page 129: Rolls royce jet engine

INTRODUCTION

1. Two separate systems are required to ensurethat a gas turbine engine will start satisfactorily.Firstly, provision must be made for the compressorand turbine to be rotated up to a speed at whichadequate air passes into the combustion system tomix with fuel from the fuel spray nozzles (Part 10).Secondly, provision must be made for ignition of theair/fuel mixture in the combustion system. Duringengine starting the two systems must operate simul-taneously, yet it must also be possible to motor theengine over without ignition for maintenance checksand to operate only the ignition system for relightingduring flight (para. 28).

2. The functioning of both systems is co-ordinatedduring a starting cycle and their operation is auto-matically controlled after the initiation of the cycle byan electrical circuit. A typical sequence of eventsduring the start of a turbo-jet engine is shown in fig.11-1.

11: Starting and ignition

Contents Page

Introduction 121Methods of starting 122

ElectricCartridgeIso-propyl-nitrateAirGas turbineHydraulic

Ignition 127Relighting 131

121

Fig. 11-1 A typical starting sequence of aturbo-jet engine.

Administrator
文本框
绪言 1.为保证燃气涡轮发动机能够良好起动,需要有两套独立的系统。首先,应当配备某种设备将压气机和涡轮带转到一定转速。这时适量的空气进入燃烧系统与喷嘴喷出的燃油相混合(第10章)。其次,应当配备某种设备,使燃烧系统中的空气/燃油混合气点火。在发动机起动时,这两套系统应当同时工作。而且还要在不点火的情况下带转发动机,以便进行维护检查,和单独用点火系统工作,以便在飞行中再点火(第28段)。
Administrator
文本框
第十一章 起动和点火
Administrator
文本框
目录
Administrator
文本框
绪言 起动方法 电起动 火药起动 异丙基硝酸酯起动 空气起动 燃气涡轮起动 液压起动 点火 再点火
Administrator
文本框
2.在起动循环中这两个系统的功能是互相协调的,起动循环开始之后它们的工作是借助于一个电路自动控制的。图11-1中所示为涡轮喷气发动机起动过程中典型的起动程序。
Administrator
文本框
图11-1 一种涡轮喷气发动机的典型 起动程序
Administrator
文本框
最大起动涡轮燃气温度
Administrator
文本框
慢车转速
Administrator
文本框
最大转速%
Administrator
文本框
最大涡轮燃气温度%
Administrator
标注
起动开始
Administrator
标注
自行维持转速
Administrator
标注
点着
Administrator
标注
打火
Administrator
标注
高压燃油供油
Administrator
标注
起动机电路终止
Administrator
标注
慢车涡轮燃气温度
Page 130: Rolls royce jet engine

METHODS OF STARTING

3. The starting procedure for all jet engines isbasically the same, but can be achieved by variousmethods. The type and power source for the startervaries in accordance with engine and aircraft require-ments. Some use electrical power, others use gas,air or hydraulic pressure, and each has its ownmerits. For example, a military aircraft requires theengine to be started in the minimum time and, whenpossible, to be completely independent of externalequipment. A commercial aircraft, however, requiresthe engine to be started with the minimumdisturbance to the passengers and by the mosteconomical means. Whichever system is used,reliability is of prime importance.

4. The starter motor must produce a high torqueand transmit it to the engine rotating assembly in amanner that provides smooth acceleration from restup to a speed at which the gas flow through the

engine provides sufficient power for the engineturbine to take over.

Electric5. The electric starter is usually a direct current(D.C.) electric motor coupled to the engine through areduction gear and ratchet mechanism, or clutch,which automatically disengages after the engine hasreached a self-sustaining speed (fig. 11-2).

6. The electrical supply may be of a high or lowvoltage and is passed through a system of relays andresistances to allow the full voltage to be progres-sively built up as the starter gains speed. It alsoprovides the power for the operation of the ignitionsystem. The electrical supply is automaticallycancelled when the starter load is reduced after theengine has satisfactorily started or when the timecycle is completed. A typical electrical startingsystem is shown in fig. 11-3.

Starting and ignition

122

Fig. 11-2 An electric starter.

Administrator
文本框
4.起动机的马达应当产生高的扭矩并将其传给发动机旋转组件,起动方式应保证从静止平稳地加速到某个转速、在这转速下,使流过发动机的燃气流能产生足以让发动机涡轮接替工作的功率。 电起动 5.通常电动起动机是一台直流电动马达。它通过减速齿轮和棘轮机构,或离合器与发动机相连接,当发动机达到自持转速(图11-2)后能自动脱机。 6.可以由高压或低压供电,通过一个由继电器和电阻构成的系统,允许全部电压随着起动机的加速逐步积累起来。它还为点火系统的工作提供功率。当发动机已良好起动或者起动时间循环已经完成而起动机的负荷减少之后,供电自动停止。典型的电起动系统示于图11-3。
Administrator
文本框
启动方法 3.所有涡轮喷气发动机的起动程序基本是相同的,但是实施的方法可以是各式各样的。根据发动机和飞机的要求的不同,起动机的种类和功率来源也不同。有一些采用电功率,另一些采用燃气、空气活液压,各种方式都有其自身的优点。例如,军用飞机要求发动机在最短的时间内起动。并且,只要有可能,应完全不依赖外部设备。而民航
Administrator
文本框
飞机要求用对乘客干扰最小,而且最经济的手段起动。不管使用何种系统,可靠性是最重要的。
Administrator
文本框
整流器端板
Administrator
文本框
接线柱
Administrator
文本框
滑油封严件
Administrator
文本框
游星齿轮
Administrator
文本框
螺杆
Administrator
文本框
起动机棘爪
Administrator
文本框
离合器
Administrator
文本框
太阳齿轮
Administrator
文本框
轭和励磁组件
Administrator
文本框
电枢组件
Administrator
文本框
电刷
Administrator
文本框
图11-2 一种电动起动机
Administrator
文本框
注:颜色仅为醒目而用
Page 131: Rolls royce jet engine

Starting and ignition

123

Fig. 11-3 A low voltage electrical starting system.

Administrator
文本框
28伏直流供电
Administrator
文本框
起动机主开关
Administrator
文本框
起动
Administrator
文本框
吹除
Administrator
文本框
再点火
Administrator
文本框
图11-3 一种低压电起动系统
Administrator
标注
起动/再点火选择开关
Administrator
文本框
指示灯亮
Administrator
文本框
超转继电器
Administrator
文本框
起动开始
Administrator
文本框
点火开关绝缘继电器
Administrator
文本框
截止计时开关
Administrator
文本框
点火继电器
Administrator
文本框
主继电器
Administrator
文本框
慢速起动电阻
Administrator
文本框
全电流计时开
Administrator
文本框
高能点火装置
Administrator
文本框
减小电流 计时开关
Administrator
文本框
起动电路 再点火电路 吹除电路
Administrator
标注
火花塞
Administrator
文本框
起动机马达
Administrator
文本框
注:继电器示于‘起动’位置
Administrator
标注
点火开关 绝缘继电器
Administrator
文本框
火药起动 7.火药筒起动有时用于某些军用发动机中,它是一种快速的独立起动方式。起动机马达基本上是一台小型冲击式涡轮,由火药燃烧的高速燃气驱动。涡轮的功率输出通过减速齿轮和自动脱开机构带动发动机转动。一个电发火起爆器开始点燃火药装药。当用无烟火药装药为这种起动机提供功率时,所要求的装药尺寸会大大限制火药筒起动机的使用。图11-4所示为三筒式起动机。
Page 132: Rolls royce jet engine

Cartridge7. Cartridge starting is sometimes used on militaryengines and provides a quick independent method ofstarting. The starter motor is basically a smallimpulse-type turbine that is driven by high velocitygases from a burning cartridge. The power output ofthe turbine is passed through a reduction gear andan automatic disconnect mechanism to rotate theengine. An electrically fired detonator initiates theburning of the cartridge charge. As a cordite chargeprovides the power supply for this type of starter, thesize of the charge required may well limit the use ofthe cartridge starters. A triple-breech starter isillustrated in fig. 11-4.

Iso-propyl-nitrate8. This type of starter provides a high power outputand gives rapid starting characteristics. It has aturbine that transmits power through a reduction gearto the engine. In this instance, the turbine is rotatedby high pressure gases resulting from thecombustion of iso-propyl-nitrate. This fuel is sprayedinto a combustion chamber, which forms part of thestarter, where it is electrically ignited by a high-energy ignition system. A pump supplies the fuel tothe combustion chamber from a storage tank and an

air pump scavenges the starter combustion chamberof fumes before each start. Operation of the fuel andair pumps, ignition systems, and cycle cancellation,is electrically controlled by relays and time switches.An iso-propyl-nitrate starting system is shown in fig.11-5.

Air9. Air starting is used on most commercial andsome military jet engines. It has many advantagesover other starting systems, and is comparativelylight, simple and economical to operate.

10. An air starter motor transmits power through areduction gear and clutch to the starter output shaftwhich is connected to the engine. A typical air startermotor is shown in fig. 11-6.

11. The starter turbine is rotated by air taken froman external ground supply, an auxiliary power unit(A.P.U.) or as a cross-feed from a running engine.The air supply to the starter is controlled by an elec-trically operated control and pressure reducing valvethat is opened when an engine start is selected andis automatically closed at a predetermined starterspeed. The clutch also automatically disengages asthe engine accelerates up to idling r.p.m. and the

Starting and ignition

124

Fig. 11-4 A triple-breech cartridge starter.

Administrator
文本框
异丙基硝酸酯起动 8.这种起动机可产生大的功率输出,而且具有快速起动的特性。它有一个涡轮,通过减速齿轮将功率传给发动机。在这种情况丅,涡轮由异丙基硝酸酯燃烧产生的高压燃气带转。这种燃料喷入作为起动机一部分的一个燃烧室中,由高能点火系统进行电点火。油泵将燃料从储箱中供入燃烧室,在每次起动之前先由空气泵将起动机燃烧室中的雾气抽出去。燃料和空气泵、点火系统,以及起动循环终止的整个工作由继电器和定时开关进行电控制。一种异丙基硝酸酯起动系统示于图11-5。
Administrator
文本框
空气起动 9.空气起动应用于大多数民用和若干军用喷气发动机中。与其它起动系统相比,它有重量较轻,简单而且使用经济等许多优点。 10.空气起动机马达将功率通过减速齿轮和离合器传递给起动机输出轴,该轴与发动机相连。典型的空气起动马达示于图11-6。
Administrator
文本框
11.起动机涡轮由来自外部地面气源的空气带转,也可以用辅助动力装置(APU)带转,或者用正在运转的发动机进行交叉供气驱动。向起动机供气的外部气源由电控制器和减压活门加以控制。该活门在起动机起动时打开,当达到预定的起动机转速时自动关闭。当发动机加速到慢车转速时,离合器自动打开,同时起动停止转动。一种典型的空气起动系统示于图11-7。
Administrator
文本框
燃爆筒盖
Administrator
文本框
火药筒装药
Administrator
文本框
喷口导向器
Administrator
文本框
点火撞针
Administrator
文本框
涡轮转子
Administrator
文本框
排气口
Administrator
文本框
发动机驱动小齿轮
Administrator
文本框
图11-4 一种三筒式火药筒起动机
Page 133: Rolls royce jet engine

Starting and ignition

125

Fig. 11-5 An iso-propyl-nitrate starting system.

Administrator
文本框
燃油箱
Administrator
文本框
飞机电源
Administrator
文本框
起动机按钮
Administrator
文本框
控制盒
Administrator
文本框
点火器
Administrator
文本框
旁路空气
Administrator
文本框
燃油和空气回油泵
Administrator
文本框
高压开关
Administrator
文本框
燃油旁路
Administrator
文本框
点火开关
Administrator
文本框
起动机马达
Administrator
文本框
电嘴
Administrator
文本框
转速控制开关
Administrator
文本框
排气管
Administrator
文本框
图11-5 一种异丙基硝酸酯起动系统
Page 134: Rolls royce jet engine

rotation of the starter ceases. A typical air startingsystem is shown in fig. 11-7.

12. A combustor starter is sometimes fitted to anengine incorporating an air starter and is used tosupply power to the starter when an external supplyof air is not available. The starter unit has a smallcombustion chamber into which high pressure air,from an aircraft-mounted storage bottle, and fuel,from the engine fuel system, are introduced. Controlvalves regulate the air supply which pressurizes afuel accumulator to give sufficient fuel pressure foratomization and also activates the continuousignition system. The fuel/air mixture is ignited in thecombustion chamber and the resultant gas isdirected onto the turbine of the air starter. Anelectrical circuit is provided to shut off the air supplywhich in turn terminates the fuel and ignition systemson completion of the starting cycle.

13. Some turbo-jet engines are not fitted with startermotors, but use air impingement onto the turbineblades as a means of rotating the engine. The air isobtained from an external source, or from an enginethat is running, and is directed through non-returnvalves and nozzles onto the turbine blades. A typicalmethod of air impingement starting is shown in fig.11-8.

Gas turbine14. A gas turbine starter is used for some jetengines and is completely self-contained. It has itsown fuel and ignition system, starting system (usuallyelectric or hydraulic) and self-contained oil system.This type of starter is economical to operate andprovides a high power output for a comparatively lowweight.

15. The starter consists of a small, compact gasturbine engine, usually featuring a turbine-drivencentrifugal compressor, a reverse flow combustionsystem and a mechanically independent |free-powerturbine. The free-power turbine is connected to themain engine via a two-stage epicyclic reduction gear,automatic clutch and output shaft. A typical gasturbine starter is shown in fig. 11-9.

16. On initiation of the starting cycle, the gas turbinestarter is rotated by its own starter motor until itreaches self-sustaining speed, when the starting andignition systems are automatically switched off.Acceleration then continues up to a controlled speedof approximately 60,000 r.p.m. At the same time asthe gas turbine starter engine is accelerating, theexhaust gas is being directed, via nozzle guidevanes, onto the free-power turbine to provide thedrive to the main engine. Once the main enginereaches self-sustaining speed, a cut-out switch

Starting and ignition

126

Fig. 11-6 An air starter motor.

Administrator
文本框
燃气涡轮起动 14.燃气涡轮起动机用于某些喷气发动机中,这种起动方式是完全自立的。它具有自己的燃油和点火系统、起动系统(通常是电的或液压的),以及自备滑油系统。这种起动机使用经济,而且以比较轻的重量提供高的功率输出。 15.这种起动机含有一台小而紧凑的燃气涡轮发动机,其一般特点是采用涡轮驱动的离心压气机,回油式燃烧系统和一个机械上独立的自由动力涡轮。它由动力涡轮经由两级游星式减速齿轮、自动离合器和输出轴与主发动机相连。一种典型的燃气涡轮起动机示于图11-9。
Administrator
文本框
12.有时在已装有空气起动机的发动机上还有燃烧室起动机,当没有外部空气源的情况下用于向起动机供气。这种起动机有一个小型的燃烧室,它使用飞机丄佩带的气瓶的高压空气,及发动机燃油系统的燃油控制活门调节气源的供气,气源对燃油蓄压器加压,以提供足够的燃油压力进行雾化,而且还激发连续点火系统。燃油、空气混合气在燃烧室中点燃,产生的燃气被引入空气起动机的涡轮。当起动循环完成之后,有一个电路将气源断开,并进而终止燃油和点火系统的工作。
Administrator
文本框
空气出口
Administrator
文本框
发动机驱动轴
Administrator
文本框
离合器
Administrator
文本框
减速齿轮
Administrator
文本框
涡轮转子
Administrator
文本框
空气进口
Administrator
文本框
图11-6 一种空气起动机马达
Administrator
文本框
13.有些涡轮喷气发动机上不装起动机马达,但利用空气冲击涡轮叶片作为带转发动机的一种方法。空气可以取自外部气源、或正在运转的发动机,并经单向活门和导向器导入涡轮叶片。一种空气冲击起动的典型方法示于图11-8。
Administrator
文本框
16.在起动循环开始时,燃气涡轮起动机由它自带的起动机马达带转,直到它达到自持的转速为止,同时起动和点火系统自动关闭。然后继续加速到大约60,000转/分的控制转速。同时,当燃气涡轮起动发动机加速时,排出的燃气经过导向器叶片导入自由动力涡轮,使其带动主发动机。一旦主发动机到达自持转速之后,切断开关工作,将燃气涡轮起动机停机。当起动机停机时,离合器自动脱开输出轴,发动机依靠它自身的功率加速到慢车转速。
Page 135: Rolls royce jet engine

operates and shuts down the gas turbine starter. Asthe starter runs down, the clutch automaticallydisengages from the output shaft and the mainengine accelerates up to idling r.p.m. under its ownpower.

Hydraulic17. Hydraulic starting is used for starling somesmall jet engines. In most applications, one of theengine-mounted hydraulic pumps is utilized and isknown as a pump/starter, although other applicationsmay use a separate hydraulic motor. Methods oftransmitting the torque to the engine may vary, but atypical system would include a reduction gear andclutch assembly. Power to rotate the pump/starter isprovided by hydraulic pressure from a ground supplyunit and is transmitted to the engine through thereduction gear and clutch. The starting system iscontrolled by an electrical circuit that also operateshydraulic valves so that on completion of the starting

cycle the pump /starter functions as a normalhydraulic pump.

IGNITION

18. High-energy (H.E.) ignition is used for startingall jet engines and a dual system is always fitted.Each system has an ignition unit connected to itsown igniter plug, the two plugs being situated indifferent positions in the combustion system.

19. Each H.E. ignition unit receives a low voltagesupply, controlled by the starting system electricalcircuit, from the aircraft electrical system. Theelectrical energy is stored in the unit until, at a pre-determined value, the energy is dissipated as a highvoltage, high amperage discharge across the igniterplug.

20. Ignition units are rated in 'joules' (one jouleequals one watt per second). They are designed to

Starting and ignition

127

Fig. 11-7 An air starting system.

Administrator
文本框
液压起动 17.液压起动用于起动某些小型喷气发动机。在多数情况下,使用发动机上安装的一台液压泵,称之为液压泵/起动机,虽然,在其它一些情况下可能使用单独的液压马达。向发动机传递扭矩的方法可以是多种多样的,但是典型的系统是采用一套减速齿轮和离台器组件。带转液压泵/起动机的功率由地面液压设备的液压提供,通过减速齿轮和离合器传递给发动机。起动系统由电路控制。电路也操纵液压活门。当起动循环完成时,使液压泵/起动机起正常的液压泵的作用。
Administrator
文本框
点火 18.高能点火被用来起动所有的喷气发动机,而且总是装备双套系统。每一个系统都有一个点火装置与它自己的点火火花塞相连。两个火花塞在燃烧室中处于不同的位置。 19.每一个高能点火装置都接受来自飞机供电系统的低压电,它由起动系统的电路控制。电能被储存在点火装置中,直到达到预定的值,该能量便以高电压、高电流放电形式通过点火火花塞释放出来。
Administrator
文本框
机体挂架
Administrator
文本框
从已开车的发动机供气
Administrator
文本框
辅助动力装置 (A.P.U.)
Administrator
文本框
外部齿轮箱
Administrator
文本框
排出空气
Administrator
文本框
发动机空气起动机
Administrator
文本框
空气控制活门
Administrator
文本框
图11-7 空气起动系统
Administrator
文本框
高压空气
Administrator
文本框
地面起动气源
Page 136: Rolls royce jet engine

give outputs which may vary according to require-ments. A high value output (e.g. twelve joule) isnecessary to ensure that the engine will obtain a sat-isfactory relight at high altitudes and is sometimesnecessary for starting. However, under certain flightconditions, such as icing or take-off in heavy rain orsnow, it may be necessary to have the ignitionsystem continuously operating to give an automaticrelight should flame extinction occur. For thiscondition, a low value output (e.g. three to six joule)is preferred because it results in a longer life of theigniter plug and ignition unit. Consequently, to suit allengine operating conditions, a combined systemgiving a high and low value output is favoured. Sucha system would consist of one unit emitting a highoutput to one igniter plug, and a second unit giving alow output to a second igniter plug. However, someignition units are capable o! supplying both high andlow outputs, the value being pre-selected asrequired.

Starting and ignition

128

Fig. 11-8 Air impingement starting.

Fig. 11-9 A gas turbine starter.

Administrator
文本框
20.点火装置的能量以焦耳计(一焦耳等于每秒一瓦特)。设计中它们的输出是可以根据要求改变的。为了保证发动机在高空能顺利地再点火,高值输出(例如12焦耳)是必要的。有时为了保证起动也需要 高值输出。无论如何,在某些飞行条件下,如在结冰、或在暴雨或大雪中起飞,会要求点火系统连续工作,以便一旦发生熄火时进行自动再点火。对于这种情况最好选用低值输出(例如3到6焦耳),因为它
Administrator
文本框
会使点火火花塞及点火装置寿命更长。所以,为适应所有发动机工作状态的要求,最好使用能提供高值和低值输出的组合式系统。这种系统应当有一个装置向一个火花塞提供高输出,另一个装置向第二个火花塞提供低输出。然而,有些点火装置能够既提供高输出值,又能提供低输出值,其输出值是按要求事先选定的。
Administrator
文本框
排气喷嘴
Administrator
文本框
单向活门(开)
Administrator
文本框
供气管
Administrator
文本框
涡轮
Administrator
文本框
图11-8 空气冲击式起动
Administrator
文本框
空气进口
Administrator
文本框
回流燃烧系统
Administrator
文本框
自由功率涡轮
Administrator
文本框
减速齿轮
Administrator
文本框
发动机 驱动轴
Administrator
文本框
排气
Administrator
文本框
涡轮
Administrator
文本框
离心压气机
Administrator
文本框
图11-9 一种燃气涡轮起动机
Administrator
文本框
21.向点火装置可以供应直流电,由断续器机构或一个晶体管断续线路控制,也可以向其供应交流电,由变压器控制。每种装置的工作情况在后面说明。
Page 137: Rolls royce jet engine

21. An ignition unit may be supplied with directcurrent (D.C.) and operated by a tremblermechanism or a transistor chopper circuit, orsupplied with alternating current (A.C.) and operatedby a transformer. The operation of each type of unitis described in the subsequent paragraphs.

22. The ignition unit shown in fig. 11-10 is atypicalD.C. trembler-operated unit. An induction coil,operated by the trembler mechanism, charges thereservoir capacitor (condenser) through a highvoltage rectifier. When the voltage in the capacitor isequal to the breakdown value of a sealed dischargegap, the energy is discharged across the face of theigniter plug. A choke is fitted to extend the duration ofthe discharge and a discharge resistor is fitted to

ensure that any residual stored energy in thecapacitor is dissipated within one minute of thesystem being switched off. A safety resistor is fitted toenable the unit to operate safely, even when the hightension lead is disconnected and isolated.

23. Operation of the transistorized ignition unit issimilar to that of the D.C. trembler-operated unit,except that the trembler-unit is replaced by atransistor chopper circuit. A typical transistorized unitis shown in fig. 11-11; such a unit has manyadvantages over the trembler-operated unit becauseit has no moving parts and gives a much longeroperating life. The size of the transistorized unit isreduced and its weight is less than that of thetrembler-operated unit.

Starting and ignition

129

Fig. 11-10 A D.C. trembler-operated ignition unit.

Administrator
文本框
22.图11-10所示的点火装置为典型的直流断续器控制的装置。一个感应线圈由断续器机构控制,通过高压整流器给储存电容器充电。当电容器中的电压等于封严放电间隙的击穿值时,能量通过点火火花塞的端面释放。点火装置中有一个扼流圈,用来延长放电时间。还装有一个放电电阻器,用于保证系统被关闭之后一分钟之内,使电容器中残存的任何能量被释放掉。点火装置中的安全电阻器是用来使该装置能够安全工作,即使在高压线脱线和绝缘的情况下也能安全工作。
Administrator
文本框
图1-10 一种直流电断续器控制的点火装置
Administrator
文本框
23.晶体管化点火装置的工作与直流断续器控制的点火装置的工作相似,但其中的断续器装置由晶体管断续器线路所取代。一种典型的晶体管化点火装置示于图11-11。与断续器控制的装置相比,它的优点很多,因为这种装置中没有运动零件,因此其寿命长得多。而且晶体管化点火装置的尺寸小,重量也比断续器控制的装置为轻。
Administrator
文本框
储能电容器
Administrator
文本框
断续器机构
Administrator
文本框
感应线圈
Administrator
文本框
去点火火花塞 的高压接线柱
Administrator
文本框
扼流圈
Administrator
文本框
安全电阻
Administrator
文本框
放电间隙
Administrator
文本框
放电电阻
Administrator
文本框
整流器罩
Administrator
文本框
整流器
Administrator
文本框
储能 电容器
Administrator
文本框
感应线圈
Administrator
文本框
断续器机构
Administrator
文本框
初级电容
Administrator
文本框
低压直流电源接线柱
Administrator
文本框
注:彩色只为醒目而用
Administrator
文本框
玻璃封严的放电间隙
Administrator
文本框
低压接线柱
Administrator
文本框
去火花塞高压接线柱
Administrator
文本框
安全电阻
Administrator
文本框
扼流圈
Page 138: Rolls royce jet engine

Starting and ignition

130

Fig. 11-11 A transistorized ignition unit.

Fig. 11-12 An A.C. ignition unit.

Administrator
文本框
放电间隙
Administrator
文本框
扼流圈
Administrator
文本框
电容器
Administrator
文本框
去火花塞的高压接线柱
Administrator
文本框
晶体管 发生器
Administrator
文本框
整流器
Administrator
文本框
去火花塞的 高压接线柱
Administrator
文本框
低压接线柱
Administrator
文本框
图11-11 一种晶体管点火装置
Administrator
文本框
直流电源低压接线柱
Administrator
文本框
储能电容器
Administrator
文本框
火花塞电阻器
Administrator
文本框
抑制器
Administrator
文本框
放电电阻器
Administrator
文本框
低压接线柱
Administrator
文本框
去火花塞的 高压接线柱
Administrator
文本框
图11-12 一种交流电点火装置
Administrator
文本框
放电间隙
Administrator
文本框
24.交流电点火装置示于图11-12,它接受交流电,电流通过变压器和整流器对电容器充电。当电容器中的电压等于封严放电间隙的击穿值时,该电容器从点火火花塞端面释放能量。和用断续器工作的装置一样,它也装有安全和放电电阻器。
Page 139: Rolls royce jet engine

24. The A.C. ignition unit, shown in fig, 11-12,receives an alternating current which is passedthrough a transformer and rectifier to charge acapacitor. When the voltage in the capacitor is equalto the breakdown value of a sealed discharge gap,the capacitor discharges the energy across the faceof the igniter plug. Safety and discharge resistors arefitted as in the trembler-operated unit.

25. There are two basic types of igniter plug; theconstricted or constrained air gap type and theshunted surface discharge type. The air gap type issimilar in operation to the conventional reciprocatingengine spark plug, but has a larger air gap betweenthe electrode and body for the spark to cross. Apotential difference of approximately 25,000 volts isrequired to ionize the gap before a spark will occur.This high voltage requires very good insulationthroughout the circuit. The surface discharge igniterplug (fig. 11-13) has the end of the insulator formedby a semi-conducting pellet which permits anelectrical leakage from the central high tensionelectrode to the body. This ionizes the surface of the

pellet to provide a low resistance path for the energystored in the capacitor. The discharge takes the formof a high intensity flashover from the electrode to thebody and only requires a potential difference ofapproximately 2000 volts for operation.

26. The normal spark rate of a typical ignitionsystem is between 60 and 100 sparks per minute.Periodic replacement of the igniter plug is necessarydue to the progressive erosion of the igniterelectrodes caused by each discharge.

27. The igniter plug tip protrudes approximately 0.1inch into the flame tube. During operation the sparkpenetrates a further 0.75 inch. The fuel mixture isignited in the relatively stable boundary layer whichthen propagates throughout the combustion system.

RELIGHTING

28. The jet engine requires facilities for relightingshould the flame in the combustion system be extin-guished during flight. However, the ability of theengine to relight will vary according to the altitudeand forward speed of the aircraft. A typical relightenvelope, showing the flight conditions under whichan engine will obtain a satisfactory relight, is shownin fig. 11-14. Within the limits of the envelope, theairflow through the engine will rotate the compressorat a speed satisfactory for relighting; all that isrequired therefore, provided that a fuel supply isavailable, is the operation of the ignition system. Thisis provided for by a separate switch that operatesonly the ignition system.

Starting and ignition

131

Fig. 11-13 An igniter plug.

Fig. 11-14 A typical flight relight envelope.

Administrator
文本框
26.典型点火系统的正常跳火率在每分钟60到100个火花之间。由于每一次放电会造成点火器电极逐渐腐蚀,需要定期更换火花塞。 27.火花塞顶部伸入火焰筒中约0.1英寸。在工作中,火花还进一步穿透0.75英寸。燃油混合气在相对稳定的边界层中被点着,然后扩展到整个燃烧系统。 再点火 28.一旦在飞行中燃烧系统中的火焰熄灭,喷气发动机就需要再点火设备。然而,依据飞行的高度和飞行速度的不同,发动机再点火的能力是变化的。典型的再点火包线示于图11-14,图中示出了发动机能够满意再点火的飞行状态。在此飞行包线范围内,流过发动机的空气流将在这样一个转速下带转压气机,这个转速能满足再点火的要求。因此,如果有燃油供应的话,余下要做的事就是使点火系统工作。这由一个单独的仅仅使点火系统工作的开关来完成。
Administrator
文本框
25.火花塞有两种基本型,即收缩或约束空气间隙式,以及分路表面放电式。空气间隙式与常规活塞发动机的火花塞相似,但其火花要击穿的电极和本体之间的空气间隙较大。火花产生之前为了使间隙电离需要大约25,000伏电位差。这样高的电压要求整个线路具有非常好的绝缘。表面放电式火花塞(图11-13)有一个绝缘的端头,它由半导体雷管构成,容许自中央的高压电极向本体漏电,使得雷管表面电离,为储存在电容器中的电能提供了一条低电阻通路。放电采取从电极到本体高电压跳火的形式,它仅要求约为2000伏的电位差就能工作。
Administrator
文本框
钨头
Administrator
文本框
发动机能顺利再点火的 高度和速度包线
Administrator
文本框
空速-海里/小时
Administrator
文本框
图11-14 一种典型的空中再点火包线
Administrator
文本框
钨合金
Administrator
文本框
碳化硅半导体套管
Administrator
文本框
钢壳体
Administrator
文本框
镍铁电极
Administrator
文本框
陶瓷绝缘
Administrator
文本框
玻璃纤维封严件
Administrator
文本框
触发头
Administrator
文本框
图11-13 一种火花塞
Administrator
文本框
高度 -英尺
Page 140: Rolls royce jet engine

Armstrong Siddeley Sapphire

The Sapphire originated in 1946 with theMetrovick F9, which was handed over toArmstrong-Siddeley when Metropolitan-Vickers withdrew from aviation in 1947. TheSapphire first ran in October 1948 and theengine was flight tested in Meteor, Hastingsand Canberra aircraft; before going intoproduction for the Gloster Javelin and HawkerHunter F2.

Rolls-Royce contra-rotating fan (concept)

Administrator
文本框
罗尔斯-罗伊斯公司的对转风扇发动机 (方案)
Administrator
文本框
“萨菲尔”(Sapphire)和“梅特罗维克”(Metrovick)F9飞机的研制工作一起于l946年开始,当梅特罗波里顿-维克斯(Metropolitan-Vickers)于1947年从航空界退出后转交给阿姆斯特朗-西德利公司。“萨菲尓”发动机于1948年10月首次运转,先后在“彗星(Meteor)、“哈斯汀斯”(Hastings)和“堪培拉”(Canberra)飞机上作过飞行试验,然后投入批生产,用于格洛斯特公司的“标枪”(Gloster Javelin)和霍克公司的“猎人”(Hawker Hunter)F2飞机。
Administrator
文本框
阿姆斯特朗-西德利公司的 “萨菲尔”发动机
Page 141: Rolls royce jet engine

Contents Page

Introduction 133Controls 133Instrumentation 135

Engine thrustEngine torqueEngine speedTurbine gas temperatureOil temperature and pressureFuel temperature and pressureFuel flowVibrationWarning systemsAircraft integrated data systemElectronic indicating systems

Synchronizing and synchrophasing 144

INTRODUCTION

1. The controls of the gas turbine engine aredesigned to remove, as far as possible, work loadfrom the pilot while still allowing him ultimate controlof the engine. To achieve this, the fuel flow is auto-matically controlled after the pilot has made the initialpower selection (Part 10).

2. All engine parameters require monitoring andinstrumentation is provided to inform the pilot of thecorrect functioning of the various engine systemsand to warn of any impending failure. Should any ofthe automatic governors fail, the engine can be

manually controlled by the pilot selecting the desiredthrust setting and monitoring the instruments tomaintain the engine within the relevant operatinglimitations.

3. The multitude of dials and gauges on the pilot'sinstrument panel may be replaced by one or anumber of cathode ray tubes to display engineparameters. These are small screens capable ofdisplaying all of the information necessary to operatethe engine safely.

CONTROLS

4. The control of a gas turbine engine generallyrequires the use of only one control lever and themonitoring of certain indicators located on the pilot'sinstrument panel (fig. 12-1). Operation of the control(throttle/power) lever selects a thrust level which isthen maintained automatically by the fuel system(Part 10).

133

12: Controls and instrumentation

Administrator
文本框
第十二章 控制器和仪表
Administrator
文本框
目 录
Administrator
文本框
绪言 控制器 仪表
Administrator
文本框
发动机推力 发动机扭矩 发动机转速 涡轮燃气温度 滑油温度和压力 燃油温度和压力 燃油流量 振动 警告系统 飞机综合数据系统 电子指示系统
Administrator
文本框
同步和同相
Administrator
文本框
绪言 1.燃气涡轮发动机的各种控制器要设计得尽可能减轻驾驶员的工作量。而又能够允许他最大限度地控制发动机。为此,在驾驶员作出起始功率选择(第10章)之后,燃油流量是自动控制的。
Administrator
文本框
2.发动机的所有参数都要监视,仪表用来通知驾驶员关于各个发动机系统的正确功能,以及报警任何可能发生的故障。一旦任何自动调节器出故障,发动机可以由驾驶员手动控制,选择所要求的推力位置,并监视仪表,以保持发动机在相应的工作极限值之内。
Administrator
文本框
3.驾驶员仪表板上的许多盘式和指针式仪表可以 由一个或几个阴极射线管来取代,用来显示发动机 的各种参数。这些小型视屏能够显示使发动机安全 工作所必须的所有信息。
Page 142: Rolls royce jet engine

Controls and instrumentation

134

Fig. 12-1 Pilot's instrument panel - turbo-jet engines.

Administrator
文本框
控制器 4.燃气涡轮发动机的控制通常要求只用一根操纵杆并且监视位于驾驶员仪表板(图12-1)上的某些指示器。用操纵杆(油门/功率)选择某个推力水平之后,这个推力水平就由燃油系统(第l0章)自动保持。
Administrator
文本框
图12-1 驾驶员的仪表板-涡轮喷气发动机
Page 143: Rolls royce jet engine

5. On engines fitted with afterburning, single levercontrol is maintained, although a further fuel systemis required to supply and control the fuel to theafterburner (Part 16).

6. On a turbo-propeller engine, the throttle lever isinterconnected with the propeller control unit(P.C.U.), thus maintaining single lever operation ofthe engine. Similarly, the throttle control lever of ahelicopter is interconnected with the collective pitchlever, so ensuring that an increase in pitch isaccompanied by an increase in engine power,

7. The fuel system (Part 10) incorporates a highpressure fuel shut-off cock to provide a means ofstopping the engine. This may be operated by aseparate lever, interconnected with the throttle lever,or electrically actuated and controlled by a switch onthe pilot's instrument panel.

8. A turbo-jet engine fitted with a thrust reverserusually has an additional control lever that allowsreverse thrust to be selected (Part 15). On a turbo-propeller engine, a separate control lever is notrequired because the interconnected throttle andP.C.U. lever is operated to reverse the pitch of thepropeller.

INSTRUMENTATION9. The performance of the engine and the operationof the engine systems are shown on gauges or bythe operation of flag or dolls-eye type indicators. Adiagrammatic arrangement of the control and instru-mentation for a turbo-jet engine is shown in fig. 12-2.

Controls and instrumentation

135

Fig. 12-2 Diagrammatic arrangement of engine control and instrumentation.

Administrator
文本框
7.燃油系统(第10章)内有一个高压燃油截止活门,作为将发动机停车的手段。这可以由一个与油门杆相连的单独的杆操作,或者由驾驶员仪表板上的一个开关进行电操纵和控制。 8.对于装有反推力装置的涡轮喷气发动机,通常附加地装有一根操纵杆用于选择反推力(第15章)。对于涡轮螺桨发动机,不需要单独的操纵杆,因为联动的油门和螺旋桨控制装置操纵杆可用来逆转螺旋桨的桨距。 仪表 9.发动机的性能及发动机各系统的工作由仪表显示,或者由标志式或“娃娃眼”式指示器显示。涡轮喷气发动机的控制和仪表的布置图示于图12-2。
Administrator
文本框
5.对于装有加力燃烧室的发动机,仍保持使用一根操纵杆的控制,但是需用另一个燃油系统来供应及控制给加力燃烧室的燃油。 6.对于涡轮螺桨发动机,油门杆和螺旋桨控制装置是联动的,因而保持用一根杆操纵发动机。同样,直升机的油门控制杆与总距操纵杆是联动的,所以能保证桨距增加时同时增大发动机功率。
Administrator
文本框
图12-2 发动机控制和仪表的布置图
Administrator
文本框
仪表板
Administrator
文本框
压缩
Administrator
文本框
燃烧
Administrator
文本框
排气
Administrator
文本框
飞机 油门杆
Administrator
标注
燃油流量计
Administrator
文本框
燃油 加温器
Administrator
标注
油门开关
Administrator
标注
滑油散热器
Administrator
标注
高压涡轮驱动 的齿轮箱
Administrator
文本框
滑油泵
Page 144: Rolls royce jet engine

Controls and instrumentation

136

Fig. 12-3 Electro-mechanical E.P.R. transmitter.

Administrator
文本框
线性电压差变压器 (L.V.D.T.)
Administrator
文本框
电信号
Administrator
文本框
平衡架
Administrator
文本框
传感器
Administrator
文本框
构架
Administrator
文本框
放大器
Administrator
文本框
真空膜盒
Administrator
文本框
Administrator
文本框
伺服马达
Administrator
文本框
电位计
Administrator
文本框
传感器
Administrator
文本框
真空膜盒
Administrator
文本框
放大器
Administrator
文本框
通向发动机压比指示器
Administrator
文本框
电位计
Administrator
文本框
输出电压
Administrator
文本框
参考电压
Administrator
文本框
伺服马达
Administrator
文本框
机械信号 (齿轮系)
Administrator
文本框
图12-3 电机械式发动机压比(E.P.R.)传感器
Administrator
文本框
发动机推力 10.发动机的推力用推力计来指示。推力计有两种基本类型,第一种测量涡轮出口或喷管压力,第二种称为发动机压比(E.P.R.)表,测量两种或三种参数之比。当测量发动机压比时,该压比通常是喷管的压力与压气机进口压力之比。但是,对于风扇发动机来说,该压比可以是涡轮出口和风扇出口的综合压力与压气机进口压力之比。
Administrator
文本框
11.不论对于哪一种情况,都要给出推力输出的指不,虽然当只要测量涡轮出口压力时,仍然必须对进口压力的变化加以修正。然而,这两种类型都可能需要对外界大气温度的变化作修正。为了对外界大气条件作补偿,可能要对仪表的刻度设定一个修正值,因而对所有工作状态下的最小推力输出都可以作检查。
Administrator
文本框
12.适当安置的一些皮托管感测压力或一些与从发动机测取的指示类型相称的压力。这些皮托管可以直接连接在指示器上,也可以连接到压力传感器上,再通过电路连接到指示器上。
Administrator
文本框
13.仅显示涡轮出口压力的指示器基本上是这样一块表,盘面上可能刻有每平方英寸的磅数,汞柱的英寸数,或最大推力的百分数。
Administrator
文本框
14.发动机压比既可以由电机械式,也可以由电子式传感器来指示。对于这两种情况,传感器的输入是发动机的进口压力(P1)及由风扇出口压力和涡轮排气压力构成的综台压力(PINT)。有些情况下单独使用风扇出口压力或者涡轮排气压力取代PINT。
Page 145: Rolls royce jet engine

Engine thrust10. The thrust of an engine is shown on a thrust-meter, which will be one of two basic types; the firstmeasures turbine discharge or jet pipe pressure, andthe second, known as an engine pressure ratio(E.P.R.) gauge, measures the ratio of two or threeparameters. When E.P.R. is measured, the ratio isusually that of jet pipe pressure to compressor inletpressure. However, on a fan engine the ratio may bethat of integrated turbine discharge and fan outletpressures to compressor inlet pressure.

11. In each instance, an indication of thrust output isgiven, although when only the turbine dischargepressure is measured, correction is necessary forvariation of inlet pressure; however, both types mayrequire correction for variation of ambient airtemperature. To compensate for ambientatmospheric conditions, it is possible to set acorrection figure to a sub-scale on the gauge; thus,

the minimum thrust output can be checked under alloperating conditions.

12. Suitably positioned pilot tubes sense thepressure or pressures appropriate to the type ofindication being taken from the engine. The pilottubes are either directly connected to the indicator orto a pressure transmitter that is electricallyconnected to the indicator.

13. An indicator that shows only the turbinedischarge pressure is basically a gauge, the dial ofwhich may be marked in pounds per square inch(p.s.i.), inches of mercury (in. Hg.), or a percentageof the maximum thrust.

14. E.P.R. can be indicated by either electro-mechanical or electronic transmitters. In both casesthe inputs to the transmitter are engine inlet pressure(P1) and an integrated pressure (PINT) comprised of

Controls and instrumentation

137

Fig. 12-4 A simple torquemeter system.

Administrator
文本框
在将传动扭矩传给螺旋桨时,扭矩计靠液压测量斜齿轮产生的轴向载荷
Administrator
文本框
斜齿轮
Administrator
文本框
轴向推力 发动机滑油压力 扭矩计滑油压力
Administrator
文本框
图12-4 简单的扭矩系统
Administrator
文本框
扭矩计活塞
Administrator
文本框
螺旋桨轴
Administrator
文本框
15.电机械式系统对压力改变的指示方式是采用传感器膜盒(图12-3)使压力传感器的中心轴偏移,导致轭架相当于A.A轴旋转。这一运动由线性可调电压差变压器感测,并转换成为交流电信号,经过放大后作用在伺服马达的控制绕组上。
Administrator
文本框
16.伺服马达通过齿轮改变通向发动机压力比指示器的电位计输出低压信号,同时驱动平衡架沿着与轭架的原始运动相同的方向运动,直到通向马达的线性可调电压差变压器信号消失和系统稳定在新的位置为止。 17.电子式发动机压比系统采用两个震动筒式压力传感器,它们感测发动机空气压力,并在与这些压力相关的频率下振动。依据这些振动频率,计算出发动机压比的电信号,然后将信号输入发动机压比表和电子式发动机控制系统(第10章)。
Administrator
文本框
发动机扭矩 18.发动机扭矩用以指示涡轮螺桨发动机发出的功率,该指示器称作扭矩计。发动机的扭矩或扭转力矩与马力成正比,经由螺旋桨减速齿轮传递出来。 19.一种扭矩计系统示于图12-4。在该系统中,由斜齿轮产生的轴向推力与作用在活塞上的滑油压力相抵消,抵消轴向推力所需的压力被传给指示器。
Administrator
文本框
20.除了提供发动机的功率指示之外,扭矩计系统还在由于功率故障造成扭矩计滑油压力降低时,用于自动控制螺旋桨顺桨系统。对于某些安装条件下,它还用于协助喷水系统的自动操作,以便在外界温度较高或在高海拔飞机场恢复或增大起飞功率(第17章)。
Page 146: Rolls royce jet engine

fan outlet and turbine exhaust pressures. In somecases either fan outlet pressure or turbine exhaustpressure are used alone in place of PINT.

15. The electro-mechanical system indicates achange in pressure by using transducer capsules(fig. 12-3) to deflect the centre shaft of the pressuretransducer causing the yoke to pivot about the axisA.A. This movement is sensed by the linear variabledifferential transformer (L.V.D.T.) and converted to ana.c. electrical signal which is amplified and applied tothe control winding of the servo motor.

16. The servo motor, through the gears, alters thepotentiometer output voltage signal to the E.P.R.indicator and simultaneously drives the gimbal in thesame direction as the initial yoke movement until theL.V.D.T. signal to the motor is cancelled and thesystem stabilizes at the new setting.

17. The electronic E.P.R. system utilizes twovibrating cylinder pressure transducers which sensethe engine air pressures and vibrate at frequenciesrelative to these pressures. From these vibrationfrequencies electrical signals of E.P.R. are computedand are supplied to the E.P.R. gauge and electronicengine control system (Part 10).

Engine torque18. Engine torque is used to indicate the power thatis developed by a turbo-propeller engine, and theindicator is known as a torquemeter. The enginetorque or turning moment is proportional to thehorse-power and is transmitted through the propellerreduction gear.

19. A torquemeter system is shown in fig. 12-4. Inthis system, the axial thrust produced by the helicalgears is opposed by oil pressure acting on a numberof pistons; the pressure required to resist the axialthrust is transmitted to the indicator.

20. In addition to providing an indication of enginepower; the torquemeter system may also be used toautomatically operate the propeller featheringsystem if the torquemeter oil pressure falls due to apower failure. It is also used, on some installations,to assist in the automatic operation of the waterinjection system to restore or boost the take-offpower at high ambient temperatures or at highaltitude airports (Part 17).

Engine speed21. All engines have their rotational speed (r.p.m.)indicated. On a twin or triple-spool engine, the highpressure assembly speed is always indicated; inmost instances, additional indicators show the speed

of the low pressure and intermediate pressureassemblies.

22. Engine speed indication is electricallytransmitted from a small generator, driven by theengine, to an indicator that shows the actualrevolutions per minute (r.p.m.), or a percentage ofthe maximum engine speed (fig. 12-5). The enginespeed is often used to assess engine thrust, but it

Controls and instrumentation

138

Fig. 12-5 Engine speed indicators andgenerator.

Administrator
文本框
发动机转速 21.所有的发动机都有它们的转速指示。对于双转子或三转子发动机,总是要指示高压转子的转速。在多数情况下,还有另外的指示器显示低压和中压转子的转速。
Administrator
文本框
图12-5 发动机转速指示器及发电机
Administrator
文本框
22.发动机转速指示由发动机驱动的一个小型发电机经电路传给指示器,它显示出实际的每分钟转速(r.p.m.),或者显示出发动机最大转速的百分比(图12-5)。发动机转速常常用于估算发动机扭力。但是,由于进口温度和压力状态会影响给定的发动机转速下的推力,所以它给出的不是推力的 指示值。
Administrator
文本框
23.发动机转速发电机供应三相交流电,其频率取决于发动机转速。发电机的输出频率控制指示器中的同步马达的转速,位于鼓筒或阻力杯中的磁铁组件的旋转导致鼓筒的运动,进而转动指示器的指针。 24.在没有其它设备来驱动发电机的场合,可以采用可变磁阻式转速探头,它与一个音轮相接,产生感应电流,经放大后送入指示器(图12-6)。本方法可以用于提供发动机的转速指示,而不需有单独驱动的发电机以及其相应的传动机构,因而减少了发动机的部件和运动零件的数量。
Administrator
文本框
25.转速探头位于压气机机匣上,与音轮对齐。音轮是压气机轴上经机械加工的部分。每转一圈音轮外圆上的齿通过探头一次,通过改变探头中线圈的磁通量而诱导出一股电流。电流的大小由磁通量的变化率控制,因而与发动机转速直接相关。
Administrator
文本框
26.除了提供转子转速的指示之外,转速探头中感应的电流可以用来电亮仪表板上的警告灯,向驾驶员指示转子组件正在转动。这在发动机起动时特别重要,因为它通知驾驶员何时打开燃油开关,来向发动机供油。该灯与起动电路相连,因而仅仅在起动过程中才亮。
Page 147: Rolls royce jet engine

does not give an absolute indication of the thrustbeing produced because inlet temperature andpressure conditions affect the thrust at a givenengine speed.

23. The engine speed generator supplies a three-phase alternating current, the frequency of which isdependent upon engine speed. The generator outputfrequency controls the speed of a synchronousmotor in the indicator, and rotation of a magnetassembly housed in a drum or drag cup inducesmovement of the drum and consequent movement ofthe indicator pointer,

24. Where there is no provision for driving agenerator, a variable-reluctance speed probe, inconjunction with a phonic wheel, may be used toinduce an electric current that is amplified and thentransmitted to an indicator (fig. 12-6). This methodcan be used to provide an indication of r.p.m. withoutthe need for a separately driven generator, with itsassociated drives, thus reducing the number ofcomponents and moving parts in the engine.

25. The speed probe is positioned on thecompressor casing in line with the phonic wheel,which is a machined part of the compressor shaft.The teeth on the periphery of the wheel pass theprobe once each revolution and induce an electriccurrent by varying the magnetic flux across a coil inthe probe. The magnitude of the current is governedby the rate of change of the magnetic flux and is thusdirectly related to engine speed.

26. In addition to providing an indication of rotorspeed, the current induced at the speed probe canbe used to illuminate a warning lamp on theinstrument panel to indicate to the pilot that a rotorassembly is turning. This is particularly important atengine start, because it informs the pilot when toopen the fuel cock to allow fuel to the engine. Thelamp is connected into the slatting circuit and isilluminated during the starting cycle.

Turbine gas temperature27. The temperature of the exhaust gases is alwaysindicated to ensure that the temperature of theturbine assembly can be checked at any specificoperating condition. In addition, an automatic gastemperature control system is usually provided, toensure that the maximum gas temperature is notexceeded (Part 10).

28. Turbine gas temperature (T.G.T.) sometimesreferred to as exhaust gas temperature (E.G.T.) or jetpipe temperature (J.P.T.), is a critical variable ofengine operation and it is essential to provide anindication of this temperature. Ideally, turbine entrytemperature (T.E.T.) should be measured; however,because of the high temperatures involved this is notpractical, but, as the temperature drop across theturbine varies in a known manner, the temperature atthe outlet from the turbine is usually measured bysuitably positioned thermocouples. The temperaturemay alternatively be measured at an intermediatestage of the turbine assembly, as shown in fig. 12-7.

29. The thermocouple probes used to transmit thetemperature signal to the indicator consist of twowires of dissimilar metals that are joined togetherinside a metal guard tube. Transfer holes in the tubeallow the exhaust gas to flow across the junction.The materials from which the thermocouples wiresare made are usually nickel-chromium and nickel-aluminium alloys.

30. The probes are positioned in the gas stream soas to obtain a good average temperature readingand are normally connected to form a parallel circuit.An indicator, which is basically a millivoltmetercalibrated to read in degrees centigrade, isconnected into the circuit (fig. 12-8).

31. The junction of the two wires at the thermocou-ple probe is known as the 'hot' or 'measuring' junctionand that at the indicator as the 'cold' or 'reference'junction. If the cold junction is at a constanttemperature and the hot junction is sensing theexhaust gas temperature, an electromotive force(E.M.F.), proportional to the temperature difference

Controls and instrumentation

139

Fig. 12-6 Variable-reluctance speed probeand phonic wheel.

Administrator
文本框
28.涡轮燃气温度(T.G.T.)有时用排气燃气温度(E.G.T.)或喷管温度(J.P.T)来表示。它是发动机工作中的关键参数,因而提供该温度的指示极为重要。按照理想,应当测定涡轮进口温度(T.E.T.)。但是涉及到高温,这是不现实的。但是涡轮中的温度降是按已知的方式变化的,所以涡轮出口温度通常由适当安排的热电偶测量。作为代替方式,也可以测量涡轮组件中间级的温度,如图12-7所示。 29.用于将温度信号传到指示器的热电偶探头由两种不同的金属丝构成,在一个金属套管内部连接在一起。套管上的一些传导孔允许排气流流过接点。用于制造热电偶丝的材料通常是镍铬和镍铝合金。 30.这些探头在燃气流中的配置要保证能获得良好的平均温度读数,通常将探头连在一起构成一个并联电路。在电路(图12-8)上连接一个指示器,它基本上是一个毫伏计,其读数按摄氏度作了标定。
Administrator
文本框
涡轮燃气温度 27.始终要指示排气温度,以保证在任一特定的工作状态下,能够检查涡轮组件的温度。而且,通常还备有一个自动燃气温度控制系统,保证最大燃气温度不致被超过(第10章)。
Administrator
文本框
31.在热电偶探头处的双金属丝的接点是“高温”或“测量”接点,而在指示器处的是“低温”或“基准”接点。假设低温接点处于恒温下,而高温接点正在感测排气温度,在电路中就会产生与两个接点的温度差成正比的电动势(E.M.F.),使指示器的指针移动。为防止低温接点的温度发生变化,影响指示的温度,在指示器中或在电路内装有一个自动温度补偿装置。
Administrator
文本框
图12-6 可变磁阻式转速探头和音轮
Administrator
文本框
通向放大器和指示器
Administrator
文本框
压气机厘
Administrator
文本框
转速探头
Administrator
文本框
音轮
Administrator
文本框
驱动轴
Page 148: Rolls royce jet engine

of the two junctions is created in the circuit and thiscauses the indicator pointer to move. To preventvariations of cold junction temperature affecting theindicated temperature, an automatic temperaturecompensating device is incorporated in the indicatoror in the circuit.

32. The thermocouple probes may be of single,double or triple element construction. Where multipleprobes are used they are of differing lengths in orderto obtain a temperature reading from different pointsin the gas stream to provide a better average readingthan can be obtained from a single probe (fig. 12-7).

33. The output to the temperature control systemcan also be used to provide a signal, in the form ofshort pulses, which, when coupled to an indicator,will digitally record the life of the engine. Duringengine operation in the higher temperature ranges,the pulse frequency increases progressively causingthe cyclic-type indicator to record at a higher rate,thus relating engine or unit life directly to operatingtemperatures.

34. Thermocouples may also be positioned totransmit a signal of air intake temperature into theexhaust gas temperature indicating and controlsystems, thus giving a reading of gas temperaturethat is compensated for variations of intaketemperature. A typical double-element thermocouplesystem with air intake probes is shown in fig. 12-8.

Oil temperature and pressure35. It is essential for correct and safe operation ofthe engine that accurate indication is obtained ofboth the temperature and pressure of the oil.Temperature and pressure transmitters andindicators are illustrated in fig 12-9.

36. Oil temperature is sensed by a temperature-sensitive element fitted in the oil system. A change intemperature causes a change in the resistance valueand, consequently, a corresponding change in thecurrent flow at the indicator. The indicator pointer isdeflected by an amount equivalent to thetemperature change and this is recorded on thegauge in degrees centigrade.

37. Oil pressure is electrically transmitted to anindicator on the instrument panel. Some installationsuse a flag-type indicator, which indicates if thepressure is high, normal or low; others use a dial-type gauge calibrated in pounds per square inch(p.s.i.).

38. Electrical operation of each type is similar; oilpressure, acting on the transmitter, causes a changein the electric current supplied to the indicator. Theamount of change is proportional to the pressureapplied at the transmitter.

39. The transmitter may be of either the direct or thedifferential pressure type. The latter senses thepressure difference between engine feed and return

Controls and instrumentation

140

Fig. 12-7 Turbine thermocouple installation.

Administrator
文本框
33.温度控制系统的输出也可以用来提供一个短脉冲方式的信号,当这个信号被连接到一个指示器之后,它将以数字方式记录发动机的寿命。当发动机工作在更高的温度范围时,脉冲频率逐步增加,使后期型指示器以更高的速率记录,从而将发动机或设备的寿命直接与工作温度联系起来。 34.热电偶也可以安排用于排气温度指示和控制系统传输进气道空气温度的信号,因而提供按进气道温度变化进行过补偿的燃气温度读数。一种具有进气道空气探头的典型双元件热电偶系统示于图12-8。 滑油温度和压力 35.对于发动机正确和安全工作来说,获得滑油温度和压力的精确指示极为重要。温度和压力的传感器和指示器示于图12-9。 36.滑油温度由装在滑油系统中的温度感测元件测量。温度的变化导致电阻值的变化,进而相应地改变指示器的电流。指示器的指针按相当于温度变化的幅度偏转,这些由摄氏温度表记录。
Administrator
文本框
32.热电偶探头可以是单元件、双元件、或三元件结构。当使用多个探头的情况下,探头的长度是不同的,以便在燃气流的不同位置测取温度读数,这样得到的平均读数可以比使用单个探头(图12-7)时提供的读数更准确。
Administrator
文本框
镍铝丝
Administrator
文本框
镍铬丝
Administrator
文本框
绝缘套
Administrator
文本框
双元热电偶
Administrator
文本框
图12-7 涡轮热电偶的安装
Administrator
文本框
低压涡轮1级导向叶片
Administrator
文本框
37.滑油压力由电传递到仪表板上的指示器。有装置采用标志式指示器,它指示究竟压力是高、正常、或低。另一些装置采用盘式表,按磅/平方英寸加以标定。
Administrator
文本框
38.每一种表的电路都类似。滑油压力作用在传感器上,引起输入到指示器的电流发生变化。变化的大小与施加在传感器上的压力成正比。
Page 149: Rolls royce jet engine

oil pressures, the return oil being pressurized bycooling and sealing air (Part 9) from the bearings.

40. In addition to a pressure gauge operated by atransmitter, an oil low pressure warning switch maybe provided to indicate that a minimum pressure isavailable for continued safe running of the engine.The switch is connected to a warning lamp in theflight compartment and the lamp illuminates if thepressure falls below an acceptable minimum.

Fuel temperature and pressure41. The temperature and pressure of the lowpressure fuel supply are electrically transmitted totheir respective indicators and these show if the lowpressure system is providing an adequate supply offuel without cavitation and at a temperature to suitthe operating conditions. The fuel temperature and

pressure indicators are similar to those fortemperature and pressure indication.

42. On some engines, a fuel differential pressureswitch, fitted to the low pressure fuel filter, senses thepressure difference across the filter element. Theswitch is connected to a warning lamp that providesindication of partial filter blockage, with the possibilityof fuel starvation.

Fuel flow43. Although the amount of fuel consumed during agiven flight may vary slightly between engines of thesame type, fuel flow does provide a useful indicationof the satisfactory operation of the engine and of theamount of fuel being consumed during the flight. Atypical system consists of a fuel flow transmitter,which is fitted into the low pressure fuel system, andan indicator, which shows the rate of fuel flow and the

Controls and instrumentation

141

Fig. 12-8 A typical double element thermocouple system.

Administrator
文本框
39.传感器可以是直接压力式,也可以是压差式。后者感受发动机进油和回油滑油压力之间的压差。滑油回油由轴承处的冷却和封严空气(第9章) 压。
Administrator
文本框
40.除了传感器带动的压力表之外,还有一个滑油低压警告开关,用以指示为保证发动机继续安全运转而能够提供的最低滑油压力。开关与驾驶舱中的一个警告灯相连,当滑油压力降低到可接受的最小值以下时,灯就亮起来。 燃油温度和压力 41.低压燃油的供油温度和压力由电传递到它们各 自的指示器,这些指示显示低压系统是否正在提供足够的燃油且没有气穴,以及温度是否适合于工作。燃油温度和压力指示器与滑油温度和压力指示器相似。 42.在某些发动机上在低压燃油滤中装有燃油压差开关。它感测油滤元件前后的压差。该开关与警告灯相连,发出油滤部分堵塞的指示,这时可能发生缺油。
Administrator
文本框
空气进口热电偶
Administrator
文本框
图12-8 一种典型的双元热电偶系统
Administrator
文本框
燃油流量 43.虽然在同一型别的不同发动机之间,在一次规定的飞行中所消耗的燃油量会略有不同,但是对于发动机顺利工作和测定飞行中正在消耗的燃油量来说,燃油流量确实能提供一种很有用的指示。一个典型的系统包括:装在低压燃油系统中的燃油流量传感器和显示以每小时加仑、磅或公斤为单位的燃油流量与总耗油量的指示器(图12-10)。传感器由电感测燃油流量并由相联的电子装置向指示器发送与燃油流量成正比的信号。
Administrator
文本框
喷管热电偶
Administrator
文本框
转接盒
Administrator
文本框
通向燃气温度 控制系统
Page 150: Rolls royce jet engine

total fuel used in gallons, pounds or kilogrammes perhour (fig. 12-10). The transmitter measures the fuelflow electrically and an associated electronic unitgives a signal to the indicator proportional to the fuelflow.

Vibration44. A turbo-jet engine has an extremely lowvibration level and a change of vibration, due to animpending or partial failure, may pass without beingnoticed. Many engines are therefore fitted withvibration indicators that continually monitor thevibration level of the engine. The indicator is usuallya milliammeter that receives signals through anamplifier from engine mounted transmitters (fig. 12-11).

45. A vibration transmitter is mounted on the enginecasing and electrically connected to the amplifier andindicator. The vibration sensing element is usually anelectro-magnetic transducer that converts the rate ofvibration into electrical signals and these cause theindicator pointer to move proportional to the vibrationlevel. A warning lamp on the instrument panel isincorporated in the system to warn the pilot if anunacceptable level of vibration is approached,enabling the engine to be shut down and so reducethe risk of damage.

Controls and instrumentation

142

Fig. 12-9 Oil temperature and pressure transmitters and indicators.

Fig. 12-10 Fuel flow transmitter andindicator.

Administrator
文本框
振动 44.涡轮喷气发动机具有极低的振动水平,由于即时发生的或部分的故障所引起的振动可能会不被发觉而通过。因此,许多发动机上装了振动指示器,它持续地监视发动机的振动水平。该指示器通常都是一个毫安表,它通过放大器接收从装在发动机上的传感器传来的一些信号(图12-11)
Administrator
文本框
45.在发动机的机匣上安装一个振动传感器,与放大器和指示器用电路相连。振动感测元件通常是一个电磁传感器,它将振动的大小转换成为电信号,这些信号使指示器指针的移动与振动水平成正比。仪表板上的一个警告灯被设置在系统中,用于在有不可接受的振动正在临近时向驾驶员报警,以使发动机停车,从而减少损坏的危险。
Administrator
文本框
图12-9 滑油温度和压力传感器和指示器
Administrator
文本框
图12-10 燃油流量传感器和指示器
Administrator
文本框
46.仪表上记录的振动水平是拾取处感测的总振动量。更精确的方法会区分出各个转子频率范围之间的差别,从而保证振动源能被孤立出来。对于多转于发动机来说,这尤为重要。
Page 151: Rolls royce jet engine

46. The vibration level recorded on the gauge is thesum total of vibration felt at the pick-up. A moreaccurate method differentiates between thefrequency ranges of each rotating assembly and soenables the source of vibration to be isolated. This isparticularly important on multi-spool engines.

47. A crystal-type vibration transmitter, giving amore reliable indication of vibration, has beendeveloped for use on multi-spool engines. A systemof filters in the electrical circuit to the gauge makes itpossible to compare the vibration obtained against aknown frequency range and so locate the vibrationsource. A multiple-selector switch enables the pilot toselect a specific area to obtain a reading of the levelof vibration.

Warning systems48. Warning systems are provided to give anindication of a possible failure or the existence of adangerous condition, so that action can be taken tosafeguard the engine or aircraft. Although the varioussystems of an aircraft engine are designed whereverpossible to 'fail safe1, additional safety devices aresometimes fitted. Automatic propeller featheringshould a power loss occur, and automatic closing ofthe high pressure fuel shut-off cock should a turbine

shaft failure occur, are but two examples. On someengine types, the fuel system is fitted with a controlto enable the engine to be operated by manualthrottling should a main fuel system failure occur.

49. In addition to a fire warning system (Part 14), anumber of other audible or visual warning systemscan be fitted to a gas turbine engine. These may befor low oil or fuel pressure, excessive vibration oroverheating. Indication of these may be by warninglight, bell or horn. A flashing light is used to attract thepilot's attention to a central warning panel (C.W.P.)where the actual fault is indicated.

50. Other instruments and lights warn the pilot ofthe selected position of the thrust reverser, the fanreverser or the afterburner variable nozzle, whenapplicable. Gauges also inform the pilot of suchthings as hydraulic pressure and flow and generatoroutput, which are vital to the correct operation of theaircraft systems.

Aircraft integrated data system51. The aircraft integrated data system (A.I.D.S.) isan extension of the 'black box' aircraft accident datarecorder. By monitoring and recording various engineparameters, either manually or automatically, it ispossible to detect an incipient failure and thusprevent a hazardous situation arising.

52. Selected performance parameters may berecorded for trend analysis or fault detection (Part24). Existing instruments are used, whereverpossible, to provide the signals to a magnetic tape.Further instrumentation, recording air pressure frompoints throughout the engine, oil contamination, tankcontents and scavenge oil temperature, may beprovided as required for flight recording,

53. After each flight the magnetic tape is processedby computer and the results are analyzed. Anydeviation from the normal condition will enable a faultto be identified and the necessary remedial action tobe taken.

Electronic indicating systems54. Electronic indicating systems consolidateengine indications, systems monitoring, and crewalerting functions onto one or more cathode raytubes (C.R.T.'s) mounted in the instrument panel.The information is displayed on the screen in theform of dials with digital readout and warnings,cautions and advisory messages shown as text.

Controls and instrumentation

143

Fig. 12-11 Vibration transmitter andindicator.

Administrator
文本框
47.为用于多转子发动机,已经研制成功了一种晶体式振动传感器,它能提供更可靠的振动指示。在通向振动仪表的电路上装了一个滤波器系统,这就有可能将所得的振动对照已知的频率范围进行比较,由此能找到振动源的位置。一个多选择位置的开关使驾驶员可以选出一个特定的区域,以获得该振动水平的读数。
Administrator
文本框
警告系统 48.警告系统用来提供可能出现故障或存在危险情况的指示,以便于采取措旋保护发动机或飞机。虽然一台飞机发动机的各种系统在设计上只要可能就设计成是“故障安全”的,但有时仍然装设附加的安全装置。现仅举两个例子,如万一发生功率损失时的螺旋桨自动顺桨,和万一发生涡轮轴损坏时自动关闭高压燃油停车开关。在某些型别发动机上,在燃油系统中装有一个控制器,以便万一在主燃油系统发生故障时,保证发动机能够用手动油门操作。 49.在燃气涡轮发动机上,除了要装失火警告系统(第14章)之外,还可能安装许多其它的声响和目视警告系统。这些系统可以用于低滑油压力或低燃油压力、过高的振动或过热。这些系统发出的指示可以是告警灯、警铃、或喇叭声。有一个闪光灯用来吸引驾驶员对中央警告板的注意,该处会指出实际的故障。
Administrator
文本框
图12-11 振动传感器及指示器
Administrator
文本框
50.其它仪表和灯光在适当的时候向驾驶员提出警告,这些警告有关反推力,风扇反推力或加力燃烧室的可调喷口的选择位置。有些仪表提示驾驶员这些情况:液压压力和流量,发电机输出功率等,这些对于飞机系统的正确工作是极为重要的。
Page 152: Rolls royce jet engine

55. Only those parameters required by the crew toset and monitor engine thrust are permanentlydisplayed on the screen. The system monitors theremaining parameters and displays them only if oneor more exceed safe limitations. The pilot can,however, override the system and elect to have allmain parameters in view at any time (fig. 12-12).

56. Warnings, cautions and advisory messages aredisplayed only when necessary and are colour codedto communicate the urgency of the fault to the flightcrew. Provision is made to record any event or out oftolerance parameter in a non-volatile memory forlater evaluation by ground maintenance crews.

57. Electronic indicating systems offer improvedflight operations by reducing the pilot workloadthrough automatic monitoring of engine operationand a centralized caution and warning system.Reduced flight deck clutter is another feature as the

multitude of instruments traditionally present arereplaced by the C.R.T.'s.

SYNCHRONIZING AND SYNCHROPHASING

58. Synchronizing and synchrophasing systems aresometimes used on turbo-propeller engined aircraftto achieve a reduction of noise during flight.

59. On a multi-engined aircraft, a synchronizingsystem ensures the propeller speeds are all thesame. This is achieved by an electrical system thatcompares speed signals from engine-mountedgenerators. Out-of-balance signals, using oneengine as a master signal, are automaticallycorrected by electrically trimming the engine speedsuntil all signals are equal.

60. A synchrophasing system ensures that anygiven blade of an engine propeller is in the same

Controls and instrumentation

144

Fig. 12-12 Typical electronic indicating display.

Administrator
文本框
53.在每次飞行之后,磁带由计算机处理,并对结果作分析。根据任何偏离正常状态的记录就能将某种故障识别出来,以便采取补救措施。 电子指示系统 54.电子指示系统将发动机的指示、系统的监视、以及向驾驶员的告警功能组合在仪表板上安装的一个或几个阴极射线管(即彩色电视屏幕校注)上。有关的信息以刻度盘形式显示在视屏上,而数字式读数、警告、注意事项和建议信息则以文本方式显示。
Administrator
文本框
飞机综合数据系统(A.I.D.S.) 51.飞机综合数据系统是“黑盒子”飞机事故数据记录器的扩充。通过监视和记录各种发动机参数,不管是手动的或是自动的,就有可能察觉某种早期的故障,从而防止危险情况的发生。
Administrator
文本框
52.可以记录下选定的一些性能参数供趋势分析或故障检测(第24章)。只要有可能,就使用现有仪表,将信号输入磁带机。按照飞行记录的要求可以进一步装备一些仪表,用于记录整个发动机各测量点的空气压力、滑油污染、油箱存油、滑油回油温度等。
Administrator
文本框
图12-12 典型的电子指示显示器
Page 153: Rolls royce jet engine

relative position as the corresponding, blade of thepropeller on the master engine. This again is auto-matically achieved by very fine trimming of enginespeeds resulting from phase signals from the syn-chrophasing generators.

61. On turbo-jet engines, synchronization can beachieved in a similar manner to that used for a turbo-

propeller engine. On multi-spool engines, only onespool is synchronized. Manual trimming of engine orshaft speed can be done with the assistance of asynchroscope. This visually indicates, in comparisonwith a master engine, if the other engines are runningat exactly the same speed; the normal engine speedindicator is, of course, not sufficiently sensitive to usefor synchronizing.

Controls and instrumentation

145

Administrator
文本框
55.只有那些要由驾驶员设置和监视发动机推力所要求的参数才永久性地显示在显示屏上。系统自动监视其余参数,只有其中一个或几个超过了安全的极限值时才将它们显示出来。但是驾驶员可以超控该系统并可随时选取所有主要参数以供观察(图12-12)。 56.只有在需要时,警告、注意事项及建议信息才显示出来,并以颜色编码,向飞行机组人员提示故障的紧迫程度。系统中有这样的设备,用来将任何事件或参数超差记录在长期性内存中,以供地面维护人员以后评估。 57.电子指示系统由于减轻了驾驶员的工作负担,从而改善了飞行操作条件,这一切是通过发动机工作的自动监视,和一个集中化的提示和警告系统来实现的。整顿好飞行驾驶舱的杂乱无章是其中一个特点,因为传统出现的大量仪表被阴极射线管取代了。 同步和同相 58.有时在涡轮螺桨发动机飞机上准备同步和同相系统,用于减少飞行中的噪声。
Administrator
文本框
59.在多发动机飞机上,同步系统保证各个螺旋桨转速都相同。这是通过电系统将发动机上安装的发电机转速信号相比较而实现的。用一台发动机作为一个主信号,通过电路微调其它转速不同的发动机转速来自动修正,直至所有信号相等为止。 60.同相系统能保证其它发动机螺旋浆的任一桨叶与主发动机上的相应螺旋桨桨叶处于同样的相对位置上。这也是通过用同相发电机的相位信号对各发动机的转速作非常精细的微调而自动实现的。 61.对于涡轮喷气发动机,可以用与涡轮螺桨发动机所用的类似方式来实现同步。对于多转子发动机,仅有一个转子是同步的。利用同步示波器,可以手工微调发动机或轴的转速。这种目视的指示,在与主发动机比较后,可以知道其它发动机是否精确地在相同转速下运转。当然,普通的发动机转速指示器对用于同步来说,灵敏度是不够的。
Page 154: Rolls royce jet engine

Rolls-Royce advanced turbo-propeller

De Havilland H6 Gyron Junior

When a change in government fighter require-ments halted development of the 20,000 lbthrust H4 Gyron in 1955, de Havilland decidedto build a 0.45 scale version known as the H6Gyron Junior. First run in August 1955 it waslater used to power the Blackburn BuccaneerS1 at 7100 lb thrust and the stainless steelBristol 188 at 14,000 lb with afterburner.

Page 155: Rolls royce jet engine

13: Ice protection

Contents Page

Introduction 147Hot air system 149Electrical system 150

INTRODUCTION

1. Icing of the engine and the leading edges of theintake duct can occur during flight through cloudscontaining supercooled water droplets or duringground operation in freezing fog. Protection againstice formation may be required since icing of theseregions can considerably restrict the airflow throughthe engine, causing a loss in performance andpossible malfunction of the engine. Additionally,damage may result from ice breaking away andbeing ingested into the engine or hitting the acousticmaterial lining the intake duct.

2. An ice protection system must effectively preventice formation within the operational requirements ofthe particular aircraft. The system must be reliable,easy to maintain, present no excessive weightpenalty and cause no serious loss in engineperformance when in operation.

3. Analyses are carried out to determine whetherice protection is required and, if so, the heat inputrequired to limit ice build up to acceptable levels. Fig.13-1 illustrates the areas of a turbo-fan enginetypically considered for ice protection.

4. There are two basic systems of ice protection;turbo-jet engines generally use a hot air supply (fig.13-2), and turbo-propeller engines use electricalpower or a combination of electrical power and hot

147

Administrator
文本框
绪言 1.当飞机穿越含有过冷水珠的云层或在有冻雾的地面工作时,发动机和进气道前缘处会结冰。防止结冰是必要的,因为在这些地方结冰会大大限制通过发动机的空气流量,从而引起发动机性能损失并可能会使发动机发生故障。此外,脱落下来的冰块被吸入发动机或撞击进气道吸音材料衬层时可能造成损坏。 2.防冰系统必须在该飞机的使用要求内有效地防止冰的生成。防冰系统必须可靠,易于维护,不会过分增加重量,且在工作中不会引起发动机严重的性能损失。 3.有必要进行一些分析以确定是否需要防冰。如果需要,则要确定使冰的集结限制在可允许的范围之内所要求输入的热量。图13-1说明一种涡轮风扇发动机通常需要防冰的地方。
Administrator
文本框
第十三章 防冰
Administrator
文本框
目录 绪言 热空气系统 电加温系统
Page 156: Rolls royce jet engine

Ice protection

148

Fig. 13-1 Areas typically considered for ice protection.

Fig. 13-2 Hot air ice protection.

Administrator
文本框
确保防冰是否满足要求
Administrator
文本框
确保结冰将 不会影响性能
Administrator
文本框
确定防冰的热量并保证满足防冰的要求
Administrator
文本框
确保能充分地 防冰(仪表测试)
Administrator
文本框
确定用于防冰的热量或无加热时结冰的允许程度
Administrator
文本框
确定结冰的可接受程度
Administrator
文本框
确定结冰的可接受程度
Administrator
文本框
图13-1 通常需要防冰的地方
Administrator
文本框
前整流罩
Administrator
文本框
进口导向叶片
Administrator
文本框
调压活门
Administrator
文本框
鼻锥
Administrator
文本框
空气进口总管
Administrator
文本框
至前整流罩的引气口
Administrator
文本框
图13-2 热空气防冰
Page 157: Rolls royce jet engine

air. Protection may be supplemented by thecirculation of hot oil around the air intake as shown infig. 13-3. The hot air system is generally used toprevent the formation of ice and is known as an anti-icing system. The electrical power system is used tobreak up ice that has formed on surfaces and isknown as a de-icing system.

HOT AIR SYSTEM

5. The hot air system provides surface heating ofthe engine and/or powerplant where ice is likely toform. The protection of rotor blades is rarelynecessary, because any ice accretions are dispersedby centrifugal action. If stators are fitted upstream ofthe first rotating compressor stage these may require

protection. If the nose cone rotates it may not needanti-icing if its shape, construction and rotationalcharacteristics are such that likely icing isacceptable.

6. The hot air for the anti-icing system is usuallytaken from the high pressure compressor stages. It isducted through pressure regulating valves, to theparts requiring anti-icing. Spent air from the nosecowl anti-icing system may be exhausted into thecompressor intake or vented overboard.

7. If the nose cone is anti-iced its hot air supply maybe independent or integral with that of the nose cowland compressor stators. For an independent system,the nose cone is usually anti-iced by a continuous

Ice protection

149

Fig. 13-3 Combination of hot air, oil and electrical ice protection.

Administrator
文本框
4.有二种基本的防冰系统。涡轮喷气发动机一般采用热空气供应(图13-2),涡轮螺桨发动机采用电加温或热空气与电加温混合型。防冰可通过热滑油沿进气道周围循环来补充热量,如图13-3所示。热空气系统一般用来防止冰的生成,称为防冰系统。电加温系统用来破碎已在各表面上形成的冰,称为除冰系统。
Administrator
文本框
前整流罩
Administrator
文本框
进口支扳
Administrator
文本框
图13-3 热空气、滑油和电加温混合型防冰
Administrator
文本框
热空气 滑油 电加温
Administrator
文本框
热空气活门
Administrator
文本框
热空气系统 5.热空气系统在可能会结冰的地方为发动机或动 力装置提供表面加温。转子叶片几乎没有必要进行保护,因为任何积冰都会被离心作用驱散。如果静子装在压气机第一级转子的上游,则可能需要进行防冰保护。如果鼻锥是旋转的,也可不必采取防冰措施,只要其形状、结构和旋转特性能使结冰限制在允许的程度以内的话。 6.防冰系统的热空气通常取自高压压气机级,通过调压活门用导管输送至需要防冰的零件。前整流罩防冰系统用过的空气可排入压气机进口或排出机外。 7.如果鼻锥是防冰的,其热空气源可以是独立的也可以是将它与前整流罩及压气机静子的热空气供应组合在一起。对一独立系统而言,鼻锥的防冰一般是从压气机引出,经内部管道提供连续不调节的热空气。
Administrator
标注
进口导向叶片
Administrator
文本框
燃油加热器
Administrator
标注
进气机匣
Administrator
文本框
接线盒
Administrator
文本框
自回油泵
Administrator
标注
至滑油箱
Administrator
文本框
滑油散热器
Page 158: Rolls royce jet engine

unregulated supply of hot air via internal ducting fromthe compressor.

8. The pressure regulating valves are electricallyactuated by manual selection, or automatically bysignals from the aircraft ice detection system. Thevalves prevent excessive pressures being developedin the system, and act also as an economy device atthe higher engine speeds by limiting the air offtakefrom the compressor, thus preventing an excessiveloss in performance. The main valve may bemanually locked in a pre-selected position prior totake-off in the event of a valve malfunction, prior toreplacement.

ELECTRICAL SYSTEM

9. The electrical system of ice protection isgenerally used for turbo-propeller engine installa-tions, as this form of protection is necessary for thepropellers. The surfaces that require electricalheating are the air intake cowling of the engine, the

propeller blades and spinner and, when applicable,the oil cooler air intake cowling.

10. Electrical heating pads are bonded to the outerskin of the cowlings. They consist of strip conductorssandwiched between layers of neoprene, or glasscloth impregnated with epoxy resin. To protect thepads against rain erosion, they are coated with aspecial, polyurethane-based paint. When the de-icing system is operating, some of the areas are con-tinuously heated to prevent an ice cap forming on theleading edges and also to limit the size of the ice thatforms on the areas that are intermittently heated (fig.13-4).

11. Electrical power is supplied by a generator and,to keep the size and weight of the generator to aminimum, the de-icing electrical loads are cycledbetween the engine, propeller and, sometimes, theairframe.

12. When the ice protection system is in operation,the continuously heated areas prevent any ice

Ice protection

150

Fig. 13-4 Electrical ice protection.

Administrator
文本框
电加温系统统 9.电加温防冰系统一般用于涡轮螺桨发动机装置,因为,这种防冰形式是螺旋桨必需的。需要电加温的表面有发动机的进气道整流罩,螺旋桨桨叶和桨毂盖,如果可行的话,还包括滑油散热器进气道整流罩。
Administrator
文本框
10.电加温垫粘接在整流罩的外蒙皮上。这些垫由夹在氯丁橡胶或浸渍环氧树脂的玻璃布层之间的条形导电层板组成。为了防止加温垫受到雨水腐蚀,在它的表面涂有特殊的在、聚氨基甲酸乙酯漆涂层。当除冰系统工作时,一些地方被连续加温以防止前缘处结成冰帽,同时限制那些断续加温地方的结冰程度(图13-4)。 11.电源由一发电机提供。为了将发电机的尺寸和重量限制在最小值,除冰用的电负载是在发动机、螺旋桨、有时还在飞机构件之间循环。 12.当防冰系统工作时,连续加温的地方防止任何冰的生产,但在断续加温的地方在不加温期间允许有冰生成。在加温时,粘附着的冰层破裂,然后被空气动力所驱散。
Administrator
文本框
玻璃布层
Administrator
文本框
整流罩
Administrator
文本框
电热元件
Administrator
文本框
接线盒
Administrator
文本框
连续加温元件
Administrator
文本框
断续加温元件
Administrator
文本框
图13-4 电加温防冰
Page 159: Rolls royce jet engine

forming, but the intermittently heated areas allow iceto form, during their 'heat-off period. During the 'heat-on' period, adhesion of the ice is broken and it is thenremoved by aerodynamic forces.

13. The cycling time of the intermittently heatedelements is arranged to ensure that the engine canaccept the amount of ice that collects during the'heat-off' period and yet ensure that the 'heat-on1period is long enough to give adequate shedding,

without causing any run-back icing to occur behindthe heated areas.

14. A two-speed cycling system is often used toaccommodate the propeller and spinner require-ments; a 'fast' cycle at the high air temperatureswhen the water concentration is usually greater anda 'slow' cycle in the lower temperature range. Atypical cycling sequence chart is shown in fig, 13-5.

Ice protection

151

Fig. 13-5 Typical ice protection cyclic sequence.

Administrator
文本框
13.断续加温元件循环时间的安排应能保证发动机能承受在不加温期间所积聚的冰,此外要确保充足的加温时间使冰能完全脱落,而不会让原冰层又重新冻结在已加过温的地方。
Administrator
文本框
图13-5 显示的是一典型的循环顺序图。
Administrator
文本框
快速循环速度
Administrator
文本框
一次循环
Administrator
文本框
Administrator
文本框
最大值
Administrator
文本框
进气道
Administrator
文本框
螺旋桨和桨毂盖
Administrator
文本框
进气道
Administrator
文本框
慢速循环速度
Administrator
文本框
一次循环
Administrator
文本框
进气道
Administrator
文本框
螺旋浆和浆毂盖
Administrator
文本框
进气道
Administrator
文本框
时间
Administrator
文本框
最大值
Administrator
文本框
电流
Administrator
文本框
14.通常采用双速度循环系统以满足螺旋桨和桨毂盖的需求;在空气温度较高时。通常水的浓度较大,可采用“快”速循环,较低温度范围下采用“慢”速循环。
Page 160: Rolls royce jet engine

Rolls-Royce RB211-524D4D

Bristol Proteus

Work began in September 1944 on the 4000e.h.p. Proteus turbo-prop originally intendedto power the Bristol Brabazon 2 andSaunders-Poe Princess. The Proteus first ranin January 1947 and was later used to powerthe Bristol Britannia at 4445 e.h.p. Adevelopment of this engine, the MarineProteus, is used to power various patrol boats,hovercraft and hydrofoils.

Administrator
文本框
1944年9月开始研制4000当量马力的“海神”(Proteus)涡轮螺桨发动机,原打算用作布里斯托尔公司的“布拉巴宗”2(Bristo Brabazon 2)飞机和桑德斯-罗公司的“公主”(Saunders-Roe Princess)号飞机的动力装置。“海神”发动机于1947年元月首次试车,后来用作布里斯托尔公司的“大不列颠”(Britainnia)飞机的动力装置,功率4445当量马力。船用“海神”是从这种发动机发展而成,用来为各种巡逻艇、气垫船和水翼船提供动力。
Administrator
文本框
罗尔斯-罗伊斯公司 RB211-524 D4D发动机
Administrator
文本框
布里斯托尔公司 “海神”发动机
Page 161: Rolls royce jet engine

14: Fire protection

Contents Page

Introduction 153Prevention of engine fire ignition 153

External cooling and ventilationFire detection 154Fire containment 156Fire extinguishing 157Engine overheat detection 157

INTRODUCTION

1. All gas turbine engines and their associatedinstallation systems incorporate features thatminimize the possibility of an engine fire. It isessential, however, that if a failure does take placeand results in a fire, there is provision for theimmediate detection and rapid extinction of the fire,and for the prevention of it spreading. The detectionand extinguishing systems must add as little weightto the installation as possible.

PREVENTION OF ENGINE FIRE IGNITION

2. An engine/powerplant is designed to ensure thatthe prevention of engine fire ignition is achieved asfar as possible. In most instances a dual failure isnecessary before a fire can occur.

3. Most of the potential sources of flammable fluidsare isolated from the 'hot end' of the engine. Externalfuel and oil system components and their associatedpipes are usually located around the compressorcasings, in a 'cool' zone, and are separated by a

fireproof bulkhead from the combustion, turbine andjet pipe area, or 'hot' zone. The zones may beventilated, as described in para 8, to prevent theaccumulation of flammable vapours.

4. All pipes that carry fuel, oil or hydraulic fluid, aremade fire resistant/proof to comply with fireregulations, and all electrical components andconnections are made explosion-proof. Sparkingcaused by discharge of static electricity is preventedby bonding all aircraft and engine components. Thisgives electrical continuity between all thecomponents and makes them incapable of ignitingflammable vapour.

5. On some engines, tubes carrying flammablefluids in 'hot areas' of the engine are constructed witha double skin. Should a fracture of the main fluidcarrying tube occur the outer skin will contain anyleakage, so preventing any possible fire ignition.

6. The power plant cowlings are provided with anadequate drainage system to remove flammablefluids from the nacelle, bay, or pod, and all sealleakages from components are drained overboard ata position such that fluid cannot re-enter the pod andcreate a fire hazard.

7. Spontaneous ignition can be minimized onaircraft flying at high Mach numbers by ductingboundary layer bleed air around the engine.

153

Administrator
文本框
绪言 1.所有燃气涡轮发动机及其相关的安装系统均具有将发动机起火的可能性减至最小的特性。然而关键是一旦发生了故障且引起火灾,应有立即探测起火、迅速灭火和防止火灾蔓延的措施。探测和灭火系统必须尽量轻便,以减轻对发动机装置所增加的重量。
Administrator
文本框
第十四章 防火
Administrator
文本框
火警探测
Administrator
文本框
绪言
Administrator
文本框
发动机起火的防范措施
Administrator
文本框
外部冷却和通风
Administrator
文本框
发动机过热探测
Administrator
文本框
火灾包容
Administrator
文本框
灭火
Administrator
文本框
发动机起火的防范措施 2.发动机/动力装置在设计上确保尽可能地实现防止发动机起火。在大多数情况下采用的是必须双重失效然后才会失火。
Administrator
文本框
3.大部分存在着潜在火源的可燃液体均与发动机的“热端”相隔离。外部燃油和滑油系统的附件及导管通常分布在压气机机匣周围,即“冷”区内,并且通过防火隔板与燃烧室、涡轮、喷管区即“热”区相隔离。这些区域可通风,如第8段所述,以防止可燃蒸汽蓄积。
Page 162: Rolls royce jet engine

However, if ignition should occur, this high velocity airstream may have to be shut off, otherwise it wouldincrease the flame intensity and reduce the effective-ness of the extinguishing system by rapid dispersalof the extinguishant.

External cooling and ventilation8. The engine bay or pod is usually cooled andventilated by atmospheric air being passed aroundthe engine and then vented overboard (fig. 14-1).Convection cooling during ground running may beprovided by using an internal cooling outlet vent asan ejector system. An important function of theairflow is to purge any flammable vapours from theengine compartment. By keeping the airflow minimal,the power plant drag is minimized and, as therequired quantity of fire extinguishant is in proportionto the zonal airflow, any fire outbreak would be of lowintensity.

9. On some engines a fireproof bulkhead is alsoprovided to separate the 'cool' area or zone of theengine, which contains the fuel, oil, hydraulic andelectrical systems, from the 'hot' area surroundingthe combustion, turbine and exhaust sections of theengine. Differential pressures can be created in thetwo zones by calibration of the inlet and outletapertures to prevent the spread of fire from the hotzone.

10. Fig. 14-2 shows a more complex cooling andventilation system used on a turbo-fan engine. Air isinduced from the intake duct and also delivered fromthe fan to provide multi-zone cooling, each zonehaving its own calibrated cooling flow.

FIRE DETECTION

11. The rapid detection of a fire is essential tominimize the fire period before engine shut-down drilland release of extinguishant is effected. It is alsoextremely important that a fire detection system willnot give a false fire warning resulting from shortcircuiting caused by chafing or the ingress ofmoisture in the case of electrically operated systemsand chafes of the capillary resulting in loss of thecontained gas in the case of the gas filled continuouselement sensing type,

12. A detection system may consist of a number ofstrategically located detector units, or be of thecontinuous element (gas filled or electrical) sensingtype that can be shaped and attached to pre-formedtubes. The sensing element can be routed acrossoutlet orifices, such as a zone extractor ventilationduct, to give early detection of a fire (fig. 14-3).

13. In the case of electrical systems the presence ofa fire is signalled by a change in the electrical char-acteristics of the detector circuit, according to thetype of detector, be it thermistor, thermocouple orelectrical continuous element. In these cases thechange in temperature creates the signal which,through an amplifier, operates the warning indicator.

14. Both the thermocouple and thermistor detectorshave properties making them ideally suited to thisapplication. The thermocouple comprises twodissimilar metals which are joined together to formtwo junctions. As the temperature difference betweenthe two junctions increases an E.M.F. is produced inthe circuit and it is this E.M.F. that triggers the fire

Fire protection

154

Fig. 14-1 A typical cooling and ventilation system.

Administrator
文本框
4.所有的燃油、滑油或液压油的导管均用耐火/防火材料制成并符合防火规定要求,所有的电气附件及连接件均为防爆产品。静电放电引起的火花通过所有的飞机和发动机附件接地来防止。这使所有的附件之间无电位差,使它们不能点燃可燃蒸汽。 5.在某些发动机上,发动机“热区”中输送可燃液体的管子是双层结构的。如果液体的主管发生破裂。管子的外层将容纳任何泄漏的液体,从而防止任何可能发生的起火。
Administrator
文本框
6.动力装置整流罩设有适当的漏油系统,以排泄短舱、机舱或吊舱中的可燃液体。所有从各附件的密封件处漏出的液体均从一个不会使这些液体重返吊舱并引起火灾的地方排出机外。 7.通过导引发动机周围的外界层放气,可将在高马赫数下飞行的飞机的自燃起火减至最少。但是如果一旦发生起火情况,则必须切断这一高速空气流,否则由于灭火剂被快速吹散,它可能会组长火势,并且降低灭火系统的有效性。 外部冷却和通风 8.发动机机舱或吊舱一般由流经发动机四周的大气中的空气进行冷却和通风,然后排出机外(图14-1)。地面试车时由喷射系统利用一个内部冷却空气的出气口作为引射系统来提供对流冷却。这一气流的重要功能是吹除发动机舱中的可燃蒸汽。通过保持最小的空气流量,则可将动力装置的阻力减至最小。由于所需的灭火剂剂量与该区域的空气流量成正比,所以失火的火力将是较弱的。
Administrator
文本框
防火隔板
Administrator
文本框
减压门
Administrator
文本框
图14-1 一种典型的冷却和通风系统
Administrator
文本框
9.在一些发动机上还装有防火隔板以将装有燃油、滑油、液压和电气系统的发动机“冷”区与发动机燃烧室、涡轮和排气段周围的“热”区分隔开来。通过校准入口和出口孔径可在两个区域内产生压差,以防止火从热区蔓延出来。 10.图14-2表明的是涡轮风扇发动机上使用的较复杂的冷却和通风系统。空气冲进气道引入,也从风扇流出以提供多区域冷却,每一区域均拥有各自经过校准的冷却气流。
Administrator
文本框
火警探测
Administrator
文本框
11.在发动机停车打开灭火瓶并释放灭火剂之前,迅速探测出着火对尽量缩短着火时间是十分关键的。特别重要的是火警探测系统不要给出假警报,假警报通常是由于电气工作系统受摩擦或湿气侵入引起短路所致,或是在使用充满气体的连续测温感应头时,它的毛细管擦伤引起管内气体损失而造成的。
Page 163: Rolls royce jet engine

warning displays. The thermistor consists of a semi-conductor material whose resistance changes as

temperature increases, with a corresponding changein the current flowing in the circuit. It is this change in

Fire protection

155

Fig. 14-2 Cooling and ventilation - turbo-fan engine.

Administrator
文本框
12.探测系统可包括许多位于关键部位的探测器装置,或是探测型连续元件(充满气体的或电气的),这种元件可以做成一定形状并且连接在预先形成的管子上。探测元件可穿过排气孔布置,例如区域抽气通风管,以便及早探测出起火(图14-3)。 13.对于电器系统,起火是通过探测器线路的电气特性变化来感受,根据探测器的类型,它可是热敏电阻、热电偶或电气连续元件。在这些情况下,温度的变化产生信号,信号通过放大器启动报警指示器。
Administrator
文本框
14.无论是热敏电阻还是热电偶探测器均具有十分适合这种应用的特性。热电偶含有两种不同的金属,它们连接在一起形成两个接点。当两个接点间的温差增大时,线路中产生一电动势,这一电动势触发发火警显示器。热敏电阻含有一种半导体材料,这种材料的电阻随温度的增加而变化,且使线路中的电流产生相应的变化。正是这种电流的变化启动报警指示器。热敏电阻可用作一种单点探测器或一种连续元件传感器。
Administrator
文本框
区域2流经不密封 整流罩的空气流
Administrator
文本框
图14-2 涡轮风扇发动机的冷却与通风
Administrator
文本框
挂架分流嚣整流罩
Administrator
文本框
区域3进气槽
Administrator
文本框
区域1 空气进口
Administrator
文本框
区域3进气槽
Administrator
文本框
径向传动整流罩
Administrator
文本框
前防火壁
Administrator
文本框
区域1空气出气口
Administrator
标注
区域3空气出气口
Administrator
文本框
减压门
Administrator
文本框
后防火壁
Administrator
文本框
涡轮机匣冷却总管
Administrator
文本框
防火 区域1 区域2 区域3 通风/冷却空气
Administrator
文本框
15.另一种连续元件传感器具有电容的性质,它有一根管子,管内装有绝缘材料,并有一导体穿中心而过。电压差施加在管子和中心导体之间。当温度增加时,绝缘材料的性能变化,电容值也产生相应的变化,这种电容值得变化就作为火警显示出来。
Administrator
文本框
16.充气探测器包括一充满气体吸收材料的不锈钢管,当起火或出现过热时,温度升高并导致探测回路核心向密封管排放已吸收的活性气体,使压力迅速增加。这一压力增加由探测器报警开关来探测。如果探测回路受损并引起压缩气体损失,综合开关将指示出相应的发动机出现探测回路故障。警告灯和警铃给出起火报警。
Page 164: Rolls royce jet engine

the current that operates the warning indicators. Athermistor may be used as a single point detector oras a continuous element sensor.

15. Another form of continuous element sensortakes the form of a capacitor consisting of a tubecontaining a dielectric material with a conductorrunning through the centre. A voltage difference isapplied between the tube and the centre conductor.As the temperature increases then the properties ofthe dielectric change with a corresponding change inthe value of capacitance. This change of capacitanceis displayed as a fire warning.

16. The gas filled detector consists of stainlesssteel tubing filled with gas absorbent material and inthe event of a fire or overheat condition thetemperature rise will cause the core of the sensingloop to expel the absorbed active gas into the sealedtube causing a rapid increase in pressure. This buildup of pressure is sensed by the detector alarmswitch. Should the sensing loop become damagedcausing a loss of the pressurized gas, an integrityswitch will indicate a detection loop fault on theappropriate engine. Fire indication is given by awarning light and bell.

17. At high Mach numbers, the considerably highertemperature levels may be such as to render thethermistor or thermocouple fire detection systemunsatisfactory. Thermal detectors that sense either atemperature rise, or a rate of temperature rise, maytherefore prove most suitable.

18. Alternatives to the above types are surveillancedetectors that respond to light radiation from a fire.These may be made so sensitive that they respondonly to the ultra-violet and infra-red rays emitted froma kerosine fire.

FIRE CONTAINMENT

19. An engine fire must be contained within thepower plant and not be allowed to spread to otherparts of the aircraft. The cowlings that surround theengine are usually made of aluminium alloys, whichwould be unable to contain a fire when the aircraft isstatic. During flight, however, the airflow around thecowlings provides sufficient cooling to render themfireproof. Fireproof bulkheads and any cowlings thatare not affected by a cooling airflow, and sections ofcowlings around certain outlets that may act as'flame-holders', are usually manufactured from steelor titanium.

Fire protection

156

Fig. 14-3 A continuous element fire detecting system.

Administrator
文本框
17.在高马赫数下,急剧升高的温度可能会使热敏电阻或热电偶火灾探测系统工作不良。因此探测器升高或者温升率探测器被证明是最适用的。 18.上述各类探测器的替代物是监视探测器。它们对起火的光辐射产生感应。它们能被制造成敏感度非常之高,以致于仅对煤油起火辐射出的紫外线和红外线产生感应。
Administrator
文本框
区域抽气机通风管
Administrator
文本框
至飞机电气系统
Administrator
文本框
连续元件火警探测器
Administrator
文本框
图14-3 一种连续元件火灾探测系统
Administrator
文本框
火灾包容 19.发动机起火必须要包容在动力装置内,不能让火蔓延至飞机的其它部分。环绕发动机的整流罩通常是由铝合金制成的,所以当飞机处于静态时,它包不住火。但是在飞行中,整流罩周围的气流提供了充分的冷却空气,使得它们能防火。不受冷却气流影响的防火隔板和整流罩,以及可能起火烧着的某些出口周围的整流罩段,通常是用钢或钛材料制成的。
Administrator
文本框
灭火 20.在灭火系统工作之前,发动机必须停车,以减少可燃流体和空气被排放至着火区。任何活门,例如控制可燃流体流动的低压燃油开关必须设置在“热”区之外,以防因火灾受损而失去功效。 21.当火被扑灭之后,不应试图再起动发动机,因为这样做可能会使原来引起着火的液体泄漏和起火源再次出现和复燃。而且,灭火系统也可能已被耗尽。
Page 165: Rolls royce jet engine

FIRE EXTINGUISHING

20. Before a fire extinguishing system is operated,the engine must be stopped to reduce the dischargeof flammable fluids and air into the fire area. Anyvalves, such as the low pressure fuel cock, thatcontrol the flow of flammable fluid must be situatedoutside the 'hot' zone to prevent fire damagerendering them inoperative.

21. After a fire has been extinguished, no attemptmust be made to start the engine again as this wouldprobably re-establish the fluid leak and the ignitionsource that were the original causes of the fire.Furthermore, the extinguishing system may beexhausted.

22. The extinguishant that is used for engine fires isusually one of the Freon compounds. Pressurizedcontainers are provided for the extinguishant andthese are located outside the fire risk zone. When therelevant electrical circuit is manually operated, the

extinguishant is discharged from the containersthrough a series of perforated spray pipes or nozzlesinto the fire (fig. 14-4). The discharge must besufficient to give a predetermined concentration ofextinguishant for a period that may vary between 0.5seconds and 2 seconds. The system is generally onethat enables two separate discharges to be made.

ENGINE OVERHEAT DETECTION

23. Turbine overheat does not constitute a seriousfire risk. Detection of an overheat condition, however,is essential to enable the pilot to stop the enginebefore mechanical or material damage results.

24. A warning system of a similar type to the firedetection system, or thermocouples suitablypositioned in the cooling airflow, may be used todetect excessive temperatures. Thermal switchespositioned in the engine overboard air vents, such asthe cooling air outlets, may also be included to givean additional warning.

Fire protection

157

Fig. 14-4 A typical fire extinguishing system.

Administrator
文本框
22.用于扑灭发动机着火的灭火剂一般是一种氟氯烷(氟利昂)化合物。灭火剂装在增压灭火瓶内且放置在着火危险区之外。当人工操作有关电气线路时,灭火剂从灭火瓶经过系列多孔喷射管或喷嘴喷射到火上(图14-4)。喷射必须足以供应预定浓度的灭火剂,持续时间0.5秒至2秒。通常这种系统是一个可单独喷洒两次的灭火系统。
Administrator
文本框
发动机过热探测 23.涡轮过热不会构成严重的起火危险。但是,探测出过热情况是很重要的,这样可使驾驶员在出现机械或材料损害之前将发动机停车。 24.与火警探测系统类似的警告系统或将热电偶置于冷却气流中的适当部位,可用来探测超温情况。警告系统也可包括位于发动机机外通风孔,如冷却通风孔处的热控开关,以提供辅卧警告。
Administrator
文本框
图14-4 一种典型的灭火系统
Administrator
文本框
多路灭火喷管
Administrator
文本框
防火壁和防火封严框
Administrator
文本框
防火隔板
Administrator
文本框
灭火瓶工作指示器
Administrator
文本框
卸压指示器
Administrator
文本框
灭火瓶控制手柄
Administrator
文本框
第一次喷射 第二改喷射
Administrator
文本框
灭火瓶
Administrator
文本框
火药点火器
Page 166: Rolls royce jet engine

Rolls - Royce Gem 2

Armstrong Siddeley Python

The Python was developed from the ASXaxial-flow turbo-jet which first ran in April 1943and was producing 2800 lb thrust by 1944.With the addition of a propeller gearbox theengine produced 3600 shp plus 1100 lb thrustand was known as the ASP. Renamed thePython it entered service as the power plantfor the Westland Wyvern S4 turbo-propfighter.

Administrator
文本框
“巨蟒”(Pyghon)发动机是从ASX轴流涡轮喷气发动机发展而来的,它于1943年4月进行了首次试车,1944年其 推力达2800磅,增设螺旋桨减速器后,该发动机产生了3600轴马力和1100磅推力,被称之为ASP。重新命名为“巨蟒”后,它投入使用,用作斯特兰公司的“飞龙”(Wyvern)S4涡轮螺桨战斗机的动力装置。
Administrator
文本框
罗尔斯-罗伊斯公司 “宝石”(Gem)2发动机
Administrator
文本框
阿姆斯特朗·西德利公司 “巨蟒”发动机
Page 167: Rolls royce jet engine

15: Thrust reversal

Contents Page

Introduction 159Principles of operation 160

Clamshell door systemBucket target systemCold stream reverser systemTurbo-propeller reverse pitch system

Construction and materials 166

INTRODUCTION

1. Modern aircraft brakes are very efficient but onwet, icy or snow covered runways this efficiency maybe reduced by the loss of adhesion between theaircraft tyre and the runway thus creating a need foran additional method of bringing the aircraft to restwithin the required distance.

2. A simple and effective way to reduce the aircraftlanding run on both dry and slippery runways is toreverse the direction of the exhaust gas stream, thus

using engine power as a deceleration force. Thrustreversal has been used to reduce airspeed in flightbut it is not commonly used on modern aircraft. Thedifference in landing distances between an aircraftwithout reverse thrust and one using reverse thrust isillustrated in fig. 15-1.

3. On high by-pass ratio (fan) engines, reversethrust action is achieved by reversing the fan (coldstream) airflow. It is not necessary to reverse theexhaust gas flow (hot stream) as the majority of theengine thrust is derived from the fan.

159

Administrator
文本框
绪言 1.现代飞机的刹车是十分有效的,但在潮湿、结冰或被雪覆盖的跑道上,这种有效性则可能会因飞机轮胎和跑道间的附着力损失而降低。因此需要另一种方法在规定的距离内将飞机停住。 2.缩短飞机在干燥和湿滑跑道上着陆滑跑距离的一个简单而有效的方法是将排气流反向,这就是利用发动机动力作为减速力。推力反向曾经被用来在飞行中降低空速,但在现代飞机上用得并不普遍。不用反推力与利用反推力的飞机着陆距离之差异示于图15-1。 3.在高涵道比(风扇)发动机上,反推力是通过将风扇(冷气流)气流反向而实现的。由于发动机大部分推力是由风扇产生的,所以没有必要将排气流(热气流)反向。
Administrator
文本框
目录 绪言 工作原理 哈壳形门系统 戽斗式盾牌系统 冷气流反推器系统 涡轮螺桨反桨系统 结构和材料
Administrator
文本框
第十五章 推力反向
Page 168: Rolls royce jet engine

4. On propeller-powered aircraft, reverse thrustaction is obtained by changing the pitch of thepropeller blades. This is usually achieved by a hydro-mechanical system, which changes the blade angleto give the braking action under the response of thepower or throttle lever in the aircraft.

5. Ideally, the gas should be directed in acompletely forward direction. It is not possible,however, to achieve this, mainly for aerodynamicreasons, and a discharge angle of approximately 45degrees is chosen. Therefore, the effective power inreverse thrust is proportionately less than the powerin forward thrust for the same throttle angle.

PRINCIPLES OF OPERATION

6. There are several methods of obtaining reversethrust on turbo-jet engines; three of these are shownin fig. 15-2 and explained in the followingparagraphs.

7. One method uses clamshell-type deflector doorsto reverse the exhaust gas stream and a seconduses a target system with external type doors to dothe same thing. The third method used on fanengines utilizes blocker doors to reverse the coldstream airflow.

8. Methods of reverse thrust selection and thesafety features incorporated in each systemdescribed are basically the same. A reverse thrustlever in the crew compartment is used to selectreverse thrust; the lever cannot be moved to thereverse thrust position unless the engine is runningat a low power setting, and the engine cannot beopened up to a high power setting if the reverser failsto move into the full reverse thrust position. Shouldthe operating pressure fall or fail, a mechanical lockholds the reverser in the forward thrust position; thislock cannot be removed until the pressure isrestored. Operation of the thrust reverser system isindicated in the crew compartment by a series oflights.

Clamshell door system9. The clamshell door system is a pneumaticallyoperated system, as shown in detail in fig. 15-3.Normal engine operation is not affected by thesystem, because the ducts through which theexhaust gases are deflected remain closed by thedoors until reverse thrust is selected by the pilot.

10. On the selection of reverse thrust, the doorsrotate to uncover the ducts and close the normal gasstream exit. Cascade vanes then direct the gasstream in a forward direction so that the jet thrustopposes the aircraft motion.

Thrust reversal

160

Fig. 15-1 Comparative landing runs with and without thrust reversal.

Administrator
文本框
以103海里/小时的真地速接地
Administrator
文本框
4.在螺旋桨作动力的飞机上,反向推力通过改变螺旋桨桨叶的角度来实现。这通常利用液压机械系统响应飞机功率杆即油门杆的操纵来改变桨叶角度进行刹车。 5.最理想的情况是将燃气引导至完全向前。但这是不可能实现的,主要是气动力方面的原因,排气角度一般选为45度左右。因此,在油门杆角度相同的情况下,有效的反推力相应地要比正推力小。
Administrator
文本框
工作原理 6.在涡轮喷气发动机上实现反推力的方法有若干种。图15-2显示出其中的三种。这三种方法将在下面的几段中陈述。 7.一种方法是用哈壳形折流门将排气流反向,第二种方法是用一种带外门的盾牌系统起类似功效。第三种方法用于涡扇发动机上,它是用阻流门将冷空气流反向。
Administrator
文本框
8.所描述的每一系统中采用的反推力选用方法和安全特性基本上是一样的。驾驶舱中的反推力手柄用来选择反推力;只有当发动机以低功率状态运转时,才能将这一手柄推至反推力位置,如果反推力装置未能推至全反推力位置,则发动机也达不到大功率状态。如果工作压力降低或出现问题,机械锁将把反推力装置锁定在正推力位置;只有当压力恢复时,这一锁定才会解除。反推力系统的工作情况通过机舱中一系列的指示灯来反映。
Administrator
文本框
图15-1 用与不用推力反向的着陆滑跑的比较
Administrator
文本框
距离 (英尺)
Administrator
标注
反推力装置工作
Administrator
标注
只用刹车
Administrator
文本框
工作条件 国际标准大气 海平面湿/结冰跑道 着陆重量-60000磅
Administrator
文本框
哈壳形门系统 9.哈壳形门系统为气压操纵系统,详见图15-3。发动机的正常工作将不受该系统影响,因为在驾驶员选择反推力之前,用以偏转排气流的管道是被这些门堵死的。
Page 169: Rolls royce jet engine

Thrust reversal

161

Fig. 15-2 Methods of thrust reversal.

Administrator
文本框
10.在选择反推力时,哈壳形门旋转打开排气管并关闭燃气流的正常出口。叶栅的叶片将燃气流导引至向前的反向,所以喷气推力和飞机的运动相反。
Administrator
文本框
哈壳形门在正推力位置
Administrator
文本框
哈壳形门在反摧力位置
Administrator
文本框
作动筒伸出和戽斗式门在正推力位置
Administrator
文本框
作动筒和戽斗式门在反推力位置
Administrator
文本框
冷气流反推力装置在正推力位置
Administrator
文本框
冷气流反推力装置在反推力位置
Administrator
文本框
图15-2 几种推力反向的方法
Page 170: Rolls royce jet engine

Thrust reversal

162

Fig. 15-3 A typical thrust reverser system using clamshell doors.

Administrator
文本框
反推力选择手柄
Administrator
文本框
气压作动筒
Administrator
文本框
叶栅叶片
Administrator
标注
油门杆
Administrator
标注
发动机油门
Administrator
文本框
哈壳形门
Administrator
标注
闭锁机构 (锁定)
Administrator
文本框
接地
Administrator
文本框
两个手柄位于低推力值
Administrator
文本框
控制阀
Administrator
标注
方向气流出口管
Administrator
文本框
工作空气压力 通气 燃气流
Administrator
标注
闭锁机构 (未锁定)
Administrator
文本框
全刹车
Administrator
文本框
反推力选择手柄 位于大推力值
Administrator
文本框
图15-3 使用哈壳形门的一种典型反推力系统
Page 171: Rolls royce jet engine

Thrust reversal

163

Fig. 15-4 A typical fan cold stream thrust reversal system.

Administrator
文本框
反推力选择手柄 (正推力)
Administrator
文本框
可移动的整流罩
Administrator
标注
齿轮盒
Administrator
文本框
叶栅叶片
Administrator
文本框
堵塞门
Administrator
文本框
高压工作空气 冷空气流
Administrator
文本框
锁定指示器 照明电门
Administrator
标注
方向和速度 控制活门
Administrator
文本框
通气孔
Administrator
文本框
空气马达
Administrator
标注
油门杆
Administrator
文本框
柔性传动
Administrator
文本框
减速器
Administrator
文本框
反推力选择手柄 (反推力)
Administrator
文本框
螺旋千斤顶
Administrator
文本框
正推力位置
Administrator
文本框
锁定和顺序活门
Administrator
标注
选择活门
Administrator
文本框
排气
Administrator
标注
空气马达装置
Administrator
文本框
调压器和断流活门
Administrator
文本框
堵塞门(折叠式)
Administrator
文本框
反推力位置
Administrator
文本框
燃油调节器
Administrator
文本框
反馈齿轮盒
Administrator
文本框
图15-4 一种典型的风扇冷气流反推力系统
Administrator
文本框
11.哈壳形门是通过杠杆由气动作作动筒操纵,这样来为正推力位置时的门施加最大载荷。它保证在门边缘处有效密封,从而防止燃气泄漏。门的轴承和操纵传动机构在温度高达600℃时仍可在无润滑情况下工作。
Page 172: Rolls royce jet engine

11. The clamshell doors are operated by pneumaticrams through levers that give the maximum load tothe doors in the forward thrust position; this ensureseffective sealing at the door edges, so preventinggas leakage. The door bearings and operatinglinkage operate without lubrication at temperatures ofup to 600 deg. C.

Bucket target system12. The bucket target system is hydraulicallyactuated and uses bucket-type doors to reverse thehot gas stream. The thrust reverser doors areactuated by means of a conventional pushrodsystem. A single hydraulic powered actuator isconnected to a drive idler, actuating the doorsthrough a pair of pushrods (one for each door).

13. The reverser doors are kept in synchronizationthrough the drive idler. The hydraulic actuator incor-porates a mechanical lock in the stowed (actuatorextended) position.

14. In the forward thrust mode (stowed) the thrustreverser doors form the convergent-divergent finalnozzle for the engine.

Cold stream reverser system15. The cold stream reverser system (fig. 15-4) canbe actuated by an air motor, the output of which isconverted to mechanical movement by a series offlexible drives, gearboxes and screwjacks, or by asystem incorporating hydraulic rams.

16. When the engine is operating in forward thrust,the cold stream final nozzle is 'open' because thecascade vanes are internally covered by the blockerdoors (flaps) and externally by the movable(translating) cowl; the latter item also serves toreduce drag.

17. On selection of reverse thrust, the actuationsystem moves the translating cowl rearwards and atthe same time folds the blocker doors to blank off thecold stream final nozzle, thus diverting the airflowthrough the cascade vanes.

Turbo-propeller reverse pitch system18. As mentioned in para. A, reverse thrust action isaffected on turbo-propeller powered aircraft bychanging the pitch of the propeller blades through ahydro-mechanical pitch control system (fig. 15-5).Movement of the throttle or power control lever

Thrust reversal

164

Fig. 15-5 A propeller pitch control system.

Administrator
文本框
戽斗式盾牌系统 12.戽斗式盾牌系统为液压传动系统,利用戽斗式门将热燃气流反向。推力反向装置门通过常规推杆系统来传动。一个液压作动筒与一个传动中介轮相连接,通过一对推杆来操纵门(每个门上有一根推杆)。
Administrator
文本框
13.反推力门通过传动中介轮保持同步。液压作动筒在反推力门收起(作动筒伸出)位置上有机械锁。 14.在正推力(收起)方式下,反推力门形成发动机的收敛-扩散形尾喷口。 冷气流反推器系统 15.冷气流反推器系统(图15-4)可用空气马达赖操纵,空气马达的输出通过一系列的柔性传动装置、齿轮盒和螺旋千斤顶或一个采用液压作动筒的系统转换成机械运动。 16.当发动机在正推力运转时,冷气流尾喷管呈“打开”状,因为阻流门(阻力板)从里面把叶栅的叶片盖住,外面被可移动的(平移的)整流罩盖住。后者还起降低阻力的作用。 17.在选择反向推力时,作动系统驱动平移整流罩向后,同时收起阻流门以堵住冷气流尾喷口,将气流转向从叶栅的叶片排出。
Administrator
文本框
图15-5 一种螺旋桨桨距控制系统
Administrator
文本框
油门杆
Administrator
标注
螺旋桨在反桨距
Administrator
文本框
发动机 转速信号
Administrator
标注
油门杆活门
Administrator
文本框
燃油供油
Administrator
文本框
控制用电磁阀
Administrator
文本框
螺旋桨机构
Administrator
文本框
桨距控制装置
Administrator
文本框
滑油供应
Administrator
标注
喷油嘴
Page 173: Rolls royce jet engine

Thrust reversal

165

Fig. 15-6 Hot stream thrust reverser installations.

Administrator
文本框
图15-6 热气流推力反向装置
Administrator
文本框
涡轮螺桨反桨系统 正如第4段所述,通过液压机械式桨叶角度控制系统(图15-5)来改变螺旋桨桨叶的角度产生反推力对以涡轮螺桨为动力的飞机产生影响。油门杆即功率控制杆把滑油从控制系统引导致螺旋桨机构,将桨叶角度减少到零,,再到负(反)桨距。油门杆移动时,通过与桨叶角度控制装置相连接的油门杆活门来调整向发动机的燃油供给,使发动机功率和桨叶角度相协调,以获得所学的反推力值。反推力也可用以操纵已停下的涡轮螺桨飞机使之后退。
Administrator
文本框
19.在螺旋桨控制系统中已考虑到若干在螺旋桨出现故障时有用的安全因素,这些装置通常是液压机械式桨距锁定装置或止动装置。
Page 174: Rolls royce jet engine

directs oil from the control system to the propellermechanism to reduce the blade angle to zero, andthen through to negative (reverse) pitch. Duringthrottle lever movement, the fuel to the engine istrimmed by the throttle valve, which is interconnect-ed to the pitch control unit, so that engine power andblade angle are co-ordinated to obtain the desiredamount of reverse thrust. Reverse thrust action mayalso be used to manoeuvre a turbo-propeller aircraftbackwards after it has been brought to rest.

19. Several safety factors are incorporated in thepropeller control system for use in the event ofpropeller malfunction, and these devices are usuallyhydro-mechanical pitch locking devices or stops.

CONSTRUCTION AND MATERIALS

20. The clamshell and bucket target doors (fig. 15-6) described in paras. 9 and 12 form part of the jet

pipe. The reverser casing is connected to the aircraftstructure or directly to the engine. The casingsupports the two reverser doors, the operatingmechanism and, in the case of the clamshell doorsystem, the outlet ducts that contain the cascadevanes. The angle and area of the gas stream arecontrolled by the number of vanes in each outletduct.

21. The clamshell and bucket target doors lie flushwith the casing during forward thrust operation andare hinged along the centre line of the jet pipe. Theyare, therefore, in line with the main gas load and thisensures that the minimum force is required to movethe doors.

22. Both the clamshell door system and the buckettarget system are subjected to high temperaturesand to high gas loads. The components of bothsystems, especially the doors, are therefore

Thrust reversal

166

Fig. 15-7 A cold stream thrust reverser installation.

Administrator
文本框
结构和材料 20.第9和第12段中介绍的哈壳形门和戽斗式盾牌门(图15-6)形成喷管的一部分。反推器的机匣与飞机机构连接或直接与发动机连接。此机匣支撑着两个反推器的门和操纵机构,在哈壳形门系统中,还支持装有叶栅叶片的排气管。燃气流的角度和面积是通过每一排气管中的叶片数量来控制的。
Administrator
文本框
21.哈壳形门和戽斗式盾牌门在正推力工作时与机匣呈对接状态,它们沿喷管中心线铰接。因此,它们与主燃气载荷的反向是一致的,这就使得只需要最小的力即可移动这些门。
Administrator
文本框
图15-7 一种冷气流反推器装置
Page 175: Rolls royce jet engine

constructed from heat-resisting materials and are ofparticularly robust construction.

23. The cold stream thrust reverser casing (fig. 15-7) is fitted between the low pressure compressorcasing and the cold stream final nozzle. Cascadevane assemblies are arranged in segments aroundthe circumference of the thrust reverser casing.Blocker doors are internally mounted and are

connected by linkages to the external movable(translating) cowl, which is mounted on rollers andtracks. Because the thrust reverser is not subjectedto high temperatures, the casing, blocker doors andcowl are constructed mainly of aluminium alloys orcomposite materials. The cowl is double-skinned,with the space between the skins containing noiseabsorbent material (Part 19).

Thrust reversal

167

Administrator
文本框
22.无论是哈壳形门系统还是戽斗式盾牌系统均承受高温和高燃气载荷。因此,这两个系统的部件,尤其是门,必须用耐热材料和特别坚固的结构制成。
Administrator
文本框
23.冷气流反推器机匣(图15-7)装在低压压气机机匣和冷气流尾喷口之间。叶栅叶片组合件沿反推器机匣的圆周呈扇形排列。阻流门安装在里面,通过连杆与外部可移动的(平移)整流罩相连接,可移动的整流罩装在一些滚棒和轨道上。因为反推器不承受高温,所以机匣、阻流式门和可移动整流罩主要是由铝合金或复合材料制成。可移动整流罩为双层蒙皮结构,蒙皮之间包含有吸音材料(见第19章)。
Page 176: Rolls royce jet engine

Turbo-Union RB199

Metrovick F2/4 Beryl

Development of the F2, the first British axialflow turbo-jet, began in f 940. After initial flighttrials in the tail of an Avro Lancaster, two F2swere installed in a Gloster Meteor and firstflew on 13 November 1943. After earlyproblems the F2/4 Beryl was developed whichgave up to 4000 lb thrust and was used topower the Saunders Roe SR/A1 flying boatfighter.

Administrator
文本框
涡轮联合公司 RB199发动机
Administrator
文本框
梅特罗维克公司 F2/4“绿玉”发动机
Administrator
文本框
英国的第一种轴流式涡轮喷气发动机,研制始于1940年。装在阿弗罗公司的“兰开斯特”(Lancaster)飞机的尾部。开始飞行试验后,在格洛斯特公司的飞机上安装了两台F2于1943年11月13日进行了首次飞行。在早期出现的问题后,发展了F2/4绿玉“(Beryl),推力达到4000磅,并且作为桑德斯-罗公司(Saunders Roe)的SR/A1飞艇战斗机。
Page 177: Rolls royce jet engine

16: Afterburning

Contents Page

Introduction 169Operation of afterburning 170Construction 173

Burners Jet pipe Propelling nozzle

Control system 173Thrust increase 175Fuel consumption 178

INTRODUCTION

1. Afterburning (or reheat) is a method ofaugmenting the basic thrust of an engine to improvethe aircraft take-off, climb and (for military aircraft)combat performance. The increased power could beobtained by the use of a larger engine, but as thiswould increase the weight, frontal area and overallfuel consumption, afterburning provides the bestmethod of thrust augmentation for short periods.

2. Afterburning consists of the introduction andburning of fuel between the engine turbine and the jetpipe propelling nozzle, utilizing the unburned oxygenin the exhaust gas to support combustion (fig. 16-1).The resultant increase in the temperature of theexhaust gas gives an increased velocity of the jetleaving the propelling nozzle and therefore increasesthe engine thrust.

3. As the temperature of the afterburner flame canbe in excess of 1,700 deg. C., the burners are usuallyarranged so that the flame is concentrated aroundthe axis of the jet pipe. This allows a proportion of theturbine discharge gas to flow along the wall of the jetpipe and thus maintain the wall temperature at a safevalue.

169

Administrator
文本框
绪言 1.加力燃烧(或复燃)是增加发动机基本推力以提高飞机的起飞、爬升及军用飞机的作战性能的一种方法。可以使用较大的发动机以获得推力增加。但是因为这样做会增加飞机的重量,迎风面积及总的油耗。加力燃烧是在短时间内增加推力的最好方法。 2.加力燃烧包括在发动机涡轮和喷管的推进喷口之间喷油和燃烧,这样可利用排气流中的未燃烧的氧气来支持燃烧(图16-1)。结果,排气温度增加使离开推进喷管的喷气速度增加,因此也增加了发动机的推力。
Administrator
文本框
第十六章 加力燃烧
Administrator
文本框
喷嘴 喷管 推进喷管
Administrator
文本框
3.由于加力燃烧室的火焰温度可大于l700℃,通常便把燃油喷嘴安排得使火焰集中在喷管中心线的周围。这就允许一部分涡轮排气沿着喷管壁流动,从而使喷管壁面的温度保持在一个安全的数值。
Administrator
文本框
绪言 加力燃烧的工作
Administrator
文本框
结构
Administrator
文本框
控制系统 推力的增加 燃油消耗
Page 178: Rolls royce jet engine

4. The area of the afterburning jet pipe is larger thana normal jet pipe would be for the same engine, toobtain a reduced velocity gas stream. To provide foroperation under all conditions, an afterburning jetpipe is fitted with either a two-position or a variable-area propelling nozzle (fig. 16-2). The nozzle isclosed during non-afterburning operation, but whenafterburning is selected the gas temperatureincreases and the nozzle opens to give an exit areasuitable for the resultant increase in the volume ofthe gas stream. This prevents any increase inpressure occurring in the jet pipe which would affectthe functioning of the engine and enables afterburn-ing to be used over a wide range of engine speeds.

5. The thrust of an afterburning engine, withoutafterburning in operation, is slightly less than that ofa similar engine not fitted with afterburningequipment; this is due to the added restrictions in thejet pipe. The overall weight of the power plant is alsoincreased because of the heavier jet pipe and after-burning equipment.

6. Afterburning is achieved on low by-pass enginesby mixing the by-pass and turbine streams before theafterburner fuel injection and stabilizer system isreached so that the combustion takes place in the

mixed exhaust stream. An alternative method is toinject the fuel and stabilize the flame in the individualby-pass and turbine streams, burning the availablegases up to a common exit temperature at the finalnozzle. In this method, the fuel injection is scheduledseparately to the individual streams and it is normalto provide some form of interconnection between theflame stabilizers in the hot and cold streams to assistthe combustion processes in the cold by-pass air.

OPERATION OF AFTERBURNING

7. The gas stream from the engine turbine entersthe jet pipe at a velocity of 750 to 1,200 feet persecond, but as this velocity is far too high for a stableflame to be maintained, the flow is diffused before itenters the afterburner combustion zone, i.e. the flowvelocity is reduced and the pressure is increased.However, as the speed of burning kerosine at normalmixture ratios is only a few feet per second, any fuellit even in the diffused air stream would be blownaway. A form of flame stabilizer (vapour gutter) is,therefore, located downstream of the fuel burners toprovide a region in which turbulent eddies are formedto assist combustion and where the local gas velocityis further reduced to a figure at which flame stabi-lization occurs whilst combustion is in operation.

170

Fig. 16-1 Principle of afterburning

Administrator
文本框
外涵道空气流
Administrator
文本框
燃油
Administrator
文本框
冷气流
Administrator
文本框
喷口操纵套管
Administrator
标注
复燃燃气
Administrator
文本框
加力燃烧室
Administrator
文本框
喷管
Administrator
文本框
可调推进喷口
Administrator
文本框
4.对同一种发动机来说,加力燃烧的喷管面积要比正常喷管的面积大以获得速度减低了的气流。为了在各种情况下工作,加力燃烧的喷管装有一个双位或可变面积的喷口(图16-2)。喷口在非加力工作时是关小的,但当选择加力燃烧时,燃气温度增加,喷口打开,使出口面积适合燃气气流容积的增加。这样就避免了喷管压力的增加,喷管的压力增加会影响发动机的性能。这样还能使加力燃烧在发动机转速的广大范围内加以使用。
Administrator
文本框
5.加力燃烧的发动机的推力,在没有加力燃烧时,比没有装加力燃烧设备的类似发动机的推力稍微小一些;这是因为在喷管中增加了流体阻力。由于较重的喷管和加力燃烧设备,动力装置的总重量也增加了。
Administrator
文本框
6.在低涵道比发动机中实现加力燃烧是先将外涵气流和涡轮气流混合,然后喷入加力燃油,并到达稳定器系统,所以燃烧是在混合好的排气流中进行。另一种方法是分别在外涵道气流和涡轮气流中喷入燃油并稳定燃烧,使可用的燃气燃烧并在最后的喷口处达到共同的出口温度。采用这种方法,燃油按计划分别向每股气流喷注,而且,通常在热气流和冷气流中的火焰稳定器之间形成某种形式的相 接,以促进外涵道冷空气流中的燃烧过程。
Administrator
文本框
加力燃烧的工作 7.从发动机涡轮出来的燃气流以每秒750-1,200英尺的速度进入喷管。但是由于这种速度太高,无法维持稳定的火焰。所以在气流进入加力燃烧的燃烧区之前,先行扩压,也就是说降低气流速度和增加压力。然而,因为在正常的混合比状态下,燃烧...煤油速度只有每秒几英尺,所以即使在扩压的...气流中,任何点燃的燃油也会被吹灭。因此将火焰稳定器(蒸汽槽)设于燃油喷嘴的下游,提供了一个气流漩涡形成的区域以帮助燃烧,并且在此区域...地燃气速度进一步降低到燃烧在进行时火焰...能稳定。
Page 179: Rolls royce jet engine

171

Fig. 16-2 Examples of afterburning jet pipes and propelling nozzles.

Administrator
文本框
加力燃烧室喷管
Administrator
文本框
可移动的半圆式调节喷口
Administrator
文本框
半圆式调节喷口作动筒
Administrator
文本框
双位喷口
Administrator
文本框
喷口作动筒
Administrator
文本框
加力燃烧室喷管
Administrator
文本框
驱动套筒
Administrator
文本框
可变面积喷口
Administrator
文本框
互锁鱼鳞板
Administrator
文本框
图16-2 加力喷管与推进喷口举例
Page 180: Rolls royce jet engine

8. An atomized fuel spray is fed into the jet pipethrough a number of burners, which are so arrangedas to distribute the fuel evenly over the flame area.Combustion is then initiated by a catalytic igniter,which creates a flame as a result of the chemicalreaction of the fuel/air mixture being sprayed on to aplatinum-based element, by an igniter plug adjacentto the burner, or by a hot streak of flame thatoriginates in the engine combustion chamber (fig.

16-3): this latter method is known as 'hot-shot'ignition. Once combustion is initiated, the gastemperature increases and the expanding gasesaccelerate through the enlarged area propellingnozzle to provide the additional thrust.

9. In view of the high temperature of the gasesentering the jet pipe from the turbine, it might beassumed that the mixture would ignite spontaneous-ly. This is not so, for although cool flames form at

172

Fig. 16-3 Methods of afterburning ignition.

Administrator
文本框
8.雾化的燃油通过一些喷嘴射到喷管内,这些喷嘴的布局能使燃油均匀地分布在火焰区域。燃烧是靠催化剂点火器引发的,点火器产生的火焰是由于喷射在铂基元件上的燃油空气混合物的化学反应形成的;或利用喷嘴附近的点火电嘴或从发动机燃烧室内生成的火焰热流(图16-3)引燃而成;后一种方法被称之为“热射流”点火。一旦燃烧开始,燃气温度就会升高,燃气通过面积扩大的推进喷管膨胀加速以产生额外的推力。
Administrator
文本框
供应燃油
Administrator
文本框
点火装置
Administrator
文本框
点火器
Administrator
文本框
喷嘴
Administrator
文本框
点火器催化剂点火
Administrator
文本框
热射流装置
Administrator
文本框
火花塞点火
Administrator
文本框
燃烧室
Administrator
文本框
热射流点火
Administrator
文本框
图16-3 几种加力燃烧的点火方式
Administrator
文本框
9.由于燃气流冲涡轮进入喷管时的温度很高,或者人们设想混合物会自发点燃。实际上并非如此,因为尽管冷火焰可在700℃的温度时形成,但是燃烧在800℃一下是不可能进行的。即使在海平面时的发生自发点火的话,那么在大气压低的高空就不可能了。点燃燃烧的火花或火焰必须有相当大的强度才能使点火工作在很高的高空成功。
Administrator
文本框
10.为了使系统顺利的工作,需要有稳定的火焰,这种火焰在范围宽广的混合物浓度和燃气流量中均将能稳定地燃烧。这种混合物还必须能在所有的飞行条件下容易点燃,并且必须在极少压力损失的情况下维持燃烧。 结构 喷嘴 11.喷嘴系统由几个环形同心输油总管组成。总管用喷管内的支板支撑。燃油通过在支板中的供油管供到输油总管,然后通过燃油总管下游一侧的许多孔,把燃油喷射到几个火焰稳定器之间的火焰区。火焰稳定器为圆头的V型剖面环形圈,安装在燃油喷嘴的下游。另一种系统包括一个附加的分段输油总管,它安装在火焰稳定器中。如图16-4所示的典型的喷嘴和火焰稳定器便是以后一种系统为基础 的。
Administrator
文本框
喷管 12.加力燃烧的喷管是用耐热镍合金制作的,比一般的喷管需要更好的隔热能力,以防止燃烧的热量传到飞机结构上。喷管可以是双层结构,外层承担飞行载荷,内层承担热应力;在内与外层之间经常有冷却空气流过。还采取了容许膨胀和收缩的措施,和防止喷管连接处漏气的措施。
Page 181: Rolls royce jet engine

temperatures up to 700 deg. C., combustion will nottake place below 800 deg. C. If however, theconditions were such that spontaneous ignition couldbe effected at sea level, it is unlikely that it could beeffected at altitude where the atmospheric pressureis low. The spark or flame that initiates combustionmust be of such intensity that a light-up can beobtained at considerable altitudes.

10. For smooth functioning of the system, a stableflame that will burn steadily over a wide range ofmixture strengths and gas flows is required. Themixture must also be easy to ignite under allconditions of flight and combustion must bemaintained with the minimum loss of pressure.

CONSTRUCTION

Burners11. The burner system consists of several circularconcentric fuel manifolds supported by struts insidethe jet pipe. Fuel is supplied to the manifolds by feedpipes in the support struts and sprayed into the flamearea, between the flame stabilizers, from holes in thedownstream edge of the manifolds. The flamestabilizers are blunt nosed V-section annular ringslocated downstream of the fuel burners. Analternative system includes an additional segmentedfuel manifold mounted within the flame stabilizers.The typical burner and flame stabilizer shown in fig.16-4 is based on the latter system.

Jet pipe12. The afterburning jet pipe is made from a heat-resistant nickel alloy and requires more insulationthan the normal jet pipe to prevent the heat ofcombustion being transferred to the aircraft structure.The jet pipe may be of a double skin constructionwith the outer skin carrying the flight loads and theinner skin the thermal stresses; a flow of cooling airis often induced between the inner and outer skins.Provision is also made to accommodate expansionand contraction, and to prevent gas leaks at the jetpipe joints.

13. A circular heatshield of similar material to the jetpipe is often fitted to the inner wall of the jet pipe toimprove cooling at the rear of the burner section. Theheatshield comprises a number of bands, linked by

cooling corrugations, to form a single skin. The rearof the heatshield is a series of overlapping 'tiles'riveted to the surrounding skin (fig. 16-4). The shieldalso prevents combustion instability from creatingexcessive noise and vibration, which in turn wouldcause rapid physical deterioration of the afterburnerequipment.

Propelling nozzle14. The propelling nozzle is of similar material andconstruction as the jet pipe, to which it is secured asa separate assembly. A two-position propellingnozzle has two movable eyelids that are operated byactuators, or pneumatic rams, to give an open orclosed position (para. 4.). A variable-area propellingnozzle has a ring of interlocking flaps that are hingedto the outer casing and may be enclosed by an outershroud. The flaps are actuated by powered rams tothe closed position, and by gas loads to the interme-diate or the open positions; control of the flapposition is by a control unit and a pump provides thepower to the rams (para. 18).

CONTROL SYSTEM

15. It is apparent that two functions, fuel flow andpropelling nozzle area, must be co-ordinated for sat-isfactory operation of the afterburner system, Thesefunctions are related by making the nozzle areadependent upon the fuel flow at the burners or vice-versa. The pilot controls the afterburner fuel flow orthe nozzle area in conjunction with a compressordelivery/jet pipe pressure sensing device (a pressureratio control unit). When the afterburner fuel flow isincreased, the nozzle area increases; when theafterburner fuel flow decreases, the nozzle area isreduced. The pressure ratio control unit ensures thepressure ratio across the turbine remains unchangedand that the engine is unaffected by the operation ofafterburning, regardless of the nozzle area and fuelflow.

16. Since large fuel flows are required for afterburn-ing, an additional fuel pump is used. This pump isusually of the centrifugal flow or gear type and isenergized automatically when afterburning isselected. The system is fully automatic and incorpo-rates 'fail safe' features in the event of an afterburnermalfunction. The interconnection between the controlsystem and afterburner jet pipe is shown diagram-matically in fig. 16-5.

173

Administrator
文本框
控制系统 15.显而易见,为了使加力燃烧室系统达到满意的工作,燃油流量和推进喷管面积这两个功能必须协调一致。这两个功能是根据喷嘴的燃油流量来决定喷口面积而互相关连起来的,反过来也是一样。驾驶员控制加力燃油流量或喷口面积,它们是与压气机出口/喷管压力传感装置(压力比控制装置)连在一起的。当加力燃油流量增加时,喷口面积增加;当加力燃油流量减少,喷口面积也减小。无论喷口面积和燃油流量是多少,压力比控制装置均保证涡轮前后的压力比不变,并且也保证了发动机不受加力工作的影响。 16.由于加力燃烧需要较大的燃油流量,因此常使用额外的油泵。这种泵一般为离心式泵或齿轮式泵,当选用加力燃烧时能够自动供油。该系统为全自动的,在加力燃烧室失效时,具有“故障安全”的特点。控制系统和加力燃烧室喷管之间的相互连接以图解的方式示于图16-5。
Administrator
文本框
13.一种类似于喷管材料的环形隔热屏常常被装在喷管内壁中以改善喷嘴后部的冷却。隔热屏由多段组成,用波纹状冷却板连接,形成了单独的一层。隔热屏的后部是一些搭接的耐火“板”,沿圆周铆接(图16-4)。隔热屏也防止燃烧的不稳定性产生过大的噪声和振动,这些过大的噪声和振动也会造成加力燃烧室装置的结构损坏。
Administrator
文本框
推进喷管 14.推进喷管的材料和结构与喷管类似,作为一个独立的装置固定在喷管上。双位置的推进喷管有两个可移动的半圆形调节喷口,由作动筒或气压作动筒操纵。使它处于打开或关闭的位置(第4段)。面积可调的推进喷管有一圈联锁的鱼鳞片,鱼鳞片铰接到外壳上,并用一外罩罩上。鱼鳞片通过有动力的作动筒操纵到关小位置,靠气动载荷吹开到中间或打开位置;鱼鳞片位置的控制是通过控制装置完成的,泵向作动筒提供动力(第18段)。
Page 182: Rolls royce jet engine

17. When afterburning is selected, a signal isrelayed to the afterburner fuel control unit. The unitdetermines the total fuel delivery of the pump andcontrols the distribution of fuel flow to the burnerassembly. Fuel from the burners is ignited, resultingin an increase in jet pipe pressure (P6). This altersthe pressure ratio across the turbine (P3/P6), and theexit area of the jet pipe nozzle is automaticallyincreased until the correct PS/PS ratio has beenrestored. With a further increase in the degree of

afterburning, the nozzle area is progressivelyincreased to maintain a satisfactory P3/P6 ratio. Fig.16-6 illustrates a typical afterburner fuel controlsystem.

18. To operate the propelling nozzle against thelarge 'drag' loads imposed by the gas stream, apump and either hydraulically or pneumaticallyoperated rams are incorporated in the controlsystem. The system shown in fig. 16-7 uses oil as the

174

Fig. 16-4 Typical afterburning jet pipe equipment.

Administrator
文本框
17.当选用加力时,信号传输给加力燃烧室燃油控制装置。该装置决定泵的总供油量,并且控制分配给喷嘴组件的燃油流量。喷嘴喷出的燃油点燃后,使喷管压力(P6)增加。这就改变了涡轮前后的压力比(P3/P6),喷管出口面积自动增加一直到正确的P3/P6比恢复。随着加力程度进一步加大,喷口面积也逐步增加以保持一个满意的P3/P6比。图16-6示出了一种典型的加力燃烧室燃油控制系统。
Administrator
文本框
催化剂点火器座
Administrator
文本框
喷口作动套筒
Administrator
文本框
喷口完全关闭 (未使用加力)
Administrator
文本框
喷口完全打开 (使用加力)
Administrator
文本框
火焰稳定器燃油供应
Administrator
文本框
扩压器
Administrator
文本框
主燃油总管
Administrator
文本框
火焰稳定器 (蒸发槽)
Administrator
标注
连接器
Administrator
标注
火焰稳定器 输油总管
Administrator
文本框
喷口作动筒
Administrator
文本框
隔热屏
Administrator
文本框
凸轮轨道
Administrator
文本框
喷口收放滚棒
Administrator
文本框
可调喷口 (联锁鱼鳞片)
Administrator
文本框
图16-4 典型的加力喷管设备
Page 183: Rolls royce jet engine

hydraulic medium, but some systems use fuel.Nozzle movement is achieved by the hydraulicoperating rams which are pressurized by an oilpump, pump output being controlled by a linkagefrom the pressure ratio control unit. When anincrease in afterburning is selected, the afterburnerfuel control unit schedules an increase in fuel pumpoutput. The jet pipe pressure (P6) increases, alteringthe pressure ratio across the turbine (P3/P6). Thepressure ratio control unit alters oil pump output,causing an out-of-balance condition between thehydraulic ram load and the gas load on the nozzleflaps. The gas load opens the nozzle to increase itsexit area and, as the nozzle opens, the increase in

nozzle area restores the P3/P6 ratio and thepressure ratio control unit alters oil pump output untilbalance is restored between the hydraulic rams andthe gas loading on the nozzle flaps.

THRUST INCREASE

19. The increase in thrust due to afterburningdepends solely upon the ratio of the absolute jet pipetemperatures before and after the extra fuel is burnt.For example, neglecting small losses due to theafterburner equipment and gas flow momentumchanges, the thrust increase may be calculated asfollows.

175

Fig. 16-5 Simplified control system.

Administrator
文本框
图16-5 简化的控制系统
Administrator
文本框
18.操纵推进喷口时要克服燃气流作用的巨大“阻力”载荷,所以在控制系统中装有一个泵和液压或气压驱动的作动筒。图16-7所示的系统使用了滑油周围液压介质,但是有些系统使用燃油作为介质。喷管的移动是通过液压作动筒来实现的液压作动筒由一个滑油泵加压,泵的输出由从压力比控制装置来的操纵杆控制。在要求增加加力程度时,加力燃烧室燃油控制装置使燃油泵输出量相应增加,喷管压力(P6)因此增加,改变了涡轮前后的压力比(P3/P6)。压力比控制装置改变滑油泵的输出量,造成了在喷口鱼鳞片上的液压作动筒载荷与燃气载荷之间不平衡的状况。燃气载荷打开喷口以增加其出口面积,并且当喷口打开时,喷口面积的增加恢复了P3/P6比。压力比控制装置又改变滑油泵的输出量直到液压作动筒载荷及喷口鱼鳞片上的燃气载荷之间恢复平衡。
Administrator
文本框
推力的增加 19.由加力燃烧造成的推力的增加完全取决于燃油在燃烧之前和之后喷管绝对温度的比。例如:忽略由于加力燃烧室装置和燃气流动量变化造成的微小损失,增加的推力可按照下面的方法进行计算。
Administrator
文本框
加力燃烧室范围
Administrator
文本框
正常范围
Administrator
文本框
停车
Administrator
文本框
驾驶员操纵杆
Administrator
文本框
凸轮箱
Administrator
文本框
燃油进口
Administrator
标注
加力燃烧室 燃油控制装置
Administrator
文本框
压力比控制装置
Administrator
标注
加力燃烧室燃油
Administrator
标注
滑油进口
Administrator
文本框
喷口 滑油泵
Administrator
文本框
压力滑油
Administrator
文本框
加力燃烧室
Administrator
文本框
可变面积 推进喷管
Page 184: Rolls royce jet engine

176

Fig. 16-6 A simplified typical afterburner fuel control system.

Administrator
文本框
加力燃烧室 工作范围
Administrator
文本框
正常 工作范围
Administrator
文本框
驾驶员 操纵杆
Administrator
文本框
停车
Administrator
文本框
选择加力 和关闭活门
Administrator
文本框
燃油点燃 控制活门
Administrator
文本框
可调小孔
Administrator
文本框
压力比控制装置
Administrator
文本框
伺服活塞
Administrator
文本框
进口油门
Administrator
标注
总流量节流活门
Administrator
文本框
蒸汽槽节流活门
Administrator
文本框
燃油泵
Administrator
文本框
蒸汽槽压降调节器
Administrator
文本框
加力燃烧室 燃油控制装置
Administrator
文本框
主压降 调节器
Administrator
文本框
主燃油总管
Administrator
文本框
蒸汽槽
Administrator
文本框
催化剂点火器
Administrator
文本框
图16-6 一种简化的典型的加力燃烧室燃油控制系统
Administrator
标注
低压燃油 由主系统来的高压燃油 限制的高压燃油 高压压气机出口压力(P3) 喷管压力(P6)
Administrator
标注
加力燃油 (颜色的变化 表示活门前后 的压力降低)
Administrator
文本框
到喷口 滑油泵
Page 185: Rolls royce jet engine

20. Assuming a gas temperature before afterburn-ing of 640 deg. C. (913 deg. K.) and with afterburn-ing of 1,269 deg. C. (1,542 deg. K.). then thetemperature ratio = 1,542 = 1.69. 913

The velocity of the jet stream increases as thesquare root of the temperature ratio. Therefore, thejet velocity = ^/T.69 = 1.3. Thus, the jet streamvelocity is increased by 30 per cent, and the increasein static thrust, in this instance, is also 30 per cent(fig. 16-8).

21. Static thrust increases of up to 70 per cent areobtainable from low by-pass engines fitted with after-burning equipment and at high forward speedsseveral times this amount of thrust boost can beobtained. High thrust boosts can be achieved on lowby-pass engines because of the large amount ofoxygen in the exhaust gas stream and the low initialtemperature of the exhaust gases.

177

Fig. 16-8 Thrust increase and temperatureratio.

Fig. 16-7 A simplified typical afterburner nozzle control system.

Administrator
文本框
20.假设加力燃烧前的燃气温度为640℃(913deg. K.),开加力后为1269℃(1542deg. K.),则温度比=1542/913=1.69。喷气流的速度按温度比的平方根增加。因此,喷气速度的增加倍数=根号1.69=1.3。即喷气流的速度增加了30%,这时发动机的静推力也增加了30%(图16-8)。
Administrator
文本框
图16-7 一种简化的典型的加力燃烧室喷口控制系统
Administrator
文本框
图16-8 推力增加和温度比的关系图
Administrator
文本框
21.可通过装有加力燃烧装置的低涵道比发动机获得高达70%的静推力增加,且在高的前进速度时能获得比这一增加量大几倍的推力增加。在低涵道比发动机上获得的推力增加量大,是因为在排出的燃气流中有大量的氧气以及排气流的较低初始温度。
Administrator
文本框
油箱压力 低压滑油 中压滑油 高压滑油
Administrator
文本框
温度比
Administrator
文本框
推力增加%
Administrator
文本框
喷管鱼鳞片
Administrator
文本框
喷口作动筒
Administrator
文本框
低压滑油泵
Administrator
文本框
喷口滑油泵
Administrator
文本框
从滑油箱来
Administrator
文本框
到压力比控制装置
Administrator
文本框
旁路活门
Page 186: Rolls royce jet engine

22. It is not possible to go on increasing the amountof fuel that is burnt in the jet pipe so that all theavailable oxygen is used, because the jet pipe wouldnot withstand the high temperatures that would beincurred and complete combustion cannot beassured.

FUEL CONSUMPTION

23. Afterburning always incurs an increase inspecific fuel consumption and is, therefore, generallylimited to periods of short duration. Additional fuelmust be added to the gas stream to obtain therequired temperature ratio (para. 19). Since thetemperature rise does not occur at the peak ofcompression, the fuel is not burnt as efficiently as inthe engine combustion chamber and a higherspecific fuel consumption must result. For example,assuming a specific fuel consumption without after-burning of 1,15 lb./hr./lb. thrust at sea level and aspeed of Mach 0,9 as shown in fig. 16-9. then with70 per cent afterburning under the same conditionsof flight, the consumption will be increased to

178

Fig. 16-9 Specific fuel consumptioncomparison.

Fig. 16-10 Afterburning and its effect on the rate of climb.

Administrator
文本框
22.继续增加在喷管中燃烧的燃油量以致完全用完可用的氧气是不可能的,因为喷管经受不住其造成的高温,完全燃烧也无法保证。
Administrator
文本框
图16-9 燃油消耗率比较
Administrator
文本框
高度×1000英尺
Administrator
文本框
耗油率 磅/小时/磅推力
Administrator
文本框
70%的加力
Administrator
文本框
起飞和爬升
Administrator
文本框
高度
Administrator
文本框
使用加力
Administrator
文本框
未使用加力
Administrator
文本框
使用加力后节省的时间
Administrator
文本框
图16-10 加力及其对爬升率的影响
Page 187: Rolls royce jet engine

approximately 2.53 lb./hr./lb. thrust. With an increasein height to 35,000 feet this latter figure of 2.53lb./hr./lb. thrust will fall slightly to about 2.34 lb./hr./lb.thrust due to the reduced intake temperature. When

this additional fuel consumption is combined with theimproved rate of take-off and climb (fig. 16-10), it isfound that the amount of fuel required to reduce thetime taken to reach operation height is not excessive.

179

Administrator
文本框
23.加力燃烧总是造成耗油率的增加,因此,使用加力一般都限制在很短的一段时间内。必须给燃气流增加额外的燃油以获得所要求的温度比(第19段)。由于温度升高不是发生在压力的峰值状态,因此燃油的燃烧不如在发动机燃烧室中燃烧得那样有效,结构造成耗油率较高。比如:假设在海平面速度为马赫数0.9每一打开加力时燃油消耗率为1.15磅/小时/磅推力,如图16-9所示,在同样的飞行条件下,如有70%的加力,则耗油率将增加到大约2.53磅/小时/磅推力。高度增加到35000英尺时,由于进口空气温度减小的缘故,这个2.53磅/小时/磅推力的耗油率会稍微下降一点,为2.34磅/小时/磅推力。当额外的油耗与提高了的起飞和爬升率(图16-10)结合在一起考虑时,就会发现,为了减少达到作战高度的时间所需要的燃油量并不过多。
Page 188: Rolls royce jet engine

Rolls-Royce Dart

Armstrong Siddeley Viper

The Viper was designed as a result ofexperience gained with the larger Sapphireturbojet. Originally built as a 1,640 lb thrustshort-life engine for target drones, it lateremerged as a long life engine for the JetProvost. Subsequently the engine wasdeveloped by Bristol Siddeley as the powerplant for civil executive jets, and Rolls-Roycefor present generation trainers and light strikeaircraft with a maximum thrust of 4,400 lb(5,000 lb with reheat).

Administrator
文本框
“威派尔”(Viper)的设计是“蝰蛇”涡轮喷气发动机所获得经验的结果,而蝰蛇是去掉减速器的“马姆巴”(Mamba)。“威派尔”最初是为靶机设计的一种1640磅推力的短寿命发动机,后来成为“喷气长官”(Jet Provost)飞机用的一种长寿命发动机。该发动机由布里斯托尓-西德利和罗尔斯-罗伊斯公司进行研制,并产生了高达4,400磅的推力。
Administrator
文本框
罗尔斯-罗伊斯公司 “达特”发动机
Administrator
文本框
阿姆斯特朗 西德利公司 “威派尔”发动机
Page 189: Rolls royce jet engine

17: Water injection

Contents Page

Introduction 181 Compressor inlet injection 183Combustion chamber injection 184

INTRODUCTION

1. The maximum power output of a gas turbineengine depends to a large extent upon the density orweight of the airflow passing through the engine.There is, therefore, a reduction in thrust or shafthorsepower as the atmospheric pressure decreaseswith altitude, and/or the ambient air temperatureincreases. Under these conditions, the power outputcan be restored or, in some instances, boosted fortake-off by cooling the airflow with water or

water/methanol mixture (coolant). When methanol isadded to the water it gives anti-freezing propertiesand also provides an additional source of fuel. Atypical turbo-jet engine thrust restoration curve isshown in fig. 17-1 and a turbo-propeller enginepower restoration and boost curve is shown in fig.17-2.

2. There are two basic methods of injecting thecoolant into the airflow. Some engines have thecoolant sprayed directly into the compressor inlet,but the injection of coolant into the combustionchamber inlet is usually more suitable for axial flowcompressor engines. This is because a more evendistribution can be obtained and a greater quantity ofcoolant can be satisfactorily injected.

3. When water/methanol mixture is sprayed into thecompressor inlet, the temperature of the compressor

181

Administrator
文本框
绪言 1.燃气涡轮发动机的最大功率输出在很大程度上取决于通过发动机的气流密度或重量。因此,当大气压随着高度增加而减小和/或环境空气温度增加时,推力或轴马力有所减小。在这些条件下,采用水或水/甲醇混合液(冷却剂)冷却气流的方法可恢复功率输出,有时也用于起飞时增加推力。当甲醇加到水中时,它就有防冻能力,同时也提供了一个额外的燃料源。一种典型的涡轮喷气发动机推力恢复曲线如图17-1所示,涡轮螺桨发动机功率恢复和增加曲线如图17-2所示。 2.把冷却剂喷到空气流中的基本方法有两种。有些发动机把冷却剂直接喷到压气机进口,而把冷却剂喷射到燃烧室进口通常更适合轴流式压气机发动机。这是因为它能够获得更均匀的分布,并能喷射更多的冷却剂。
Administrator
文本框
第十七章 喷水
Administrator
文本框
目录 绪言 压气机进口喷水 燃烧室喷水
Page 190: Rolls royce jet engine

Water injection

182

Fig. 17-1 Turbo-jet thrust restoration.

Fig. 17-2 Turbo-propeller power boost.

Administrator
文本框
图17-2 涡轮螺桨发动机功率的增加
Administrator
文本框
空气温度℃
Administrator
标注
采用喷水/甲醇的方法提高的起飞功率
Administrator
标注
采用喷水/甲醇的方法恢复的起飞功率
Administrator
标注
未采用喷水和甲醇时
Administrator
文本框
最大轴马力%
Administrator
文本框
图17-1 涡轮喷气发动机推力的恢复
Administrator
标注
未使用喷水
Administrator
标注
由功率限制器控制推力
Administrator
标注
使用喷水
Administrator
文本框
3.当水/甲醇混合液喷射到压气机进口时,压气机进口空气的温度降低,因而使空气密度和推力随之增加。如果只喷水,它会降低涡轮进口温度,但是如果加入甲醇,甲醇在燃烧室中燃烧,涡轮进口温度就会恢复。这样在没有调整燃油量的情况下,功率也可以恢复。
Administrator
文本框
4.相对于压气机的质量流量而言,在燃烧室进口喷射冷却剂使通过涡轮的质量流量增加了。涡轮的压力降和温度降因而减小,其结果导致喷管压力增加,进而增大了推力。由于喷水,涡轮进口温度减小,使燃油系统可以设定的燃油流量增加到这样一个数值,在这个数值下,发动机的最大转速有所增加,这样进一步提供了附加的推力。采用甲醇水的混合液时,由于甲醇在燃烧室中燃烧,涡轮进口温度恢复或部分恢复。
Page 191: Rolls royce jet engine

inlet air is reduced and consequently the air densityand thrust are increased. If water only was injected,it would reduce the turbine inlet temperature, but withthe addition of methanol the turbine inlet temperatureis restored by the burning of methanol in thecombustion chamber. Thus the power is restoredwithout having to adjust the fuel flow.

4. The injection of coolant into the combustionchamber inlet increases the mass flow through theturbine, relative to that through the compressor. Thepressure and temperature drop across the turbine isthus reduced, and this results in an increased jet pipepressure, which in turn gives additional thrust. Theconsequent reduction in turbine inlet temperature,due to water injection, enables the fuel system toschedule an increase of fuel flow to a value that gives

an increase in the maximum rotational speed of theengine, thus providing further additional thrust,Where methanol is used with the water, the turbineinlet temperature is restored, or partially restored, bythe burning of the methanol in the combustionchamber.

COMPRESSOR INLET INJECTION

5. The compressor inlet injection system shown infig. 17-3 is a typical system for a turbo-propellerengine. When the injection system is switched on,water/methanol mixture is pumped from an aircraft-mounted tank to a control unit. The control unitmeters the flow of mixture to the compressor inletthrough a metering valve that is operated by a servopiston. The servo system uses engine oil as anoperating medium, and a servo valve regulates the

Water injection

183

Fig. 17-3 A typical compressor inlet injection system.

Administrator
文本框
压气机进口喷水 5.压气机进口喷水系统如图l7-3所示,是涡轮螺桨发动机的一个典型系统。当打开喷水系统时,水甲醇混合液从装在飞机上的水箱抽出送到一台控制装置中去。控制装置通过节流活门计量流到压气机进口的混合液流量,节流活门是由伺服活塞控制的。伺服系统把发动机滑油作为工作介质,有一个伺服活门用来凋节滑油的供应。伺服活门打开的程度由控制系统设定,这个控制系统感测螺旋桨扭矩的滑油压力和作用在膜盒组件上的大气压。
Administrator
文本框
图17-3一个典型的压气机进口喷水系统
Administrator
文本框
高压滑油 溢滑油 扭矩计滑油 伺服滑油
Administrator
文本框
水和甲醇 大气 冲刷气流
Administrator
文本框
来自扭矩计系统
Administrator
文本框
伺服活门
Administrator
文本框
最大流量 调整限动钉
Administrator
文本框
进口导向叶片
Administrator
文本框
压气机第一级
Administrator
文本框
摔油圈
Administrator
文本框
伺服活塞
Administrator
文本框
滑油开关
Administrator
文本框
真空膜盒
Administrator
文本框
膜盒组件
Administrator
标注
高压滑油进口
Administrator
文本框
泄油
Administrator
文本框
大气膜盒
Administrator
标注
高压滑油 开关控制杆
Administrator
文本框
来自飞机水箱
Administrator
文本框
节流活门
Administrator
文本框
水/甲醇环腔
Page 192: Rolls royce jet engine

supply of oil. The degree of servo valve opening isset by a control system that is sensitive to propellershaft torque oil pressure and to atmospheric airpressure acting on a capsule assembly.

6. The control unit high pressure oil cock controllever is interconnected to the throttle control systemin such a manner that, until the throttle is movedtowards the take-off position, the oil cock remainsclosed, and thus the metering valve remains closed,preventing any mixture flowing to the compressor

inlet Movement of the throttle control to the take-offposition opens the oil cock, and the oil pressurepasses through the servo valve to open the meteringvalve by means of the servo piston.

COMBUSTION CHAMBER INJECTION

7. The combustion chamber injection systemshown in fig. 17-4 is a typical system for a turbo-jetengine. The coolant flows from an aircraft-mountedtank to an air-driven turbine pump that delivers it to awater flow sensing unit. The water passes from the

Water injection

184

Fig. 17-4 A typical combustion chamber injection system.

Administrator
文本框
6.控制装置的高压滑油开关控制杆与油门控制系统以这样一种方式相互连接:油门移向起飞位置前,滑油开关是关闭的,是一节流活门也是关闭的,这就防止混合液流入压气机进口。当油门移动到起飞位置时,才打开滑油开关,滑油压力通过伺服活门后借助伺服活塞将节流活门打开。
Administrator
文本框
空气冷却水流量
Administrator
文本框
水切断活门
Administrator
文本框
水流量传感装置
Administrator
标注
排放活门
Administrator
标注
空气进口限制器
Administrator
标注
高压压气机空气
Administrator
文本框
单向活门
Administrator
文本框
滑油箱
Administrator
文本框
通气
Administrator
文本框
微动电门
Administrator
标注
排放
Administrator
标注
单向和水传感活门
Administrator
文本框
到燃油流量调节器
Administrator
文本框
来自水箱
Administrator
文本框
轴承冷却水流
Administrator
文本框
排放活门
Administrator
文本框
系统排放活门
Administrator
文本框
涡轮泵
Administrator
文本框
节流活塞
Administrator
文本框
排气限制器
Administrator
文本框
燃油喷嘴
Administrator
文本框
低压水 高压水 冷却水 高压空气 滑油
Administrator
文本框
水喷嘴
Administrator
文本框
图17-4 一个典型的燃烧室喷水系统
Page 193: Rolls royce jet engine

sensing unit to each fuel spray nozzle and is sprayedfrom two jets onto the flame tube swirl vanes, thuscooling the air passing into the combustion zone. Thewater pressure between the sensing unit and thedischarge jets is sensed by the fuel control system,which automatically resets the engine speedgovernor to give a higher maximum engine speed.

8. The water flow sensing unit opens only when thecorrect pressure difference is obtained between

compressor delivery air pressure and waterpressure. The system is brought into operation whenthe engine throttle lever is moved to the take-offposition, causing microswitches to operate andselect the air supply for the turbine pump.

9. The sensing unit also forms a non-return valve toprevent air pressure feeding back from the dischargejets and provides for the operation of an indicatorlight to show when water is flowing.

Water injection

185

Administrator
文本框
燃烧室喷水 7.图17-4所示的燃烧室喷水系统是一个用于涡轮喷气发动机典型的系统。冷却剂从安装在飞机的水箱流入空气驱动的涡轮泵中,涡轮泵再把冷却剂送到水流传感器装置。氺通过传感装置,流到每个燃油喷嘴并从每个喷嘴上的两个喷水孔喷射到火焰筒漩涡叶片上,这样便冷却进入到燃烧区域的空气。在传感装置与喷水孔之间由燃烧控制统感测。它自动调整发动机转速调节器,产生出一个更高的最大发动机转速。
Administrator
文本框
8.水流传感装置只在压气机出口空气压力和水压之间获得正常的压差时才打开。当发动机油门杆移动到起飞位置时,该系统才进入工作状态,使微动开关工作并为涡轮泵选择供气量。 9.传感装置也作为一个单向活门,用以防止空气压力从喷水孔反馈回来,并在水流动时,用指示灯亮来显示它。
Page 194: Rolls royce jet engine

Rolls-Royce Pegasus

Rolls-Royce RB 108

The RB108 was the first engine to bedesigned specifically as a direct VTOL engine.First running in July 1955 the engine was sub-sequently thrust rated at 2340 lb, giving athrust to weight ratio of 8.7:1. In addition topowering a variety of VTOL test rigs, theRB108 flew in a Gloster Meteor, the ShortSC1 and the Marcel Dassault Balzac.

Administrator
文本框
RB108发动机是首台专门为直接垂直起降飞机设计的发动机。1955年7月进行了首次试车,额定推力2340磅,推重比为8.7:1。除作为各种垂直起落试飞台的动力之外,RB108还装用在格洛斯特公司的“流星”(Gloster Meteor),“肖特”(Short)公司的SC1和达索公司(Marcel Dassault)的“巴尔扎克”(Balzac)等飞机上。
Administrator
文本框
罗尔斯-罗伊斯公司 “飞马”(Pegasus)发动机
Administrator
文本框
罗尔斯-罗伊斯公司 RB108发动机
Page 195: Rolls royce jet engine

18: Vertical/short take-offand landing

Contents Page

Introduction 187Methods of providing powered lift 189

Lift/propulsion engines Lift engines Remote lift systems Swivelling engines Bleed air for STOL

Lift thrust augmentation 194Special engine ratings Lift burning systems Ejectors

Aircraft control 197Reaction controls Differential engine throttling Automatic control systems

INTRODUCTION

1. Vertical take-off and landing (VTOL) or shorttake-off and landing (STOL) are desirable character-istics for any type of aircraft, provided that the normalflight performance characteristics, includingpayload/range, are not unreasonably impaired. Untilthe introduction of the gas turbine engine, with itshigh power/weight ratio, the only powered lift systemcapable of VTOL was the low disc loading rotor, ason the helicopter.

2. Early in 1941, the late Dr A. A. Griffiths, the thenChief Scientist at Rolls-Royce, envisaged the use ofthe jet engine as a powered lift system. However, itwas not until 1947 that a light weight jet engine,designed by Rolls-Royce for missile propulsion,existed and had a high enough thrust/weight ratio forthe first pure lift-jet engine to be developed from it.

3. In 1956 the Bristol Aero-Engine Company wasapproached by Monsieur Michel Wibault with aproposal to use a turbo-shaft engine and a reductiongearbox to drive four centrifugal compressors whichwould be situated two on each side of the aircraft.The casing of these compressors could be rotated tochange direction of the thrust (fig. 18-1). The conceptincorporated two original ideas i.e. the ability todeflect the thrust over the complete range of anglesfrom the position for normal flight to that for verticallift and a system where the resultant thrust alwaysacted near to the centre of gravity of the aircraft.

187

Administrator
文本框
绪言 1.垂直起落或短距起落是任何类型飞机所期望的特性,只要正常的飞行性能包括商载/航程不受不合理的损害。在引入高功率重量比的燃气涡轮发动机之前,唯一能用于垂直起落的动力升力系统是装在直升机上的低桨盘载荷的旋翼。
Administrator
文本框
第十八章 垂直/短距起落
Administrator
文本框
升力推力的增大(升力加力)
Administrator
文本框
目 录
Administrator
文本框
绪言 提供动力升力的方法
Administrator
文本框
升力/推进发动机
Administrator
文本框
升力发动机
Administrator
文本框
远距升力系统
Administrator
文本框
偏转几台发动机 短距起落用的引气
Administrator
文本框
发动机的特殊推力额定值 升力燃烧系统 引射器
Administrator
文本框
飞机的控制 反作用控制 发动机差动节流 自动控制系统
Page 196: Rolls royce jet engine

Vertical/short take-off and landing

188

4. The principle proposed by M. Wibault wasdeveloped by using a pure jet engine with a freepower turbine to drive an axial flow fan whichexhausted into a pair of swivelling nozzles, one on

each side of the aircraft. A further development wasto use the fan to supercharge the engine, exhaustingthe by-pass air through one pair of swivelling nozzlesand adding a second pair of swivelling nozzles to the

Fig. 18-2 Lift/Propulsion engine.

Fig. 18-1 Michel Wibault's ground attack gyropter (concept) 1956

Administrator
文本框
2.1941年初,罗尔斯-罗伊斯公司当时的首席科学家格里菲斯博士(Dr.A.A.Griffiths)就设想过利用喷气发动机作为动力升力系统。但是直到1947年罗尔斯-罗伊斯公司设计的用作导弹推进装置的轻重量喷气发动机才终于问世,并具有足够高的推重比,使首台纯升力喷气发动机能从它发展出来。
Administrator
文本框
3.1956年布里斯托航空发动机公司收到米歇尔 维博特(Michel Wibault)先生的一个建议,用涡轮轴发动机和减速器来驱动装在飞机两侧的4个离心式压气机(每侧2个)。这些压气机的机匣可以旋转以改变推力的方向(图18-1)。这一概念包括两个原先的设想,即具有从正常飞行位置到垂直升力的整个角度范围内将推力变向的能力,和一个使总推力总是作用在飞机重心附近的系统。
Administrator
文本框
4.M.维博特提出的原理得到了发展,即利用一台带自由功力涡轮的纯喷气发动机来驱动轴流式风扇,而该风扇向位于飞机两侧的一对可转向喷管喷气。由此更进一步的发展是利用风扇为发动机加压,通过一对可转向喷管排放外涵空气并为发动机涡轮排气系统增加第二对可转向喷管。正是用这种方法研制出了第一台涵道风扇升力/推力发动机(图18-2中的“飞马”发动机)。
Administrator
文本框
图18-2 升力/推力发动机
Administrator
文本框
图18-1 1956年米歇尓 维博特的对地攻击旋翼飞机(方案)
Administrator
文本框
齿轮箱
Administrator
文本框
涡轴发动机
Administrator
文本框
离心式鼓风机
Page 197: Rolls royce jet engine

exhaust system from the engine turbine. In this waythe first ducted fan lift/propulsion engine (thePegasus) evolved (fig. 18-2).

5. Subsequent experience with the Pegasus enginein the Harrier V/STOL fighter aircraft (fig. 18-3), leadto the development of the short take-off and verticallanding (STOVL) operational technique. In this waythe additional lift generated by the aircraft wing, evenafter a short take-off run, provided a large increase inthe payload/range capability of the aircraft comparedto a pure vertical take-off. Vertical landing hadseveral operational advantages compared to a shortlanding and so was maintained.

METHODS OF PROVIDING POWERED LIFT

6. Although the Pegasus engine is the only V/STOLengine in operational service in the Western Worldthere are several possible methods of providingpowered lift, such as;

(1) Deflecting (or vectoring) the exhaust gasesand hence the thrust of the engine.

(2) Using specially designed engines for lift only.

(3) Driving a lift system, which is remote from theengine, either from the engine or by aseparate power unit.

(4) Swivelling the engines.(5) For STOL aircraft, using bleed air from the

engines to increase circulation around thewing and hence increase lift.

In several of the projected V/STOL aircraft acombination of two or more of these methods hasbeen used.

Lift/Propulsion engines7. The lift/propulsion engine is capable of providingthrust for both normal wing borne flight and for lift.This is achieved by changing the direction of thethrust either by a deflector system consisting of one,two or four swivelling nozzles or by a device knownas a switch-in deflector which redirects the exhaustgases from a rearward facing propulsion nozzle toone or two downward facing lift nozzles (fig, 18-4).

8. Thrust deflection on a single nozzle is accom-plished by connecting together sections of the jet

Vertical/short take-off and landing

189

Fig. 18-4 Thrust deflector systems.

Fig. 18-3 V/STOL fighter aircraft.

Administrator
文本框
5.“飞马”发动机用于“鹞”(Harrier)式垂自/短距起 落战斗机(图18-2)的经验,导致了对短距起飞垂直降落实用技术的开发。利用这种技术,即使在短距起飞滑跑后,飞机机翼产生的额外升力与纯垂直起飞的飞机相比较可大大提高飞机的商载/航程能力。垂直降落与短距降落相比具有若干使用方面的优点,所以这种降落方式得以继续使用。
Administrator
文本框
图18-3 垂直起落/短距起落战斗机
Administrator
文本框
图18-4 推力偏转系统
Administrator
文本框
双喷管偏转器
Administrator
文本框
四喷管偏转器
Administrator
文本框
开关式偏转器
Administrator
文本框
提供动力升力的方法 6.尽管 “飞马”发动机是西方世界中唯一服役的垂直/短距起落发动机,但还有若干提供动力升力的方法,例如: (1)将排气也即发动机推力偏转(改变矢量方向)。 (2)使用专门设计的只提供升力的发动机。 (3)由发动机或一个独立的动力装置驱动远离发动机的升力系统。 (4)旋转发动机。 (5)对短距起落飞机而言,利用发动机引气来增加机翼四周的环流,从而增加升力。 在几种垂直/短距起落飞机方案上。都曾把上述方法中的两种或更多种组合起来使用。
Page 198: Rolls royce jet engine

Vertical/short take-off and landing

190

Fig. 18-5 Deflector nozzle.

Fig. 18-6 Side mounted swivelling nozzle.

Administrator
文本框
升力/推进发动机 7.升力/推进发动机提供的推力可以为了产生一般的机翼升力来飞行,也可用于升力。这是通过政变推力方向来实现的,即通过含一个或两个或四个可转向喷管的偏转系统;或通过称之为开关式偏转器的装置,该装置将向后喷的推进喷管排气改向,引导至个或两个向下喷气的升力喷管(图18-4)。
Administrator
文本框
对转喷管截面
Administrator
文本框
可调喷管
Administrator
文本框
垂直升力时喷管偏转
Administrator
文本框
推进位置上的喷管
Administrator
文本框
图18-5 换向器喷管
Administrator
文本框
喷管
Administrator
文本框
链护罩
Administrator
文本框
间隔件
Administrator
文本框
滚珠轴承
Administrator
文本框
Administrator
文本框
图18-6 侧装的可转向喷管
Administrator
文本框
驱动链轮
Administrator
文本框
喷管
Administrator
文本框
8.单喷管的推力换向是通过将喷管各段连接在一起实现的。连接时喷管接合面呈一定角度。当它们相对旋转时,喷管则从水平位置向垂直位置移动(图18-5)。在喷管旋转时,为避免推力侧向分量或推力线偏离发动机轴线,第一个接合面必须与喷管轴线垂直。如果不希望喷管旋转,例如在可调面积喷管的情况下,则需要与喷管轴线垂直的第二个接合面。
Administrator
文本框
9.双喷管和四喷管换向器系统使用侧装喷管(图18-6),它可在简单轴承上旋转90度以上。所以,可在需要时提供反推力。例虮,在一简单的驱动系统中可使用一个链轮和链子,并通过机械连接,使所有的喷管同时换向。对向前的飞行而言,为避免较大的性能损失和由此使燃油消耗的增加,必须精心设计排气装置和喷管的气动力通道,以便把排气流在两个紧密相接的弯管(图18-7)中折转时所产生的压力损失减至最小。
Page 199: Rolls royce jet engine

pipe, the joint faces of which are so angled that,when the sections are counter-rotated, the nozzlemoves from the horizontal to the vertical position (fig.18-5). To avoid either a side component o! thrust or athrust line offset from the engine axis during themovement of the nozzle it is necessary that the firstjoint face is perpendicular to the axis of the jet pipe.If it is desired that the nozzle does not rotate, as maybe the case if it is a variable area nozzle, a third jointface which is perpendicular to the axis of the nozzleis required.

9. The two and four nozzle deflector systems useside mounted nozzles (fig. 18-6) which can rotate onsimple bearings through an angle of well over 90degrees so that reverse thrust can be provided ifrequired. A simple drive system, for example, asprocket and chain, can be used and by mechanicalconnections all the nozzles can be made to deflectsimultaneously. For forward flight, to avoid a highperformance loss and consequent increase in fuelconsumption, careful design of the exhaust unit andnozzle aerodynamic passages are essential tominimize the pressure losses due to turning theexhaust flow through two close coupled bends (fig.18-7).

10. The switch-in deflector consists of one or a pairof heavily reinforced doors which form part of the jetpipe wall when the engine is operating in the forwardthrust condition. To select lift thrust, the doors aremoved to blank off the conventional propelling nozzleand direct the exhaust flow into a lift nozzle (fig. 18-8). The lift nozzles may be designed so that they canbe mechanically rotated to vary the angle of thethrust and permit intermediate lift/thrust positions tobe selected.

11. A second type of switch-in deflector system isused on the tandem fan or hybrid fan vectored thrustengine (fig. 18-9). In this case the deflector system issituated between the stages of the fan of a mixedflow turbo-fan engine. In normal flight the valve ispositioned so that the engine operates in the samemanner as a mixed flow turbo-fan and for lift thrustthe valve is switched so that the exhaust flow fromthe front part of the fan exhausts through downwardfacing lift nozzles and a secondary inlet is opened toprovide the required airflow to the rear part of the fanand the main engine. On a purely subsonic V/STOLaircraft where fuel consumption is important thevalve may be dispensed with and the engineoperated permanently in the latter high by-passmode described above.

12. Thrust deflecting nozzles will create anupstream pressure distortion which may excitevibration of the fan or low pressure turbine blades ifthe nozzle system is close to these components.Snubbers (Part 3) may be used on the fan blades toresist vibration. On the low pressure turbine, shroudsat the blade tips (Part 5) or wire lacing may be usedto achieve the same result.

Lift engines13. The lift engine is designed to produce verticalthrust during the take-off and landing phases ofV/STOL aircraft. Because the engine is not used innormal flight it must be light and have a small volumeto avoid causing a large penalty on the aircraft. Thelift engine may be a turbo-jet which for a given thrustgives the lowest weight and volume. Should a low jetvelocity be necessary a lift fan may be employed.

14. Pure lift-jet engines have been developed withthrust/weight ratios of about 20:1 and still highervalues are projected for the future. Weight is reducedby keeping the engine design simple and also byextensive use of composite materials (fig. 18-10).Because the engine is operated for only limitedperiods during specific flight conditions i.e. duringtake-off and landing, the fuel system can besimplified and a total loss oil system (Part 8), in which

Vertical/short take-off and landing

191

Fig. 18-7 Nozzle duct configuration.

Administrator
文本框
11.第二种开关式偏转器用于串列风扇或混合风扇可变推力矢量发动机(图18-9)。在这种情况下,偏转器被安置在混合流涡轮风扇发动机的风扇级之间。在正常飞行中,活门处于适当的位置,发动机以类似于混合流涡轮风扇方式运转:在升力推力下飞行时,活门换向,使前部的风扇的排气流通过面向下的升力喷管排出,同时,辅助进气口打开,为后部的风扇和主发动机提供所需的空气流。对于纯亚音速垂直/短距起落飞机而言,燃油消耗是很重要的,可以不用此活门。发动机则以上面所述的后一种高涵道比方式持久地运转。 12.推力偏转喷管将产生上游压力畸变,如果喷管系统离风扇或低压涡轮叶片太近的话,则会使它们发生振动。可在风扇叶片上使用减震凸台(第3章)以抗振。对低压涡轮,可以使用叶冠(第5章)或金属条带来达到抗振的目的。
Administrator
文本框
10.开关式偏转器包括一个或一对牢固的加强门,当发动机存在正推力下运转时,它形成喷管壁的一部分。选择升力推力时,门被移动,以堵住常规的推进喷管,并将排气流导入升力喷管(图18-8)。升力喷管可设计成用机械旋转来改变推力角度并允许选择中间升力/推力位置。
Administrator
文本框
13.升力发动机是为垂直/短距起落飞机在起飞和降落时产生垂直推力而设计的。由于该发动机在正常飞行中不使用,所以它必须重量轻,体积小,以避免飞机产生过大的损失。升力发动机可以是一种提供一定推力且重量和体积最小的涡轮喷气发动机。如果需要低喷气速度,则可使用升力风扇。
Administrator
文本框
升力发动机
Administrator
文本框
图18-7 喷管形状
Page 200: Rolls royce jet engine

the used lubricating oil is ejected overboard, can beused.

15. Lift engines can be designed to operate in thevertical or horizontal position and a thrust deflectingnozzle fitted to provide some of the advantages ofthrust vectoring. Alternatively, the engine may bemounted so that it can swivel through a large angleto provide thrust vectoring. The lift-jet engine willhave an extremely hot, high velocity jet exhaust andto reduce ground erosion by the jet the normal

exhaust nozzle may be replaced by a multi-lobenozzle to increase the rate of mixing with thesurrounding air.

16. The lift-fan engine is designed to reduce the jetexhaust velocity, to reduce ground erosion and allowoperation from unprepared ground surfaces. It alsoreduces the jet noise significantly. A range of designoptions have been considered for this type of engineand some are shown on fig. 18-11.

Vertical/short take-off and landing

192

Fig. 18-9 Vectored thrust engine.

Fig. 18-8 Switch-In deflector system.

Administrator
文本框
14.推重比约为20:1的纯引力喷气发动机已研制出来。今后可能达到还要高的推重比值。由于尽量保持发动机设计简单和广泛使用复合材料(图18-10),因而降低了重量。由于该发动机只是在特定飞行条件即起飞和降落时使用,所以燃油系统可以简化。还可以采用总损失滑油系统(第8章),将使用过的滑油排出机外。
Administrator
文本框
15.升力发动机可设计成或者在垂直位置或者在水平位置工作,所安装的推力偏转喷管具有可变推力矢量的一些优点。另外,发动机也可以是这样安装,即使其能沿一大角度旋转,以将推力转向。升力喷气发动机具有极热的高速喷气流。未来降低由喷气而引起的地面腐蚀,也可用多瓣喷管来取代常规的喷气喷管,以提高排气与四周空气的混合率。 16.升力风扇发动机的设计旨在降低喷气速度和对地面的腐蚀,从而使其能在无准备的地面起降。它还可大大降低喷气流噪声。已经为这种发动机考虑了广泛的设计备选方案。图18-11表示了其中的一部分。
Administrator
文本框
图18-9 可变推力矢量的发动机
Administrator
文本框
节流门
Administrator
文本框
正推力
Administrator
文本框
可转向喷管
Administrator
文本框
偏转的推力
Page 201: Rolls royce jet engine

Remote lift systems17. Direct lift remote systems duct the by-pass air orengine exhaust air to downward facing lift nozzlesremote from the engine. These nozzles may be in thefront fuselage of the aircraft or in the wings. Theengine duct is blocked by means of a diverter similarto that described in para. 10.

18. The remote lift-fan (fig. 18-12) is mounted in theaircraft wing or fuselage, and is driven mechanicallyor by air or gas ducted into a tip turbine, The drivesystem is provided by the main propulsion powerplant or by a separate engine.

19. The advantage of the remote lift system is thatit gives some freedom to the aircraft to position the

Vertical/short take-off and landing

193

Fig. 18-11 Lift-fan engine configurations.

Fig. 18-10 A lift-jet engine.

Administrator
文本框
远距升力系统 17.直接升力远距系统将外涵空气或发动机排气导入远离发动机的面向下的升力喷管。这些喷管可设置在飞机的前机身或机翼中。发动机涵道通过类似于第10段中所述的偏转器来堵塞。
Administrator
文本框
图18-10 一种升力喷气发动机
Administrator
文本框
图18-11 几种升力风扇发动机的设计
Administrator
文本框
18.远距升力风扇(图18-12)安装在飞机的机翼或机身上,由机械传动,或由导入叶尖涡轮的空气或燃气来传动。传动系统由主推进的动力装置或单独的发动机来提供。 19.远距升力系统的优点在于它给予飞机一定的自由度,来将推进系统安放到最佳位置,而在喷气升力方式下仍能将总推力保持在靠近飞机重心处。实现这种自由度的代价是增加了体积,尤其是燃气驱动系统。这是由于将燃气送至远距升力系统的管道德巨大尺寸所致。尽管机械传动的远距升力风扇可避免使用这些大尺寸的燃气管道,但它的代价是需要使用长轴/大功率齿轮箱和离合器系统。
Administrator
文本框
头锥
Administrator
文本框
六级压气机转子
Administrator
文本框
带导向叶片的进口环
Administrator
文本框
压气机机匣和 静子叶片
Administrator
文本框
燃烧室机匣
Administrator
文本框
两个 轴承
Administrator
文本框
燃烧室
Administrator
文本框
复合材料
Administrator
文本框
单级涡轮
Administrator
文本框
点火装置
Administrator
文本框
排气装置
Administrator
文本框
滑油瓶
Administrator
标注
无外部传动
Page 202: Rolls royce jet engine

propulsion system to the best advantage whilst stillmaintaining the resultant thrust near the aircraftcentre of gravity in the jet lift mode. This freedom isachieved at a cost of increased volume, particularlywith the gas driven systems, due to the size of theducts to feed the gas to the remote lift system.Although the mechanically driven remote lift-faneliminates the need for these large gas ducts, it isdone at the expense of long shafts and high powergearboxes and clutch systems.

Swivelling engines20. This method consists of having propulsionengines which can be mechanically swiveled closed

through at least 90 degrees to provide thrustvectoring (fig. 18-13). In addition to these propulsionengines, one or more lift engines may be installed toprovide supplementary lift during the take-off andlanding phase of flight.

21. The swivelling engine system can only be usedwith two or more engines. This then introduces theproblem of safety in the event of an engine failure.So, although there is only a small weight penalty andno increase in fuel consumption, safety considera-tions tend to offset these advantages compared tosome of the other powered lift systems. The normalmethod of providing aircraft control at low speeds isby differential throttling and vectoring of the engineswhich simplifies the basic engine design but makesthe control system more complex.

Bleed air for STOL22. Fig. 18-14 shows one method how STOL canbe achieved with a form of 'flap blowing'. The turbo-fan engine has a geared variable pitch fan and anoversized low pressure (L. P.) compressor from theexit of which air is bled and ducted to the flap systemin the wing trailing edge. The variable pitch fanenables high L.P. compressor speed and thus highbleed pressure to be maintained over a wide range ofthrusts. This gives excellent control at greatlydifferent aircraft flight conditions.

LIFT THRUST AUGMENTATION

23. In many cases on V/STOL aircraft augmentationof the lift thrust is necessary to avoid an engine whichis oversized for normal flight with the consequenteffects of higher engine weight and fuel consumptionthan would be the case for a conventional aircraft-This lift thrust augmentation can be achieved in anumber of different ways:

(1) Using special engine ratings.(2) Burning in the lift nozzle gas flow.(3) By means of an ejector system.

Special engine ratings24. Experience has shown that an engine ratingstructure can be devised which provides high thrustlevels for short periods of time without reducingengine life. Operation in ground effect and the take-off and landing manoeuvres require maximum thrustfor less than 15 seconds so that use of a short liftrating for that time is feasible. Fig. 18-15 shows anexample of thrust permissible with a 15 second shortlift rating compared to that with a 2.5 minute normallift rating.

Vertical/short take-off and landing

194

Fig. 18-12 Remote lift fan.

Fig. 18-13 Jet lift with swivelling nozzles.

Administrator
文本框
偏转几台发动机 20.这一方法包括具有若干台推进发动机,它们至少可做90度的机械偏转以使推力转向(图18-13)。除这些推进发动机以外,还可以安装一台或多台升力发动机,以便在起飞和降落时提供辅助升力。
Administrator
文本框
21.偏转式发动机系统只能与两台或多台发动机一起使用。但这在一台发动机发生故障时会带来安全方面的问题。所以,尽管重量的代价虽小且也不增加燃油消耗,但从安全方面考虑,与某些其它动力升力系统相比这些优势就体现不出来了。提供低速下的飞机控制的正常方法是差动节流和发动机转向,它简化了基本发动机的设计,但使控制系统更为复杂。
Administrator
文本框
图18-12 远距升力风扇
Administrator
文本框
短距起落用的引气 22.图18-14表明了利用“襟翼吹气” 形式来实现短距起落的一种方法。涡轮风扇发动机具有一个齿轮传动的变距风扇和一个加大尺寸的低压压气机,空气从该压气机出口引出,再导入机翼后缘上的襟翼系统。变距风扇使低压压气机可作高转速运转并因此能在宽广的推力范围内保持高引气压力。这就在不同的飞行条件下获得极佳的控制效果。
Administrator
文本框
升力推力的增大 (升力加力)
Administrator
文本框
23.在许多情况下,有必要增大垂直/短距起落飞机的升力推力,因为在正常飞行情况下,这种发动机的尺寸过大,其后果是与常规飞机相比,发动机重量和燃油消耗量都较大,升力推力的增加即升力加力可避免这种后果。升力加力可以通过许多不同的方法来实现: (1)使用特殊发动机推力额定值。(2)在升力喷管燃气流中燃烧。(3)使用引射器系统。
Administrator
文本框
关闭
Administrator
文本框
向前飞行
Administrator
文本框
辅助进气口 打开
Administrator
文本框
空气进气门
Administrator
文本框
图18-13 偏转几台发动机产生喷气升力
Administrator
文本框
垂直起飞
Page 203: Rolls royce jet engine

25. At high ambient temperatures, the engine mayrun into a turbine temperature limit before reachingits maximum r.p.m. and suffer a thrust loss as aresult. Restoration of the thrust can be achieved bymeans of water injection into the combustionchamber (Part 17) which allows operation at a higherturbine gas temperature for a given turbine bladetemperature. If desired, water injection can also beused to increase the thrust at low ambient tempera-tures.

Lift burning systems26. The thrust of the four nozzle lift/propulsionengine may be boosted by burning fuel in the bypassflow in the duct or plenum chamber supplying thefront nozzles. This is called plenum chamber burning(P.C.B.) (fig. 18-16) and thrust of the by-pass air maybe doubled by this process. This thrust capability isavailable for normal flight as well as take-off andlanding and so can be used to increase manoeuvra-bility and give supersonic flight.

27. The thrust of a remote lift jet can also beaugmented by burning fuel in a combustion chamberjust upstream of the lift nozzle (fig. 18-17). Thissystem is commonly known as a remote augmentedlift system (R.A.L.3.). The thrust boost available fromthe burner reduces the amount of airflow to besupplied to it and therefore reduces the size of theducting needed to direct the air from the engine tothe remote lift nozzle.

Ejectors28. The principle of the ejector is that a small, highenergy jet entrains large quantities of ambient air byviscous mixing and an increase in thrust over that ofthe high energy jet results. A number of projectedV/STOL aircraft have incorporated this concept usingeither all the engine exhaust air or just the bypassflow.

Vertical/short take-off and landing

195

Fig. 18-14 Flap blowing engine.

Fig. 18-15 Thrust increases with short liftratings.

Administrator
文本框
发动机的特殊推力额定值 24.经验证明额定推力的发动机结构可在短时间内提供高推力值而不降低发动机寿命。在地面效应下运转和起飞降落动作需要不到15秒的最大推力,所以在这段时间内使用短时间升力额定值是可行的。图18-5表示了15秒短时间升力额定值允许的推力与2.5分钟正常升力额定值允许值之间的比较的实例。
Administrator
文本框
升力燃烧系统 26.在供气至前置喷管以前,可通过在外涵气流的涵道或稳压室中燃烧燃油来提高四喷管升力/推进发动机的推力。这就是所谓的稳压室燃烧(P.C.B.)(图18-16)。这种方法可使外涵空气的推力增加一倍。这种推力能力可用于正常飞行,也可用于起飞和降落,因此可用来提高飞机的机动性和进行超音速飞行。 27.远距升力喷气的推力也可通过在紧靠升力喷管上游的燃烧室中燃烧燃油来增大(图18-17)。这就是众所周知的远距增升系统。靠燃烧室来增大推力减少了向其供应的气流量,并因而减小了将空气从发动机引向远距升力喷管所需的大尺寸管道。
Administrator
文本框
图18-14 襟翼吹气发动机
Administrator
文本框
25.在高的环境温度下,在达到最大转速之前发动机就可能已达到涡轮温度极限,其结果是引起推力损失。通过向燃烧室喷水(第17章)可使推力恢复,这就使得对一定的涡轮叶片温度而言可以在更高的涡轮燃气温度下运转。如果需要的活,也可以用喷水来增加低环境温度时的推力。
Administrator
文本框
28.引射器的原理是少量高能喷流通过与空气的粘性混合而夹带入大量的外界空气,其结果是使推力增加,超过只用高能量喷流所能产生的推力。一些规划中的垂直/短距起落飞机已采用这原理,它们或是使用发动机的全部排气或只用外涵气流。
Administrator
文本框
引射器
Administrator
文本框
图18-15 利用短时间升力额定值的推力增加
Administrator
标注
有喷水时的短时间(15秒) 升力额定值 短时间升力(15秒)额定值 正常升力(2.5分钟)额定值
Administrator
文本框
增升的襟翼系统
Administrator
文本框
环境温度℃
Administrator
文本框
推力
Administrator
文本框
引气
Administrator
文本框
低压压气机
Administrator
文本框
变距风扇
Page 204: Rolls royce jet engine

Vertical/short take-off and landing

196

Fig. 18-16 Plenum chamber burning.

Fig. 18-17 Remote augmented lift system.

Administrator
文本框
风扇
Administrator
文本框
高压压气机
Administrator
文本框
增压室
Administrator
文本框
燃油通道
Administrator
文本框
前喷管
Administrator
文本框
图18-16 稳压室燃烧
Administrator
文本框
图18-17 远距增升系统
Page 205: Rolls royce jet engine

AIRCRAFT CONTROL

29. The low forward speeds of V/STOL aircraftduring take-off and transition do not permit thegeneration of adequate aerodynamic forces from thenormal flight control surfaces, it is thereforenecessary to provide one or more of the followingadditonal methods of controlling pitch, roll and yaw.

Reaction controls30. This system bleeds air from the engine andducts it through nozzles at the four extremities of theaircraft (fig. 18-18), The air supply to the nozzles isautomatically cut off when the main engine swivellingpropulsion nozzles are turned for normal flight orwhen the lift engines are shut down. The thrust of thecontrol nozzles is varied by changing their areawhich varies the amount of airflow passed.

Differential engine throttling31. This method of control is used on multi-enginedaircraft with the engines positioned in a suitable con-figuration. A rapid response rate is essential toenable the engines to be used for aircraft stabilityand control. It is usually necessary to combine differ-ential throttling with differential thrust vectoring togive aircraft control in all areas.

Automatic control systems32. Although it is possible for the pilot to control aV/STOL aircraft manually, some form of automationcan be of benefit and in particular will reduce the pilotworkload. The pilot's control column is electronicallyconnected to a computer or stabilizer that receivessignals from the control column, compares them withsignals from the sensors that measure the attitude ofthe aircraft, and automatically adjusts the reactioncontrols, differential throttling or thrust vectoringcontrols to maintain stability.

Vertical/short take-off and landing

197

Fig. 18-18 Reaction control system.

Administrator
文本框
飞机的控制 29.垂直/短距起落飞机在起飞和过渡时的低前进 速度不允许从飞机的正常飞行控制面产生足够的空 气动力,因此有必要利用下面所列的一个或多个控 制俯仰、横滚和偏航的额外方法。
Administrator
文本框
发动机差动节流 31.这一控制方法用于布局合理的多发动机飞机上。快速响应率对于将这些发动机用于飞机稳定性和控制是十分关键的。通常有必要将差动节流和差动推力转向起使用,以使飞机能进行各个方面的控制。 自动控制系统 32.尽管驾驶员可以手动控制垂直/短距起落飞机但采用一些自动控制是有益的,特别是可以减轻驾驶员的工作负担。驾驶员的驾驶杆以电子方式与计算机或安定面相连接,计算机从驾驶杆接收信号,将它们与从测量飞机姿态的传感器来的信号相比较,自动调节喷气反作用控制、差动节流或推力转向以保持稳定性。
Administrator
文本框
反作用控制 30.该系统将空气从发动机中引出并通过飞机的四个端点上的喷管排出(图18-18)。当主发动机可转向推进喷管转入正常飞行或当升力发动机关闭时,向这些喷管输送的空气自动被切断。改变这些 控制喷管的面积就改变通过它们的气流量,从而也改变了这些控制喷管的推力。
Administrator
文本框
图18-18 反作用控制系统
Administrator
文本框
反应控制活门
Administrator
文本框
主断油开关
Administrator
文本框
副翼下垂
Administrator
文本框
调节片的“戽斗”部分形成面积可调的收敛/扩散形喷管
Administrator
文本框
翼尖滚转反应控制话门
Administrator
文本框
副翼向上
Administrator
文本框
调节片形成面积可调的收敛形喷管
Page 206: Rolls royce jet engine

Rolls-Royce Turbomeca Adour MK151

Napier Gazelle

The Gazelle turbo-shaft engine first ran inDecember 1955 at 1260 shp, a figure laterincreased to 1610 shp on production engines.Gazelles were used to power BristolBelvedere and Westland Wessex helicopters.Gazelle production was taken over by Rolls-Royce in 1961.

Administrator
文本框
“盖兹尔”涡轮轴发动机于1955年12月首次试车,当时的功率为1260轴马力,后来,在生产型发动机上,功率增至1610轴马力。“盖兹尔”发动机用于布里斯托(Bristol)公司的“了望塔”(Belvedere)和韦斯 特兰(Westland)公司的“威赛克斯”(Wessex)直升机。“盖兹尔”发动机的生产于1961年由罗尔斯-罗伊斯公司接管。
Administrator
文本框
罗尔斯-罗伊斯透博梅卡公司 阿杜尔”(Adour)Mk151发动机
Administrator
文本框
奈皮尔公司 “盖兹尔”发动机
Page 207: Rolls royce jet engine

19: Noise suppression

Contents Page

Introduction 199Engine noise 199Methods of suppressing noise202Construction and materials 205

INTRODUCTION

1. Airport regulations and aircraft noise certificationrequirements, all of which govern the maximumnoise level aircraft are permitted to produce, havemade jet engine noise suppression one of the mostimportant fields of research.

2. The unit that is commonly used to express noiseannoyance is the Effective Perceived Noise deciBel(EPNdB). It takes into account the pitch as well asthe sound pressure (deciBel) and makes allowancefor the duration of an aircraft flyover. Fig. 19-1compares the noise levels of various jet enginetypes.

3. Airframe self-generated noise is a factor in anaircraft's overall noise signature, but the principalnoise source is the engine.

ENGINE NOISE

4. To understand the problem of engine noisesuppression, it is necessary to have a workingknowledge of the noise sources and their relativeimportance. The significant sources originate in thefan or compressor, the turbine and the exhaust jet orjets. These noise sources obey different laws andmechanisms of generation, but all increase, to avarying degree, with greater relative airflow velocity.Exhaust jet noise varies by a larger factor than thecompressor or turbine noise, therefore a reduction inexhaust jet velocity has a stronger influence than anequivalent reduction in compressor and turbine bladespeeds.

199

Administrator
文本框
绪言 1.机场条例和飞机噪声取证要求都约束着允许飞机产生的最大噪声水平,这已使喷气发动机的噪声抑制成为最重要的研究领域之一。 2.通常用于表示噪声扰人程度的单位是有效感觉噪声分贝(EPNdB)。它考虑了音调和声压(分贝),以及允许飞机飞越的持续时间。图19-1比较了不同类型喷气发动机的噪声水平。 3.飞机机体自身产生的噪声是飞机整个噪声特性的一个因素,但主要的噪声源是发动机。
Administrator
文本框
第十九章 噪声抑制
Administrator
文本框
绪言 发动机噪声 抑制噪声的方法 结构和材料
Administrator
文本框
发动机噪声 4.为了了解抑制发动机噪声的问题,必须知道噪声源的工作情况及其相关的重要性。最重要的噪声来源于风扇或压气机、涡轮、排气流或喷口。这些噪声源具有不同的规律,产生的机理也不尽相同,但是,随着相对气流速度的加大,所有噪声在不同程度上都提高。排气流噪声的变化系数比压气机或涡轮噪声的更大,因此,排气流速度的减小比压气机和涡轮叶片速度的等量减小具有更大的影响。
Page 208: Rolls royce jet engine

Noise suppression

200

Fig. 19-1 Comparative noise levels of various engine types.

Fig. 19-2 Exhaust mixing and shock structure.

Administrator
标注
无噪声抑制器的纯喷气发动机
Administrator
标注
有噪声抑制器的纯喷气发动机
Administrator
标注
低涵道比喷气发动机
Administrator
标注
高涵道比喷气发动机
Administrator
文本框
有效感觉噪声分贝
Administrator
文本框
总的趋势
Administrator
文本框
图19-1 不同类型发动机的噪声水平比较
Administrator
文本框
总噪声
Administrator
文本框
声级
Administrator
文本框
激波噪声
Administrator
文本框
混合噪声
Administrator
文本框
频率
Administrator
文本框
大涡流 (低频噪声)
Administrator
文本框
排气道
Administrator
文本框
排气流核心
Administrator
文本框
混合区
Administrator
标注
激波
Administrator
文本框
小涡流 (高频噪声)
Administrator
文本框
19-2 排气混合和激波结构
Page 209: Rolls royce jet engine

5. Jet exhaust noise is caused by the violent andhence extremely turbulent mixing of the exhaustgases with the atmosphere and is influenced by theshearing action caused by the relative speedbetween the exhaust jet and the atmosphere. Thesmall eddies created near the exhaust duct causehigh frequency noise but downstream of the exhaustjet the larger eddies create low frequency noise.Additionally, when the exhaust jet velocity exceedsthe local speed of sound, a regular shock pattern isformed within the exhaust jet core. This produces adiscrete (single frequency) tone and selective ampli-fication of the mixing noise, as shown in fig. 19-2. Areduction in noise level occurs if the mixing rate isaccelerated or if the velocity of the exhaust jetrelative to the atmosphere is reduced. This can beachieved by changing the pattern of the exhaust jetas shown in fig. 19-3.

6. Compressor and turbine noise results from theinteraction of pressure fields and turbulent wakesfrom rotating blades and stationary vanes, and canbe defined as two distinct types of noise; discretetone (single frequency) and broadband (a wide rangeof frequencies). Discrete tones are produced by theregular passage of blade wakes over the stagesdownstream causing a series of tones andharmonics from each stage. The wake intensity islargely dependent upon the distance between therows of blades and vanes. If the distance is shortthen there is an intense pressure field interactionwhich results in a strong tone being generated. Withthe high bypass engine, the low pressurecompressor (fan) blade wakes passing overdownstream vanes produce such tones, but of alower intensity due to lower velocities and largerblade/vane separations. Broadband noise is

Noise suppression

201

Fig. 19-3 Change of exhaust jet pattern to reduce noise level.

Administrator
文本框
6.压气机和涡轮的噪声是由于转动的叶片和静止叶片的压力场和紊流尾流的相互作用而产生的,并可分为两种截然不同的噪声:离散声调(单一频率)和宽频(很多种频率)噪声。离散的声调是由于叶片尾流有规则地流过下游各级而每一级都产生一系列声调和谐波引起的。尾流的强度主要取决于各排转于叶片和静止叶片之间的距离。如果距离短,那么,压力场的相互作用就强烈,这导致较强的声调。在高涵道比发动机中,低压压气机(风扇)叶片尾流流过下游静止叶片便产生这种声调,但是由于速度较低和转子叶片/静止叶片的间隔较大,因而强度较低。宽频噪声是由每个叶片与流过其表面的空气的相互作用产生的,即使在气流平稳时也是如此。流过叶片上的气流的紊流增大了宽频噪声的强度,也能产生几种声调。
Administrator
文本框
5.喷气流噪声是由于排出的燃气与大气猛烈地撞击,因而产生紊流度极强的混合所造成的。它受由排气流和大气之间的相对速度引起的剪切作用的影响。在排气口附近产生的小涡流引起高频噪声,但是,在排气流后部大的涡流产生低频噪声。另外,当排气流速度超过当地音速时,在排气流核心部分形成形状有规律的激波。这就产生一离散的(单一频率)声调,并将混合噪声有选择性地放大,如图19-2所示。如果混合速度加快或喷气流相对于大气的速度减小,噪声水平就会降低。这借助于改变喷气流的形状就可以办到,如图19-3所示。
Administrator
文本框
普通喷管(混合程度低)噪声高
Administrator
文本框
图19-3 改变排气流形状以降低噪声
Administrator
文本框
消音喷管(混合程度高)降低噪声
Page 210: Rolls royce jet engine

produced by the reaction of each blade to thepassage of air over its surface, even with a smoothairstream. Turbulence in the airstream passing overthe blades increases the intensity of the broadbandnoise and can also induce tones.

7. With the pure jet engine the exhaust jet noise isof such a high level that the turbine and compressornoise is insignificant at all operating conditions,except low landing-approach thrusts. With the by-pass principle, the exhaust jet noise drops as thevelocity of the exhaust is reduced but the lowpressure compressor and turbine noise increasesdue to the greater internal power handling.

8. The introduction of a single stage low pressurecompressor (fan) significantly reduces thecompressor noise because the overall turbulenceand interaction levels are diminished. When the by-pass ratio is in excess of approximately 5 to 1, the jetexhaust noise has reduced to such a level that theincreased internal noise source is predominant. Acomparison between low and high by-pass enginenoise sources is shown in fig. 19-4.

9. Listed amongst the several other sources ofnoise within the engine is the combustion chamber. Itis a significant but not a predominant source, due inpart to the fact that it is 'buried' in the core of theengine. Nevertheless it contributes to the broadbandnoise, as a result of the violent activities which occurwithin the combustion chamber.

METHODS OF SUPPRESSING NOISE

10. Noise suppression of internal sources isapproached in two ways; by basic design to minimizenoise originating within or propagating from theengine, and by the use of acoustically absorbentlinings. Noise can be minimized by reducing airflowdisruption which causes turbulence. This is achievedby using minimal rotational and airflow velocities andreducing the wake intensity by appropriate spacingbetween the blades and vanes. The ratio betweenthe number of rotating blades and stationary vanescan also be advantageously employed to containnoise within the engine.

Noise suppression

202

Fig. 19-4 Comparative noise sources of low and high by-pass engines.

Administrator
文本框
8.采用单级低压压气机(风扇)大大降低了压气机噪声,这是因为整个紊流和相互作用的程度都减少了。当涵道比超过约5:1时,排气流噪声降低到这样一个水平,使内部噪声源增加,而且占主导地位。低和高的涵道比发动机噪声源之间的比较见图19-4。
Administrator
文本框
7.对纯喷气发动机来说,排气流噪声是如此之高,以致于除了在着陆进场工程中推力较小时,涡轮和压气机的噪声相比之下微不足道了。对于涡轮风扇发动机的而言,由于排气速度减少,排气流噪声下降,但是由于发动机内部处理的功率较大,使低压压气机和涡轮噪声加大。
Administrator
文本框
抑制噪声的方法 10.内部噪声源的抑制用到两种办法达到:采用基本设计使发动机内部产生的或从发动机传出的噪声最小和利用吸声材料衬垫。借助于减少引起紊流的气流分离可使噪声达到最小程度。这是靠利用最小的旋转和气流速度并在转子叶片和静止叶片之间采用适当的间隔来减少尾流强度达到的。也可在转动叶片和静止叶片数量上采用适当比例,使噪声保持在发动机内。
Administrator
文本框
图19-4 低和高涵道比发动机的噪声源比较
Administrator
文本框
9.在发动机内部,其它几个噪声源之一是燃烧室。这是一个重要的但不是占支配地位的噪声源,其部分原因是因为,它被“埋”在发动机的核心。然而,由于在燃烧室内方式的激烈的活动,它产生宽频噪声。
Administrator
文本框
低涵道比
Administrator
文本框
高涵道比 (单级风扇)
Administrator
文本框
进气轴
Administrator
文本框
喷气轴
Administrator
文本框
压气机 (向前)
Administrator
文本框
压气机 (向后)
Administrator
文本框
涡轮和喷管
Administrator
文本框
喷流
Page 211: Rolls royce jet engine

11. As previously described, the major source ofnoise on the pure jet engine and low by-pass engineis the exhaust jet, and this can be reduced byinducing a rapid or shorter mixing region. Thisreduces the low frequency noise but may increasethe high frequency level. Fortunately, highfrequencies are quickly absorbed in the atmosphereand some of the noise which does propagate to thelistener is beyond the audible range, thus giving theperception of a quieter engine. This is achieved byincreasing the contact area of the atmosphere withthe exhaust gas stream by using a propelling nozzleincorporating a corrugated or lobe-type noisesuppressor (fig. 19-5).

12. In the corrugated nozzle, freestreamatmospheric air flows down the outside corrugationsand into the exhaust jet to promote rapid mixing. Inthe lobe-type nozzle, the exhaust gases are dividedto flow through the lobes and a small central nozzle.This forms a number of separate exhaust jets thatrapidly mix with the air entrained by the suppressorlobes. This principle can be extended by the use of aseries of tubes to give the same overall area as thebasic circular nozzle.

13. Deep corrugations, lobes, or multi-tubes, givethe largest noise reductions, but the performancepenalties incurred limit the depth of the corrugationsor lobes and the number of tubes. For instance, toachieve the required nozzle area, the overalldiameter of the suppressor may have to beincreased by so much that excessive drag andweight results. A compromise which gives anoticeable reduction in noise level with the leastsacrifice of engine thrust, fuel consumption oraddition of weight is therefore the designer's aim.

14. The high by-pass engine has two exhauststreams to eject to atmosphere. However, theprinciple of jet exhaust noise reduction is the sameas for the pure or low by-pass engine, i.e. minimizethe exhaust jet velocity within overall performanceobjectives. High by-pass engines inherently have alower exhaust jet velocity than any other type of gasturbine, thus leading to a quieter engine, but furthernoise reduction is often desirable. The mostsuccessful method used on by-pass engines is tomix the hot and cold exhaust streams within theconfines of the engine (fig. 19-5) and expel the lowervelocity exhaust gas flow through a single nozzle(Part 6).

15. In the high by-pass ratio engine thepredominant sources governing the overall noiselevel are the fan and turbine. Research has produced

a good understanding of the mechanisms of noisegeneration and comprehensive noise design rulesexist. As previously indicated, these are founded onthe need to minimize turbulence levels in the airflow,reduce the strength of interactions between rotatingblades and stationary vanes, and the optimum use ofacoustically absorbent linings.

Noise suppression

203

Fig. 19-5 Types of noise suppressor.

Administrator
文本框
12.在波纹形喷口中,自由流的大气沿着外部的波纹流动,并进入排气流,以促进迅速混合。在瓣形喷口中,排气被分开,流过各瓣和一个小的中央喷管。这形成许多单独的喷气流并迅速与消声器瓣带来的空气混合。这种原理可以扩展到利用一系列管子,使其总面积与基术的圆形喷管相等。 13.深的波纹、瓣或多个管子使噪声降低得最多,但招致的性能损失限制了波纹或瓣的深度和管子的数目。例如,为了达到所需的喷口面积,消声器的总直径可能不得不增大,这导致阻力和重量增加过多。因此,设计师的目标是采用折衷办法,既使噪声显著降低,同时又尽可能减小发动机推力和油耗方面的损失或重量的增加。
Administrator
文本框
11.如前所述,在纯喷气发动机和低涵道比发动机中,噪声的主要来源是尾喷气流,这可采用一迅速或较短的混合区予以降低。这样减小了低频噪声,但可能会增大高频噪声。幸而高频噪声会很快在大气中被吸收,一些传到听者的噪声已超出听觉范同,因而使人觉得这是一种噪声较小的发动机。这是在推进喷管上,采用一波纹形或瓣形的消声器(图19-5)以增大大气与排气流的接触面积来达到的。
Administrator
文本框
波纹形内部混台器
Administrator
文本框
瓣形喷管
Administrator
文本框
图19-5 消声器的类型
Page 212: Rolls royce jet engine

Noise suppression

204

Fig. 19-6 Noise absorbing materials and location.

Administrator
文本框
15.在高涵道比发动机中,控制整个噪声水平的主要噪声源是风扇和涡轮。通过研究,人们对噪声产生的机理有了很好的了解,已研究出综合性的降低噪声的设计方法。如前所述,这些方法是建立在需要尽量减小气流中的紊流、减少转动叶片和静止叶片之间的相互作用强度和最佳使用吸声衬垫的基础之上的。
Administrator
文本框
14.高涵道比发动机有两个排气流喷向大气。然而,减小喷气流噪声的原理与纯喷气的或低涵道比发动机的相同。即在全面性能目标内使排气流速度最小。高涵道比发动机的固有特点是,它比任何其它类型的燃气涡轮具有更低的排气速度,因而是一种噪声较小的发动机,但人们往往希望进一步降低噪声。用在内外涵发动机上的最成功的办法是在发动机内将热的和冷的排气流混台(图19-5),并通过单的喷口(第6章)排出较低速度的燃气。
Administrator
文本框
带孔面板
Administrator
文本框
典型的带孔衬垫 (铝或钛或复合材料)
Administrator
文本框
蜂窝结构支架
Administrator
文本框
坚固的底板
Administrator
文本框
密集编织金属丝布
Administrator
文本框
线性衬垫 (不锈钢和铝)
Administrator
文本框
双层孔板(铝)
Administrator
文本框
图19-6 吸声材料和位置
Page 213: Rolls royce jet engine

16. Noise absorbing 'lining' material convertsacoustic energy into heat. The absorbent linings (fig.19-6) normally consist of a porous skin supported bya honeycomb backing, to provide the requiredseparation between the facesheet and the solidengine duct. The acoustic properties of the skin andthe liner depth are carefully matched to the characterof the noise, for optimum suppression. The disad-vantage of liners is the slight increase in weight andskin friction and hence a slight increase in fuelconsumption. They do however, provide a verypowerful suppression technique.

CONSTRUCTION AND MATERIALS

17. The corrugated or lobe-type noise suppressorforms the exhaust propelling nozzle and is usually aseparate assembly bolted to the jet pipe. Provision isusually made to adjust the nozzle area so that it can

be accurately calibrated. Guide vanes are fitted tothe lobe-type suppressor to prevent excessive lossesby guiding the exhaust gas smoothly through thelobes to atmosphere. The suppressor is a fabricatedwelded structure and is manufactured from heat-resistant alloys.

18. Various noise absorbing lining materials areused on jet engines. They fall mainly within twocategories, lightweight composite materials that areused in the lower temperature regions and fibrous-metallic materials that are used in the highertemperature regions. The noise absorbing materialconsists of a perforate metal or composite facingskin, supported by a honeycomb structure on a solidbacking skin which is bonded to the parent metal ofthe duct or casing. For details of manufacture ofthese materials refer to Part 22.

Noise suppression

205

Administrator
文本框
16.吸声“衬垫”材料将声能转变成热。一般来说,吸声衬垫(图19-6)由一蜂窝底板支撑的多孔面板组成,以使该面板和发动机坚固的涵道之间有必要的分隔。面板的声学特性和衬垫的厚度要精心地与噪声特性相匹配,以便有效地抑制噪声。衬垫的缺点是重量以及表面摩擦稍有增加,因而油耗稍有增加。不过,它们的确是一种非常有效的抑制噪声技术。 结构和材料 17.波纹形或瓣形消声器构成了排气推进喷管,它通常是一个单独的组件,用螺栓固定到发动机喷管上。通常可以采取一些措施来调节尾喷口的面积,以对其进行精确的校准。在瓣形消声器上装有导流叶片,借助于引导排气平稳地从各瓣通向大气来防止过多的损失。消声器是焊接结构,用耐热合金制成。
Administrator
文本框
18.在喷气发动机上采用了各种不同的吸声衬垫材料。它们主要分为两类,一类是用于低温区的轻型复合材料。另一类是用于高温区的纤维-金属材料。吸声材料由一多孔金属或复合材料面板组成,由底板上的蜂窝状结构支撑,底板再粘接到涵道或机匣的母体金属上去。有关这些材料的制造的详细情况,请参阅第22章。
Page 214: Rolls royce jet engine

Rolls-Royce Conway

Rolls-Royce RM60

Produced in response to an Admiralty contractfor a coastal-craft engine with good cruisingeconomy, the RM60, although based onaeroengine philosophy, was designed fromthe first as a marine gas turbine. Two RM60swent to sea in 1953 in the former steamgunboat HMS Grey Goose, the world's firstwarship to be powered solely by gas turbines.

Administrator
文本框
RM60发动机是按英国海军部要求设计的,这是具有良好巡航经济性的 发动机。虽然它是以航空发动机为基础,但从开始就是作为船用燃气发动机设计的。两台RM60发动机于1953年在以前的蒸汽发动机炮艇HMS Grey Goose号上下海。这是世界上第一艘以燃气涡轮发动机为动力的战舰。
Administrator
文本框
罗尔斯-罗伊斯公司 “康维”(Conway)发动机
Administrator
文本框
罗尔斯-罗伊斯公司 RM60发动机
Page 215: Rolls royce jet engine

20: Thrust distribution

Contents Page

Introduction 207Distribution of the thrust forces 207Method of calculating the thrust forces 209Calculating the thrust of the engine 209

Compressor casingDiffuser ductCombustion chambersTurbine assemblyExhaust unit and jet pipePropelling nozzleEngineInclined combustion chambers

Afterburning 212

INTRODUCTION

1. Although the principles of jet propulsion (see Part1) will be familiar to the reader, the distribution of thethrust forces within the engine may appearsomewhat obscure- These forces are in effect gasloads resulting from the pressure and momentumchanges of the gas stream reacting on the enginestructure and on the rotating components. They arein some locations forward propelling forces and inothers opposing or rearward forces. The amount that

the sum of the forward forces exceeds the sum of therearward forces is normally known as the rated thrustof the engine.

DISTRIBUTION OF THE THRUST FORCES

2. The diagram in fig. 20-1 is of a typical single-spool axial flow turbo-jet engine and illustrates wherethe main forward and rearward forces act. The originof these forces is explained by following the engineworking cycle shown in Part 2.

207

Administrator
文本框
推力分布 2.图20-1是一种典型的单转子轴流式涡轮喷气发动机,表示了主要的向前的和向后的力作用于何处。用第2章表示的发动机工作循环可解释这些力的来源。
Administrator
文本框
第二十章 推力分布
Administrator
文本框
绪言 推力分布 计算推力的方法 发动机推力计算 压气机机匣 扩散器涵道 燃烧室 涡轮装置 排气袋置和喷管 推进喷管 发动机 倾斜燃烧室 加力燃烧
Administrator
文本框
绪言 1.虽然喷气推进原理(见第1章)对读者来说可能是熟悉的。但是,对发动机内部的推力分布可能会有点不太清楚。这些力实际上是燃气流的压力和动量变化导致的气体载荷对发动机结构件和转动部件产生的反作用力。在一些位置,它们是向前的推进力,在另外一些地方,则是相反的即向后的力。向前的力的总和超过向后的力的总和的总额通常被称作发动机的额定推力。
Page 216: Rolls royce jet engine

3. At the start of the cycle, air is induced into theengine and is compressed. The rearward accelera-tions through the compressor stages and theresultant pressure rise produces a large reactiveforce in a forward direction. On the next stage of itsjourney the air passes through the diffuser where itexerts a small reactive force, also in a forwarddirection,

4. From the diffuser the air passes into thecombustion chambers (Part 4) where it is heated,and in the consequent expansion and acceleration ofthe gas large forward forces are exerted on thechamber walls.

5. When the expanding gases leave the combustionchambers and flow through the nozzle guide vanesthey are accelerated and deflected on to the bladesof the turbine (Part 5). Due to the acceleration anddeflection, together with the subsequent straighten-ing of the gas flow as it enters the jet pipe, consider-able 'drag' results; thus the vanes and blades aresubjected to large rearward forces, the magnitude of

which may be seen on the diagram. As the gas flowpasses through the exhaust system (Part 6), smallforward forces may act on the inner cone or bullet,but generally only rearward forces are produced andthese are due to the 'drag' of the gas flow at thepropelling nozzle.

6. It will be seen that during the passage of the airthrough the engine, changes in its velocity andpressure occur (Part 2). For instance, where aconversion from velocity (kinetic) energy to pressureenergy is required the passages are divergent inshape, similar to that used in the compressordiffuser. Conversely, where it is required to convertthe energy stored in the combustion gases tovelocity, a convergent passage or nozzle, similar tothat used in the turbine, is employed. Where theconversion is to velocity energy, 'drag' loads orrearward forces are produced; where the conversionis to pressure energy, forward forces are produced.Part 2, fig. 2-3 illustrates velocity and pressurechanges at two points on the engine.

Thrust distribution

208

Fig. 20-1 Thrust distribution of a typical single-spool axial flow engine.

Administrator
文本框
3.在喜欢开始时,空气被吸入发动机并被压缩。通过压气机各级的向后加速和总的压力升高产生一个很大的向前的反作用力。在空气流程的下一步,空气通过扩压气。它在这里产生一个小的反作用力,方向也向前。
Administrator
文本框
图20-1 一种典型的单转子轴流式发动机的推力分布
Administrator
文本框
压气机
Administrator
文本框
扩压器
Administrator
文本框
燃烧室
Administrator
文本框
涡轮
Administrator
文本框
排气装置 和喷管
Administrator
文本框
推进喷管
Administrator
文本框
向前的燃气载荷57,836磅
Administrator
文本框
向后的燃气载荷46,678磅
Administrator
文本框
5.当膨胀的燃气离开燃烧室和流经导向器叶片时,它们被加速并偏转到涡轮的工作叶片上(第5章)。由于燃气流的加速和偏转,加上后来进入喷管时变直,就产生了相当大的“阻力”;因而静止叶片和转动叶片都受到很大的向后的力,其大小可在图中看出。当燃气流通过排气系统(第6章)时,较小的向前的力可作用于内锥或尾锥上。但一般来说,只产生向后的力,它们是由于燃气流在推进喷管中的“阻力”所致。 6.可以看到,在空气通过发动机时,其速度和压力会发生变化(第2章)。例如,在需要将速度(动)能转换成压力能的地方,通道呈扩散形,与用于压气机扩压器上的形状类似。相反,在需要将储存在燃烧后的燃气中的能量转换成速度的地方,就采用与涡轮中类似的收敛通道或喷管。在转换成速度能的地方,就产生“阻力”载荷或向后的力;在转换成压力能的地方,就产生向前的力。第2章中的图2-3表示了发动机上这两处的速度和压力变化。
Administrator
文本框
4.空气从扩压气进入燃烧室(第4章),在那里受到加热。气体在后来的膨胀和加速中,在燃烧室壁上作用有很大的向前的力。
Administrator
文本框
计算推力的方法 7.如果已经知道特定气流段进口和出口的面积、压力、速度和质量流量,就可计算发动机或发动机的任何气流段的推力或气体载荷。
Page 217: Rolls royce jet engine

METHOD OF CALCULATING THE THRUSTFORCES

7. The thrust forces or gas loads can be calculatedfor the engine, or for any flow section of the engine,provided that the areas, pressures, velocities andmass flow are known for both the inlet and outlet ofthe particular flow section.

8. The distribution of thrust forces shown in fig. 20-1 can be calculated by considering each componentin turn and applying some simple calculations. Thethrust produced by the engine is mainly the productof the mass of air passing through the engine and thevelocity increase imparted to it (i.e. Newtons SecondLaw of Motion), however, the pressure differencebetween the inlet to and the outlet from the particularflow section will have an effect on the overall thrustof the engine and must be included in the calculation.

9. To calculate the resultant thrust for a particularflow section it is necessary to calculate the totalthrust at both inlet and outlet, the resultant thrustbeing the difference between the two valuesobtained.

10. Calculation of the thrust is achieved using thefollowing formula:

Where A = Area of flow section in sq.in.P = Pressure in lb. per sq.in.W = Mass flow in lb. per sec. vJ = Velocity of flow in feet per sec. g = Gravitational constant 32.2 ft. per

sec. per sec.

CALCULATING THE THRUST OF THE ENGINE

11. When applying the above method to calculatethe individual thrust loads on the various componentsit is assumed that the engine is static. The effect ofaircraft forward speed on the engine thrust will bedealt with in Part 21. In the following calculations 'g'is taken to be 32 for convenience. To assist in thesecalculations the locations concerned are illustratedby a number of small diagrams.

Compressor casing12. To obtain the thrust on the compressor casing itis necessary to calculate the conditions at the inlet to

the compressor and the conditions at the outlet fromthe compressor. Since the pressure and the velocityat the inlet to the compressor are zero, it is onlynecessary to consider the force at the outlet from thecompressor. Therefore, given that the compressor-

OUTLET Area (A) = 182 sq.in.Pressure (P) = 94 lb. per sq.in.

(gauge)Velocity (vJ) = 406 ft. per sec.Mass flow (W) = 153 lb. per sec.

The thrust

= 19,049 lb. of thrust in a forward direction.

Diffuser duct13. The conditions at the diffuser duct inlet are thesame as the conditions at the compressor outlet, i.e.19,049 lb.Therefore, given that the diffuser--OUTLET Area (A) = 205 sq.in.

Pressure (P) = 95 lb. per sq.in.(gauge)

Velocity (vJ) = 368 ft. per sec.Mass flow (W) = 153 lb. per sec.

The thrust

= 21,235 - 19,049

= 2,186 lb. of thrust in a forward direction.

Thrust distribution

209

gM)PxA(Thrust JV+=

032

406x153)94x182( −+=

049,1932

368x153)95x205( −+=

049,19g

W)PxA( JV −+=

0g

M)PxA( JV −+=

Administrator
文本框
8.图20-1中表示的推力的分布可借助于依次考虑每一部件并采用一些简单的计算方法来计算。发动机产生的推力主要是流过发动机的空气的质量及其速度增量的乘积(即牛顿第二运动定律),不过,某个特定流段的进口和出口之间的压差对发动机的总推力具有影响,计算时必须加以考虑。
Administrator
文本框
9.为了计算一特定流段的总推力,必须计算进口和出口处的总的推力。总推力就是所得到的这两个值之差。
Administrator
文本框
10.推力的计算采用下列公式: 式中 A=气流段的面积,单位为平方英寸 P=压力,单位为磅/平方英寸 W=质量流量,单位为磅/秒 vJ=气流的速度,单位为英尺/秒 g=重力常数,32.2英尺/平方秒
Administrator
文本框
发动机推力计算 11.当采用上述方法计算不同部件上的单个推力载荷时,假设发动机是静止状态的。飞机前飞速度对发动机推力的影响将在第21章中讨论。为方便起见,在下列计算中,“g”取32。为了帮助计算,有关的位置用许多小的简图来表示。
Administrator
文本框
压气机机匣 12.为了获得压气机机匣上的推力,必须计算压气机进口和压气机出口处的状态。由于压气机进口处的压力和速度为零,只需考虑压气机出口处的力。因此,假定压气机: 出口面积 (A)=182平方英寸 压力(P)=94磅/平方英寸(表值) 速度(vJ)=406英尺/秒 质量流量(W)=153磅/秒
Administrator
文本框
推力
Administrator
文本框
向前的推力
Administrator
文本框
向前的总推力
Administrator
文本框
压气机
Administrator
文本框
13.扩散器涵道进口处的状态与压气机出气口处相同,即19,049磅。因此,假定扩散器: 出口面积 (A)=205平方英寸 压力 (P)=95磅/平方英寸(表值) 速度 (vJ)=368英尺/秒 质量流量(w)=153磅/秒
Administrator
文本框
扩散器涵道
Page 218: Rolls royce jet engine

Combustion chambers14. The conditions at the combustion chamber inletare the same as the conditions at the diffuser outlet,i.e. 21,235 lb. Therefore, given that the combustionchamber-OUTLET Area (A) = 580 sq.in.

Pressure (P) = 93 lb. per sq.in.(gauge)

Velocity (vJ) = 309 ft. per sec.Mass flow (W) = 153 lb. per sec.

The thrust

= 55,417 - 21,235

= 34,182 !b. of thrust in a forward direction.

Turbine assembly15. The conditions at the turbine inlet are the sameas the conditions at the combustion chamber outlet,i.e. 55,417 lb.

Therefore given that the turbine--

OUTLET Area (A) = 480 sq.in.Pressure (P) = 21 lb. per sq.in.

(gauge)Velocity (vJ) = 888 ft. per sec.Mass flow (W) = 153 lb. per sec.

The thrust

= 14,326 - 55,417

= -41,091

This negative value means a force acting in arearward direction.

Exhaust unit and jet pipe16. The conditions at the inlet to the exhaust unitare the same as the conditions at the turbine outlet,i.e. 14,326 lb. Therefore, given that the jet pipe--OUTLET Area (A) = 651 sq.in.

Pressure (P) = 21 lb. per sq.in.(gauge)

Velocity (vJ) = 643 ft. per sec.Mass flow (W) = 153 lb. per sec.

Thrust distribution

210

235,21g

W)PxA( JV −+=

417,55g

W)PxA( JV −+=

235,2132

309x153)93x580( −+=

417,5532

888x153)21x480( −+=

Administrator
文本框
向前的总推力2,186磅
Administrator
文本框
燃烧室 14.燃烧室进口处的状态与扩散器出口处相同,即21,235磅。 因此,假定燃烧室:
Administrator
文本框
向前的总推力34,182磅
Administrator
文本框
涡轮装置 15.涡轮进口处的状态与燃烧室出口处相同,即55,417磅。 因此,假定涡轮: …… =向前的推力-41,091磅这个负值意味着一个向后作用的力。
Administrator
文本框
导向器叶片
Administrator
文本框
涡轮盘
Administrator
文本框
涡轮装置
Administrator
文本框
排气装置和喷管 16.排气装置进口处的状态与涡轮出口处相同,即14,326磅。因此,假定喷管:……
Page 219: Rolls royce jet engine

The thrust

= 16,745 - 14,326

= 2,419 lb. of thrust in a forward direction.

Propelling nozzle17. The conditions at the inlet to the propellingnozzle are the same as the conditions at the jet pipeoutlet, i.e. 16,745 lb. Therefore, given that the propelling nozzle--OUTLET Area (A) = 332 sq.in.

Pressure (P) = 6 lb. per sq.in.(gauge)

Velocity (vJ) = 1,917 ft. per sec.Mass flow (W) = 153 lb. per sec.

The thrust

= 11,158 - 16,745

= 5,587lb. acting in a rearward direction.

It is emphasized that these are basic calculationsand such factors as the effect of air offtakes havebeen ignored.

18. Based on the individual calculations, the sum ofthe forward or positive loads is 57,836 lb. and thesum of the rearward or negative loads is 46,678 lb.Thus, the resultant (gross or total) thrust is 11,158 lb.

Engine19. It will be of interest to calculate the thrust of theengine by considering the engine as a whole, as theresultant thrust should be equal to the sum of theindividual gas loads previously calculated.

20. Although the momentum change of the gasstream produces most of the thrust developed by the

engine (momentum thrust = ), an additional

thrust is produced when the engine operates with thepropelling nozzle in a 'choked' condition (Part 6). Thisthrust results from the aerodynamic forces which arecreated by the gas stream and exert a pressure

Thrust distribution

211

326,14g

W)PxA( JV −+= 745,16g

W)PxA( JV −+=

326,1432

643x153)21x651( −+= 745,1632

917,1x153)6x332( −+=

gW JV

Administrator
文本框
发动机 19.将发动机作为一个整体来考虑,将有助于计算发动机的推力,因为总推力应该等于以前计算的各单独气体载荷的总和。 20.虽然燃气流的动量变化产生出发动机的大部分推力……,当发动机在推进喷管处于“堵塞”状态下(第6章)工作时,就产生了附加推力。这种推力是由气动力产生的,气动力是由燃气流产生的并在推进喷管(压力推力)的出口面积上产生压力。用代数方法,这种力表示由(P-Po)A。 式中: A=推进喷管的面积,地位为平方英寸 P=压力,地位为磅/平方英寸 Po=大气压力,地位为磅/平方英寸 因此,假定质量流量、压力和面积的数值与以前计算中所用的相同,即: …… =11,158磅,与以前计算时将发动机各位置上的气体载荷相加所得结果相同。
Administrator
文本框
推进喷管 17.推进喷管进口处的状态与喷管出口处相同,即16,745磅。因此,假定推进喷管:…… 需要强调指出的是,这些是基率的计算,象空气引气的影响这类因素已忽略不计。
Administrator
文本框
18.根据各项计算。向前的或正的载荷总数是57,836磅,向后的或负载荷的总数是46,678磅。因而总(总的或全部的)推力为11,158磅。
Administrator
文本框
向前的总推力2,419磅
Administrator
文本框
向后总推力5,587磅
Administrator
文本框
推进喷管
Administrator
铅笔
Administrator
标注
动量推力
Page 220: Rolls royce jet engine

across the exit area of the propelling nozzle(pressure thrust). Algebraically, this force isexpressed as (P-P0) A.

Where A = Area of propelling nozzle in sq.in. P = Pressure in lb. per sq.in. P0 = Atmospheric pressure in lb. per sq.in.

Therefore, assuming values of mass flow, pressureand area to be the same as in the previous calcula-tions i.e.

Area of propelling nozzle (A) = 332 sq.in.Pressure (P) = 6 lb. per sq.in.

(gauge)Atmospheric Pressure (P) = 0 lb. per sq.in.

(gauge)Mass flow (W) = 153 lb. per sec.Velocity (vJ) = 1,917 ft. per sec.

The thrust

= 1,992 + 9,166

= 11,158 lb., the same as previously calculated

by combining the gas loads on the individualengine locations.

21. On engines that operate with a non-chokednozzle, the (P-P0) A function does not apply and thethrust results only from the gas stream momentumchange.

Inclined combustion chambers22. In the previous example (Para. 14) the flowthrough the combustion chamber is axial, however, ifthe combustion chamber is inclined towards the axisof the engine, then the axial thrust will be less thanfor an axial flow chamber. This thrust can be obtainedby multiplying the sum of the outlet thrust by thecosine of the angle (see fig. 20-2). The

cosine = and for a given angle

is obtained by consulting a table of cosines. It shouldbe emphasized that if the inlet and outlet are atdifferent angles to the engine axis, it is necessary tomultiply the inlet and outlet thrusts separately by thecosine of their respective angles.

AFTERBURNING

23. When the engine is fitted with an afterburner(Part 16), the gases passing through the exhaust

Thrust distribution

212

Fig. 20-2 A hypothetical combustion chamber showing values required for calculating thrust.

0g

WA)PP( JV0 −+⋅−=

032

917,1X153332)06( −+⋅−=

HypotenuseBase

Administrator
文本框
21.当发动机在喷管不堵塞状态工作时,函数(P-Po)不适用,推力仅由燃气流动量变化产生。
Administrator
文本框
倾斜燃烧室
Administrator
文本框
22.在以前的例子(第14段)中,通过燃烧室的气流是轴向的。然而,如果燃烧室朝发动机的轴线倾斜,那么,轴向推力就小于轴流式燃烧室。将该角的余弦(见图20-2)乘上出口推力的和可获得这个推力。余弦=底边/斜边,对一定的角度来说,查阅余弦表便可获得。应该强调指出,如果进口和出口对发动机轴的角度不同,就必须分别将它们各自夹角的余弦单独乘以进口和出口推力。
Administrator
文本框
图20-2 表示计算推力所需值的假设的燃烧室
Administrator
文本框
发动机轴线-基线
Administrator
文本框
Administrator
文本框
出口
Administrator
文本框
面积 压力 速度
Administrator
标注
推力
Administrator
标注
燃烧室轴线-斜边
Administrator
标注
气流
Page 221: Rolls royce jet engine

system are reheated to provide additional thrust. Theeffect of afterburning is to increase the volume of theexhaust gases, thus producing a higher exit velocityat the propelling nozzle.

24. Assuming that an afterburner jet pipe andpropelling nozzle are fitted to the engine used in theprevious calculations, and the new conditions at thepropelling nozzle are as follows-

OUTLET Area (A) = 455 sq.in.Pressure (P) = 5 lb. per sq.in.

(gauge)Velocity (vJ) = 2,404 ft. per sec.Mass flow (W) = 157 lb. per sec.

The thrust

= 14,069 - 16,745

= 2,676 lb. acting in a rearward direction.

Therefore, compared with the previous calculation inpara. 17, it will be seen that the negative thrust isreduced from -5,587 lb. to -2,676 lb.; the overallpositive thrust is thus increased by 2,911 lb; which isequivalent to a thrust increase of more than 25 percent.

25. To arrive at the total thrust of the engine withafterburning the calculations in para. 20 should usethe above figures.

Thrust distribution

213

745,16g

W)PxA( JV −+=

745,1632

404,2x157)5x455( −+=

Administrator
文本框
加力燃烧 23.当发动机装有加力燃烧室(第16章)时,通过排气系统的气体就再次被加热,以提供附加的推力。加力的作用是增大排气的体积,因而在推进喷管处产生更高的出口速度。
Administrator
文本框
24.假设在以前计算时用的发动机装上加力喷管和推进喷管,推进喷管的新的状态如下: …… =2,676磅向后的作用力 因此,与前面第17段中的计算相比,可以看出,负推力从-5,587磅减至-2,676磅;因而整个正推力增加了2,911磅,相当于推力增大了25%以上。
Administrator
文本框
25.为了获得带加力燃烧的发动机的总推力,第20段中的计算应该采用上述数字。
Administrator
文本框
向后总推力2,676磅
Administrator
文本框
推进喷管
Administrator
文本框
加力燃烧室推进喷管
Page 222: Rolls royce jet engine

Rolls-Royce RB168 MK807

Blackburn Nimbus

The Nimbus was developed from the A129turbo-shaft which, in its turn, was a modifiedTurbomeca Artouste built under licence. TheNimbus developed 968 hp, but for helicopteruse was flat-rated at 710 hp. The engine wasused in Westland Wasp and Scout helicoptersand four 700 hp units were used to power theexperimental 5RN-2 hovercraft.

Administrator
文本框
“宁巴斯”(Nimbus)是从A129涡轮轴发动机发展而来。A129是按专利生产的透博卡(Turbomeca)公司的“阿都斯特”(Aetouste)的改型。这种“宁巴斯”产生968马力的功率,但用于直升机时额定功率为710马力。这种发动机用在韦斯特兰公司的“黄蜂”(Wasp)和“侦察兵”(Scout)直升机上,4台700马力的发动机用于实验型5RN-2气垫船上。
Administrator
文本框
罗尔斯-罗伊斯公司 RBl68 Mk807发动机
Administrator
文本框
布莱克本 “宁巴斯”发动机
Page 223: Rolls royce jet engine

21: Performance

Contents Page

Introduction 215Engine thrust on the test bench 217

Comparison between thrust and horse-power

Engine thrust in flight 218Effect of forward speedEffect of afterburning on engine thrustEffect of altitudeEffect of temperature

Propulsive efficiency 223 Fuel consumption and power-to-weight relationship 225

INTRODUCTION

1. The performance requirements of an engine areobviously dictated to a large extent by the type ofoperation for which the engine is designed. Thepower of the turbo-jet engine is measured in thrust,produced at the propelling nozzle or nozzles, andthat of the turbo-propeller engine is measured inshaft horse-power (s.h.p.) produced at the propellershaft. However, both types are in the main assessedon the amount of thrust or s.h.p. they develop for agiven weight, fuel consumption and frontal area.

2. Since the thrust or s.h.p. developed is dependenton the mass of air entering the engine and the accel-eration imparted to it during the engine cycle, it isobviously influenced, as subsequently described, bysuch variables as the forward speed of the aircraft,altitude and climatic conditions, These variablesinfluence the efficiency of the air intake, thecompressor, the turbine and the jet pipe; conse-quently, the gas energy available for the productionof thrust or s.h.p. also varies.

3. In the interest of fuel economy and aircraft range,the ratio of fuel consumption to thrust or s.h.p. shouldbe as low as possible. This ratio, known as thespecific fuel consumption (s.f.c.), is expressed inpounds of fuel per hour per pound of net thrust ors.h.p. and is determined by the thermal andpropulsive efficiency of the engine. In recent yearsconsiderable progress has been made in reducings.f.c. and weight. These factors are further explainedin para. 46.

215

Administrator
文本框
2.鉴于发动机产生的推力或轴马力取决于进入发动机的空气的质量和它在发动机循环过程中所获得的加速度,正如后面所介绍的。它显然受诸如飞机的前飞速度、高度和气候条件之类的变量的影响。这些变量影响着进气道、压气机、涡轮和喷管的效率使可用于产生推力或轴马力的燃气能量也随之发生变化。
Administrator
文本框
第二十一章 性能
Administrator
文本框
绪言 试车台上的发动机推力 推力和马力之间的 比较 飞行中的发动机推力 前飞速度的影响 加力燃烧对发动机 推力的影响 高度的影响 温度的影响 推进效率 油耗和功率重量的关系
Administrator
文本框
1.一种发动机的性能要求显然在很大程度上在于为之设计的发动机工作类型。涡轮喷气发动机的作功能力用推力来衡量,它产生于推进喷管或喷口处,而涡轮螺桨发动机的作功能力以轴马力(s.h.p.)来度量,它产生于螺旋桨轴处。不过,这两种类型的发动机主要按它们在一定的重量、油耗和迎风面积条件下产生的推力或轴马力的总值来评定。
Administrator
文本框
绪言
Administrator
文本框
3.为了有利于省油和飞机的航程,耗油量与推力或轴马力的比例应尽可能低。这种比率叫作耗油率(s.f.c.),以每小时每磅净推力或轴马力的耗油磅数来表示,由发动机的热效率和推进效率确定。近年来,在减少耗油率和重量方面已取得很大进展。这些因索将在第46段中进一步解释。
Administrator
文本框
4.热效率常被称作发动机的内部效率,而推进效率称作外部效率。在第37段中描述的这个推进效率解释了为什么飞机在低速时纯喷气发动机的效率不如涡轮螺桨发动机,因而导致涡轮风扇发动机以及最近的桨扇发展。
Administrator
文本框
5.热效率和推进效率在很大程度上还影响着压气机和涡轮的尺寸,因而在输出给定的情况下,这些效率能决定发动机的重量和直径。
Page 224: Rolls royce jet engine

4. Whereas the thermal efficiency is often referredto as the internal efficiency of the engine, thepropulsive efficiency is referred to as the externalefficiency. This latter efficiency, described in para. 37,explains why the pure jet engine is less efficient thanthe turbo-propeller engine at lower aircraft speedsleading to development of the by-pass principle and,more recently, the propfan designs.

5. The thermal and the propulsive efficiency alsoinfluence, to a large extent, the size of thecompressor and turbine, thus determining the weightand diameter of the engine for a given output.

6. These and other factors are presented in curvesand graphs, calculated from the basic gas laws (Part2), and are proved in practice by bench and flighttesting, or by simulating flight conditions in a highaltitude test cell. To make these calculations, specificsymbols are used to denote the pressures and tem-peratures at various locations through the engine; for

instance, using the symbols shown in fig. 21-1 the

overall compressor pressure ratio is . These

symbols vary slightly for different types of engine; forinstance, with high by-pass ratio engines, and alsowhen afterburning (Part 16) is incorporated,additional symbols are used.

7. To enable the performance of similar engines tobe compared, it is necessary to standardize in someconventional form the variations of air temperatureand pressure that occur with altitude and climaticconditions. There are in use several differentdefinitions of standard atmospheres, the one in mostcommon use being the International StandardAtmosphere (I.S.A.). This is based on a temperaturelapse rate of approximately 1.98 K. degrees per1,000ft,, resulting in a fall from 288.15 deg.K. (15deg.C) at sea level to 216.65 deg.K (-56.5 deg.C.) at36,089 ft. (the tropopause). Above this altitude the

Performance

216

Fig. 21-1 Temperature and pressure notation of a typical turbo-jet engine.

1

3

PP

Administrator
文本框
6.这些和其他因素在曲线和图表中做了介绍,它们是从基本的气体定律(第2章)中计算出来的,并在试车台和试飞或在高空试验台上模拟飞行条件下得到实验证明。为了进行这些计算,采用专门的符号来表示发动机各部位的压力和温度;例如,利用图21-1中表示的符号,压气机的总增压比为P3/P1。这些符号因发动机类型不同而稍有不同;例如,对高涵道比发动机,还要当采用加力(第16章)时,就使用更多的符号。
Administrator
文本框
7.为了能对相似的一些发动机的性能进行比较,有必要以常用的形式使随高度和天气条件而发生的空气温度和压力的变化标准化。在在使用中,对标准大气有几种不同的定义,最为通用的是国际标准大气(I.S.A.).这是根据温度的递减率约为每1000英尺1.98K,导致从海平面的288.15K(15℃)降至36,089英尺(对流层顶)的216.65K(-56.5℃)。在这个高度以上,直至65,617英尺国际标准大气温度不变。在海平面国际标准大气的标准压力为14.69磅/平方英寸,在对流层顶,它降至3.28磅/平方英寸(参阅图21-10国际标准大气表)
Administrator
文本框
图21-1 一种典型的涡喷发动机的温度和压力符号
Administrator
文本框
大气 进口
Administrator
文本框
低压压气机输出 高压压气机输出
Administrator
文本框
涡轮入口
Administrator
文本框
高压涡轮出口 低压涡轮出口 排气 推进喷管
Administrator
文本框
试车台上的发动机推力 8.试车台上的涡轮喷气发动机的推力与飞行时的略有不同。现代试验设施可用于模拟高空的大气条件,因而提供了一种方法使发动机在不离开地面的情况下评价涡轮喷气发动机的一些飞行性能。这是很重要的,因为在高空遇到的环境温度和压力变化对发动机的推力影响相当大。
Page 225: Rolls royce jet engine

temperature is constant up to 65.617ft. The I.S.A.standard pressure at sea level is 14.69 pounds persquare inch falling to 3.28 pounds per square inch atthe tropopause (refer to I.S.A. table fig. 21-10).

ENGINE THRUST ON THE TEST BENCH

8. The thrust of the turbo-jet engine on the testbench differs somewhat from that during flight.Modern test facilities are available to simulateatmospheric conditions at high altitudes thusproviding a means of assessing some of theperformance capability of a turbo-jet engine in flightwithout the engine ever leaving the ground. This isimportant as the changes in ambient temperatureand pressure encountered at high altitudes consider-ably influence the thrust of the engine.

9. Considering the formula derived in Part 20 forengines operating under 'choked' nozzle conditions,

it can be seen that the thrust can be further affectedby a change in the mass flow rate of air through theengine and by a change in jet velocity. An increase inmass airflow may be obtained by using waterinjection (Part 17) and increases in jet velocity byusing afterburning (Part 16).

10. As previously mentioned, changes in ambientpressure and temperature considerably influence thethrust of the engine. This is because of the way theyaffect the air density and hence the mass of airentering the engine for a given engine rotationalspeed. To enable the performance of similar enginesto be compared when operating under differentclimatic conditions, or at different altitudes, correctionfactors must be applied to the calculations to returnthe observed values to those which would be foundunder I.S.A. conditions. For example, the thrustcorrection for a turbo-jet engine is: Thrust (lb.) (corrected) =

thrust (lb.) (observed) x

where P0 = atmospheric pressure in inches of mercury (in. Hg.) (observed)

30 = I.S.A. standard sea level pressure (in.Hg.)

11. The observed performance of the turbo-propeller engine is also corrected to I.S.A.conditions, but due to the rating being in s.h.p. and

not in pounds of thrust the factors are different. Forexample, the correction for s.h.p. is:S.h.p. (corrected) =

s.h.p. (observed)

where P0 = atmospheric pressure (in.Hg.)(observed)

T0 = atmospheric temperature in deg.C.(observed)

30 = I.S.A. standard sea level pressure(in.Hg.)

273 + 15 = I.S.A. standard sea leveltemperature in deg.K.

273 + T0 = Atmospheric temperature in deg.K.

In practice there is always a certain amount of jetthrust in the total output of the turbo-propeller engineand this must be added to the s.h.p. The correctionfor jet thrust is the same as that in para. 10.

12. To distinguish between these two aspects of thepower output, it is usual to refer to them as s.h.p. andthrust horse-power (t.h.p.). The total equivalenthorse-power is denoted by t.e.h.p. (sometimese.h.p.) and is the s.h.p. plus the s.h.p. equivalent tothe net jet thrust. For estimation purposes it is takenthat, under sea- level static conditions, one s.h.p. isequivalent to approximately 2.6 lb. of jet thrust.Therefore :

13. The ratio of jet thrust to shaft power isinfluenced by many factors. For instance, the higherthe aircraft operating speed the larger may be therequired proportion of total output in the form of jetthrust. Alternatively, an extra turbine stage may berequired if more than a certain proportion of the totalpower is to be provided at the shaft. In general,turbo-propeller aircraft provide one pound of thrustfor every 3.5 h,p. to 5 h.p.

Comparison between thrust and horse-power14. Because the turbo-jet engine is rated in thrustand the turbo-propeller engine in s.h.p., no directcomparison between the two can be made without apower conversion factor. However, since the turbo-propeller engine receives its thrust mainly from thepropeller, a comparison can be made by convertingthe horse-power developed by the engine to thrust orthe thrust developed by the turbo-jet engine to t.h.p.;that is, by converting work to force or force to work.For this purpose, it is necessary to take into accountthe speed of the aircraft.

Performance

217

gWA)PP(Thrust JV

0 +⋅−=

0P30

00 T27315273x

P30x

++

6.2.lbthrustjet.p.h.s.p.h.e.t +=

Administrator
文本框
9.考虑第20章推导出来的用于发动机在“壅塞”喷口条件下工作的公式,…… 可以看到,推力还能受到通过发动机的空气的质量流量的变化和喷气速度变化的影响。采用喷水的办法可使质量流量增加(第17章),采用加力可使喷气速度增加(第16章)。
Administrator
文本框
10.如前面所述,大气压力和温度的变化对发动机的推力影响相当大。这是因为它们影响空气的密度,因此在一定的发动机转速时影响进入发动机的空气质量。为了能对相似的一些发动机在不同的气候条件或不同高度时的性能进行比较,计算时必须采用修正系数,使观察到的值回到国际标准大气条件下来。例如,对涡轮喷气发动机的推力修正是:推力(磅)(修正值)=推力(磅)(观测值)×30/P0
Administrator
文本框
11.观察到的涡轮螺桨发动机的性能也按国际标准大气条件进行修正。但由于额定功率是轴马力,而不是以磅推力计,因此系数不同。例如,对轴马力的修正是:式中Po=大气压力(英寸汞柱)(观察值) T0=大气温度,℃(观察值) 30=国际标准大气海平面标准压力(英寸汞柱) 273+15=国际标准大气海平面标准温度,K 273+To=大气温度,K 实际上,在涡轮螺桨发动机的总的输出中。总有一数量的喷气推力,因此,必须将它加到轴马力上。对喷气推力的修正与第10段中的做法相同。
Administrator
标注
轴马力(修正值)=轴马力(观察值)
Administrator
文本框
12.为了对这二种功率输出加以区分,通常将它称作轴马力和推力马力(t.h.p.)。总当量马力用(t.e.h.p.)(有时候用e.h.p.)来表示。是轴马力加上净喷气推力的轴马力当量。用于估算时,它采用在海平面静态条件下,1轴马力约相当于2.6磅的喷气推力。因此: 总当量马力=轴马力+排气推力(磅)/2.6
Administrator
标注
大气压力,以水银柱的英寸数计(观察值)
Administrator
标注
国际标准大气海平面标准压力(英寸汞柱)
Administrator
文本框
13.喷气推力对轴功率的比受多种因素的影响。例如,飞机飞行速度越大,所要求的以喷气推力形式总输出中所占的比例可能就越大。另一方面,如果要求轴上提供的功率在总功率中超过一定的比例,就可能需要额外的涡轮级。一般来说,涡轮螺桨飞机为每产生1磅推力需具备3.5至5马力。
Page 226: Rolls royce jet engine

15. The t.h.p. is expressed as

where F = lb. of thrustV = aircraft speed (ft. per sec.)

Since one horse-power is equal to 550 ft.lb. per sec.and 550 ft. per sec. is equivalent to 375 miles perhour, it can be seen from the above formula that onelb. of thrust equals one t.h.p. at 375 m.p.h. It is alsocommon to quote the speed in knots (nautical milesper hour); one knot is equal to 1.1515 m.p.h, or onepound of thrust is equal to one t.h.p. at 325 knots.

16. Thus if a turbo-jet engine produces 5,000 lb. ofnet thrust at an aircraft speed of 600 m.p.h. the t.h.p.

would be

However, if the same thrust was being produced bya turbo-propeller engine with a propeller efficiency of55 per cent at the same flight speed of 600 m.p.h.,then the t.h.p. would be

Thus at 600 m.p.h. one lb. of thrust is the equivalentof about 3 t.h.p.

ENGINE THRUST IN FLIGHT

17. Since reference will be made to gross thrust,momentum drag and net thrust, it will be helpful todefine these terms:from Part 20, gross or total thrust is the product of themass of air passing through the engine and the jetvelocity at the propelling nozzle, expressed as:

The momentum drag is the drag due to themomentum of the air passing into the engine relative

to the aircraft velocity, expressed as where

W = Mass flow in lb. per sec.V = Velocity of aircraft in feet per sec.g = Gravitational constant 32.2 ft. per sec. per

sec.The net thrust or resultant force acting on the aircraftin flight is the difference between the gross thrustand the momentum drag.

18. From the definitions and formulae stated inpara, 17; under flight conditions, the net thrust of the

Performance

218

Fig. 21-2 The balance of forces and expression for thrust and momentum drag.

.secper.ft550FV

000,8375

600x000,5 =

545,1455

100x000,8 =

gWA)PP( Jv

0 +−

gWV

Administrator
文本框
推力和马力之间的比较
Administrator
文本框
14.因为涡轮喷气发动机是以推力而涡轮螺桨发动机是以轴马力计算的,因此,如果没有一个功率转换系数,就不能在这二者之间直接比较。然而,由于涡轮螺桨发动机主要从螺旋桨得到推力,将这种发动机产生的马力转换成推力或将祸轮喷气发动机产生的推力转换成推力马力,就可加以较了;这就是说,将功转换成力或将力转换成功。为此,必须考虑飞机的速度。
Administrator
文本框
15.推力马力表示为FV/550英尺/秒 F=磅推力 V=飞机速度 用于1马力相当于550英尺磅/秒,550英尺/秒相当于375英里/小时,从上面公式可以看出,1磅推力等于375英里/小时时的1推力马力。人们还常常将速度以节(海里/小时)来表示,1节等于1.1515英里/小时,或1磅推力等于325节时的1推力马力。
Administrator
文本框
16.因而,若飞机速度为600英里/小时时涡轮喷气发动机产生5,000磅的净推力,那么推力马力将是…… 然而,如果在600英里/小时的相同飞行速度时,螺旋桨效率为55%的涡轮螺桨发动机产生相同的推力,那么推力马力将是…… 因而在600英里/小时时,1磅推力大约相当于3推力马力。
Administrator
文本框
飞行中的发动机推力 17.由于将涉及总推力、动量阻力和净推力,有必要规定下列术语: 从第20章可以看到,总的或全部推力是流经发动机的空气质量和推进喷管处喷气速度的乘积,表示为:…… 动量阻力是空气流进发动机相对于飞机速度的动量产生的阻力,表示为WV/g,
Administrator
文本框
式中:W=质量流量,以磅/秒为地位 V=飞机的速度,以英尺/秒为单位 g=重力常熟,32.3英尺/平方秒 净推力或作用在飞行中的飞机上的合力就是总推力和动量阻力之间的差。
Administrator
文本框
动量阻力
Administrator
文本框
总推力
Administrator
文本框
动量推力
Administrator
文本框
压力推力
Administrator
文本框
冲压
Administrator
文本框
推进喷管
Administrator
文本框
除了P是推进喷管的静压外,所有压力均为总压
Administrator
文本框
通过发动机的空气质量
Administrator
文本框
推进喷管处的喷气速度
Administrator
文本框
推进喷管处的静压
Administrator
文本框
大气压力(磅/平方英寸)
Administrator
文本框
推进喷管面积(平方英寸)
Administrator
文本框
飞机速度
Administrator
文本框
重力常熟32.2
Administrator
文本框
图21-2 力的平衡和推力及动量阻力的表达
Page 227: Rolls royce jet engine

engine, simplifying, can be expressed as:

Fig. 21-2 provides a diagrammatic explanation.

Effect of forward speed19. Since reference will be made to 'ram ratio' andMach number, these terms are defined as follows:

Ram ratio is the ratio of the total air pressure atthe engine compressor entry to the static airpressure at the air intake entry.

Mach number is an additional means ofmeasuring speed and is defined as the ratio ofthe speed of a body to the local speed of sound.Mach 1.0 therefore represents a speed equal tothe local speed of sound.

20. From the thrust equation in para. 18, it isapparent that if the jet velocity remains constant,independent of aircraft speed, then as the aircraftspeed increases the thrust would decrease in directproportion. However, due to the 'ram ratio' effect fromthe aircraft forward speed, extra air is taken into theengine so that the mass airflow and also the jetvelocity increase with aircraft speed. The effect ofthis tends to offset the extra intake momentum drag

due to the forward speed so that the resultant loss ofnet thrust is partially recovered as the aircraft speedincreases. A typical curve illustrating this point isshown in fig. 21-3. Obviously, the 'ram ratio' effect, orthe return obtained in terms of pressure rise at entryto the compressor in exchange for the unavoidableintake drag, is of considerable importance to theturbo-jet engine, especially at high speeds. Abovespeeds of Mach 1.0, as a result of the formation ofshock waves at the air intake, this rate of pressurerise will rapidly decrease unless a suitably designedair intake is provided (Part 23); an efficient air intakeis necessary to obtain maximum benefit from the ramratio effect.

21. As aircraft speeds increase into the supersonicregion, the ram air temperature rises rapidlyconsistent with the basic gas laws (Part 2). This

Performance

219

Fig. 21-3 Thrust recovery with aircraftspeed.

Fig. 21-4 The effect of aircraft speed onthrust and fuel consumption.

g)Vv(WA)PP( J

0−+−

Administrator
文本框
20.从第18段的推力方程可以看出,很显然,如果喷气速度保持不变,不受飞机速度影响,那么当飞机速度增加时,推力就成比例减小。然而,由于飞机前飞速度造成的“冲压比”的影响,更多的空气进入发动机,这样,质量流量和喷气速度均随着飞机速度增大。这种影响有助于补偿由于前飞速度产生的额外的进气道动量阻力,这样,净推力的总损失在飞机度增大时部分得以恢复。图21-3所示的是表示这一点的典型曲线。显然,“冲压比”的影响,或在压气机入口处压力上升所获得的回报与不可避免的进气阻力交换,对涡轮喷气发动机来说相当重要,尤其是在高速时。在马赫数高于1.0时,于在进气道处形成激波的结果,如不对进气道适当设计(第23章),这种压力上升率将迅速下降;为了从冲压比效应中获得最大好处,设计出一种高效率进气道是必要的。
Administrator
文本框
18.从第17段中叙述的定义和公式可以看出,在飞行条件下,发动机的净推力,简化之后可表示为:…… 图21-2用图表作了说明。
Administrator
文本框
19.由于涉及“冲压比”和马赫数,兹将这些术语定义如下: 冲压比是发动机压气机入口处空气总压与进气道入口处空气静压之比。 马赫数是一种衡量速度的附加手段,定义为一个物体的速度对当地声速之比。因此马赫数1.0表示速度等于当地声速。
Administrator
文本框
前飞速度的影响
Administrator
文本框
图21-3 推力随飞机速度得以上恢复
Administrator
文本框
图21-4飞机速度对推力和油耗的影响
Administrator
标注
海平面国际标准大气条件
Administrator
文本框
净推力 磅
Administrator
文本框
油耗 磅小时
Administrator
文本框
耗油率 磅/小时/磅推力
Administrator
文本框
海里
Administrator
标注
带有进气道冲压的推力
Administrator
标注
无进气道冲压推力
Administrator
文本框
21.当飞机速度增大至超音速区时。冲压空气的温度按气体的基本定律(第2章)急剧上升。这种温度上升成正比地影响飞机出口的空气温度,结果,为保持所需的推力,发动机必须承受更高的涡轮入口温度。由于涡轮最大允许入口温度是由涡轮部件的温度极限所决定的,涡轮材料的选择、可以进行冷却的叶片和静子的设计是非常重要的。
Page 228: Rolls royce jet engine

temperature rise affects the compressor delivery airtemperature proportionately and, in consequence, tomaintain the required thrust, the engine must besubjected to higher turbine entry temperatures. Sincethe maximum permissible turbine entry temperatureis determined by the temperature limitations of theturbine assembly, the choice of turbine materials andthe design of blades and stators to permit cooling arevery important.

22. With an increase in forward speed, theincreased mass airflow due to the 'ram ratio' effectmust be matched by the fuel flow (Part 10) and theresult is an increase in fuel consumption. Becausethe net thrust tends to decrease with forward speedthe end result is an increase in specific fuelconsumption (s.f.c.), as shown by the curves for atypical turbo-jet engine in fig, 21-4.

23. At high forward speeds at low altitudes the 'ramratio' effect causes very high stresses on the engineand, to prevent overstressing, the fuel flow is auto-matically reduced to limit the engine speed andairflow. The method of fuel control is described inPart 10.

24. The effect of forward speed on a typical turbo-propeller engine is shown by the trend curves in fig.21 -5. Although net jet thrust decreases, s.h.p.increases due to the 'ram ratio1 effect of increasedmass flow and matching fuel flow. Because it isstandard practice to express the s.f.c. of a turbo-propeller engine relative to s.h.p., an improved s.f.c.is exhibited. However, this does not provide a truecomparison with the curves shown in fig. 21-4, for atypical turbo-jet engine, as s.h.p, is absorbed by thepropeller and converted into thrust and, irrespectiveof an increase in s.h.p., propeller efficiency andtherefore net thrust deteriorates at high subsonicforward speeds. In consequence, the turbo-propellerengine s.f.c, relative to net thrust would, in generalcomparison with the turbo-jet engine, show animprovement at low forward speeds but a rapid dete-rioration at high speeds.

Effect of afterburning on engine thrust25. At take-off conditions, the momentum drag ofthe airflow through the engine is negligible, so thatthe gross thrust can be considered to be equal to thenet thrust. If afterburning (Part 16) is selected, anincrease in take-off thrust in the order of 30 per centis possible with the pure jet engine and considerablymore with the by-pass engine. This augmentation ofbasic thrust is of greater advantage for certainspecific operating requirements.

26. Under flight conditions, however, this advantageis even greater, since the momentum drag is thesame with or without afterburning and, due to theram effect, better utilization is made of every pound

Performance

220

Fig. 21-5 The effect of aircraft speed ons.h.p. and fuel consumption.

Administrator
文本框
24.前飞速度对典型的涡轮螺桨发动机的影响在图21-5的趋势曲线上表示出来。虽然净喷气推力降低,由于“冲压比”对增加质量流量和与之匹配的 燃油流量的影响使轴马力提高。因为用涡轮螺桨发动机 的耗油率相对于轴马力来表示是一种标准做法,由图可见,耗油率有了改进。不过,这并没有提供一个与图21-4显示的典型涡轮喷气发动机的曲线的真正比较,约为轴马力被螺旋桨吸收并转变成推力,在高亚音速前飞时,不考虑轴马力的增大,螺旋桨效率以及净推力衰减。这样,在与涡轮喷气发动机的总体比较中,涡轮螺桨发动机相对于净推力的耗油率在低速前飞时有了改进,但在高速时迅速衰减。 加力燃烧对发动机推力的影响 25.在起飞条件下,气流通过发动机的动量阻力可忽略不计,这样可以认为,总推力等于净推力。如果选用加力燃烧(第16章),对纯喷气发动机来说,起飞推力增加30%是可能的,对内外涵发动机来说,增长量要大得多。这种加大基本推力的做法对某些特定的使用来说具有很大的优点。
Administrator
文本框
22.随前飞速度的增加,由于“冲压比”的影响,空气的质量流量增加,这必须与燃气流量(第10章)相匹配。结果造成油耗增大。因为净推力随着前飞速度趋于减少,如图21-4中典型的涡轮喷气发动机的曲线所示,其最终结果是耗油率(s.f.c.)增大。
Administrator
文本框
23.在低空告诉前飞时,“冲压比”效应在发动机上造成非常高的应力。为防止应力过大,燃油流量自动减少,以限制发动机转速和空气流量。燃油控制的方法已在第10章中介绍过。
Administrator
文本框
图21-5 飞机速度对轴马力和油耗的影响
Administrator
文本框
26.然而,在飞行条件下,这种优点甚至更大,约为不管有没有加力燃烧,动量阻力都是一样的。由于冲压效应,通过发动机的每一磅气流都更好地得到利用。下面的例子,利用第16章给出的静态值,说明了为什么加力推力在飞行条件下有了改进。
Administrator
文本框
轴马力 功率
Page 229: Rolls royce jet engine

of air flowing through the engine. The followingexample, using the static values given in Part 16,illustrates why afterburning thrust improves underflight conditions.

27. Assuming an aircraft speed of 600 m.p.h. (880ft.per sec.), then Momentum drag is:

This means that every pound of air per secondflowing through the engine and accelerated up to thespeed of the aircraft causes a drag of about 27.5 lb.

28. Suppose each pound of air passed through theengine gives a gross thrust of 77.5 lb. Then the netthrust given by the engine per lb. of air per second is77.5 - 27.5 = 50 lb.

29. When afterburning is selected, assuming the 30per cent increase in static thrust given in para. 25,the gross thrust will be 1.3 x 77.5 - 100.75 lb. Thus,under flight condition of 600 m.p.h., the net thrust perpound of air per second will be 100.75 - 27.5 = 73.25lb. Therefore, the ratio of net thrust due to

afterburning is = 1.465. In other words, a 30

per cent increase in thrust under static conditionsbecomes a 46.5 per cent increase in thrust at 600m.p.h.

30. This larger increase in thrust is invaluable forobtaining higher speeds and higher altitude perform-ances. The total and specific fuel consumptions arehigh, but not unduly so for such an increase inperformance.

31. The limit to the obtainable thrust is determinedby the afterburning temperature and the remainingusable oxygen in the exhaust gas stream. Becauseno previous combustion heating takes place in theduct of a by-pass engine, these engines with theirlarge residual oxygen surplus are particularly suitedto afterburning and static thrust increases of up to 70per cent are obtainable. At high forward speedsseveral times this amount is achieved.

Effect of altitude32. With increasing altitude the ambient airpressure and temperature are reduced. This affectsthe engine in two interrelated ways:

The fall of pressure reduces the air density andhence the mass airflow into the engine for agiven engine speed. This causes the thrust ors.h.p. to fall. The fuel control system, asdescribed in Part 10, adjusts the fuel pump

output to match the reduced mass airflow, somaintaining a constant engine speed.

The fall in air temperature increases the densityof the air, so that the mass of air entering thecompressor for a given engine speed is greater.This causes the mass airflow to reduce at alower rate and so compensates to some extentfor the loss of thrust due to the fall in atmosphericpressure. At altitudes above 36,089 feet and upto 65,617 feet, however, the temperatureremains constant, and the thrust or s.h.p. isaffected by pressure only.

Graphs showing the typical effect of altitude onthrust, s.h.p, and fuel consumption are illustrated infig. 21-6 and fig. 21-7.

Effect of temperature33. On a cold day the density of the air increases sothat the mass of air entering the compressor for agiven engine speed is greater, hence the thrust ors.h.p, is higher. The denser air does, however,increase the power required to drive the compressoror compressors; thus the engine will require morefuel to maintain the same engine speed or will run ata reduced engine speed if no increase in fuel isavailable.

34. On a hot day the density of the air decreases,thus reducing the mass of air entering thecompressor and, consequently, the thrust of theengine for a given r.p.m. Because less power will berequired to drive the compressor, the fuel controlsystem reduces the fuel flow to maintain a constantengine rotational speed or turbine entry temperature,as appropriate; however, because of the decrease inair density, the thrust will be lower. At a temperatureof 45 deg.C., depending on the type of engine, athrust loss of up to 20 per cent may be experienced.This means that some sort of thrust augmentation,such as water injection (Part 17), may be required.

35. The fuel control system (Part 10) controls thefuel flow so that the maximum fuel supply is heldpractically constant at low air temperature conditions,whereupon the engine speed falls but, because ofthe increased mass airflow as a result of the increasein air density, the thrust remains the same. Forexample, the combined acceleration and speedcontrol fuel system (Part 10) schedules fuel flow tomaintain a constant engine r.p.m., hence thrustincreases as air temperature decreases until, at apredetermined compressor delivery pressure, thefuel flow is automatically controlled to maintain aconstant compressor delivery pressure and,

Performance

221

)elyapproximat(5.2732

880 =

5025.73

Administrator
文本框
27.假定飞机的速度为600英里/小时(880英尺/秒),那么动量阻力为: 880/32.2=27.5(近似值) 这就是说,每秒钟流经发动机的每磅空气并加速到飞机的速度时约产生27.5磅的阻力。
Administrator
文本框
28.假定流过发动机的每磅空气给出的总推力为77.5磅。那么对于每秒每磅空气来说,发动机给出的净推力为77.5-27.5=50磅。
Administrator
文本框
29.当选用加力时,假定根据第25段给出的静推力增长为30%,总推力将是1.3×77.5=100.75磅。那么,在600英里/小时的飞行条件下,每秒每磅空气的净推力将是100.75-27.5=73.25磅。因此,由于加力,净推力的比率是73.25/50=1.465。换句话说,在静态条件下推力增长30%,在速度600英里/小时时推力就增长46.5%。 31.对可获得的推力的限制取决于加力燃烧温度和排气流中剩余的可用氧气量。因为在内外涵发动机的外涵道中,在此以前没有发生过燃烧加热,对于这些还有大量氧气剩余的发动机来说,特别适合采用加力燃烧,静推力增长可达70%。在高速前飞时,可达此数字的几倍之多。
Administrator
文本框
30.这样更大地增加推力对于获得更高的速度和高度性能来说是非常宝贵的。总油耗和耗油率是高了。但对性能这样大的提高是合算的。
Administrator
文本框
高度的影响 32.随着高度的增加,大气的压力和温度都下降。这以两种相互有联系的方式影响发动机: 压力下降减小了空气密度,因而在发动机转速一定时。进入发动机的空气质量流量减少。这造成推力或轴马力下降。正如第10章介绍的,燃油控制系统调节燃油泵的输出,以与空气的质量流最减少相匹配,因此保持发动机转速不变。
Administrator
文本框
气温下降增大了空气的密度。在发动机转速一定时,进入压气机的空气的质量就更大。这导致空气质量流量以较低的速率减少,在某种程度上补偿了由于大气压下降造成的推力损失,不过,在36,089以上至65,617英尺的高度,温度是不变的,推力或轴马力只受压力的影响。表示高度对推力、轴马力和油耗的典型影响的图表示于图21-6和图21-7。
Page 230: Rolls royce jet engine

therefore, thrust. Fig. 21-8 illustrates this for a twin-spool engine where the controlled engine r.p.m. ishigh pressure compressor speed and thecompressor delivery pressure is expressed as P3. Itwill also be apparent from this graph that the lowpressure compressor speed is always less than itslimiting maximum and that the difference in the twospeeds is reduced by a decrease in ambient airtemperature. To prevent the L.P. compressor over-speeding, fuel flow is also controlled by an L.P.governor which, in this case, takes a passive role.

36. The pressure ratio control fuel system (Part 10)schedules fuel flow to maintain a constant enginepressure ratio and, therefore, thrust below a prede-

Performance

222

Fig. 21-6 The effects of altitude on thrustand fuel consumption.

Fig. 21-7 The effect of altitude on s.h.p. andfuel consumption.

Administrator
文本框
温度的影响 33.在冷天,空气的密度增大,这样,在发动机转速一定时进入压气机的空气质量就较大,因而推力或轴马力就较高。不过,空气密度增大,提高了驱动压气机所需的功率;因而为了保持相同的发动机转速,发动机就需要更多的燃油,或者供油量不增加,发动机就以较低的转速运转。
Administrator
文本框
34.在热天,空气的密度降低,因而减少了进入压气机的空气的质量,所以在发动机转速一定时,也减少了发动机的推力。因为驱动压气机所需的功率较少,燃油控制系统减小燃油流量,以保持发动机转速不变,或需要时保持涡轮进口温度不变;不过,由于空气密度下降,推力将减小。在温度为45℃时,随发动机类型有所不同,推力损失可达20%。这意味着,可能需要某种推力增大方式,比如喷水(第17章)。 35.燃油控制系统(第10章)控制燃油流量,这样在气温低的情况下,实际上可保持最大供油量不变,因此,发动机转速下降,但是,由于空气密度增大而造成空气质量流量增大,推力仍保持不变。例如,综合的加速和速度控制燃油系统(第10章)可安排燃油流量,以保持发动机转速不变,因此,当气温降低时,推力增大,直到在一个预定的压气机出口压力时,燃油流量被自动控制,以保持压气机出口压力不变,因而保持推力不变。图21-8表示了一台双转子发动机的这一规律。这里受控制的发动机转速是 压气机的转速,此压气机的出口压力表示为P3。从这个图表上看,很显然,低压压气机的转速总是小于限定的最大值,而且两种转速的差因大气温度降低而减少。为防止低压压气机超速,燃油流量还受低压调节器的控制,在这种情况下,它起被动作用。
Administrator
文本框
图21-6 高度对推力和油耗的影响
Administrator
文本框
图21-7 高度对轴马力和油耗的影响
Page 231: Rolls royce jet engine

termined ambient air temperature. Above thistemperature the fuel flow is automatically controlledto prevent turbine entry temperature limitations frombeing exceeded, thus resulting in reduced thrust and,overall, similar curve characteristics to those shownin fig. 21-8. In the instance of a triple-spool enginethe pressure ratio is expressed as P4/P1. i.e. H.P.compressor delivery pressure/engine inlet pressure.

PROPULSIVE EFFICIENCY

37. Performance of the jet engine is not onlyconcerned with the thrust produced, but also with theefficient conversion of the heat energy of the fuel intokinetic energy, as represented by the jet velocity, andthe best use of this velocity to propel the aircraftforward, i.e. the efficiency of the propulsive system.

38. The efficiency of conversion of fuel energy tokinetic energy is termed thermal or internal efficiencyand, like all heat engines, is controlled by the cyclepressure ratio and combustion temperature.Unfortunately, this temperature is limited by thethermal and mechanical stresses that can betolerated by the turbine. The development of newmaterials and techniques to minimize theselimitations is continually being pursued.

39. The efficiency of conversion of kinetic energy topropulsive work is termed the propulsive or externalefficiency and this is affected by the amount of kinetic

energy wasted by the propelling mechanism. Wasteenergy dissipated in the jet wake, which represents a

loss, can be expressed as where (vJ-V)

is the waste velocity. It is therefore apparent that atthe aircraft lower speed range the pure jet streamwastes considerably more energy than a propellersystem and consequently is less efficient over thisrange. However, this factor changes as aircraftspeed increases, because although the jet streamcontinues to issue at a high velocity from the engineits velocity relative to the surrounding atmosphere isreduced and, in consequence, the waste energy lossis reduced.

40. Briefly, propulsive efficiency may be expressedas:

or simply

Work done is the net thrust multiplied by the aircraftspeed. Therefore, progressing from the net thrustequation given in para. 18, the following equation isarrived at:Propulsive efficiency =

Performance

223

Fig. 21-8 The effect of air temperature on a typical twin-spool engine.

g2)Vv(W 2

J −

airflow engine to impartedEnergy aircraft the on done Work

exhaust in wasted work+ done Workdone Work

g2)VW(v

g)VW(v)AP-(PV

g)VW(v)AP-(PV

2JJ

0

J0

−+

−+

−+

Administrator
文本框
38.燃油能量转变成动能的效率被称作热效率或内部效率。象所有热机一样,它是受循环压缩比和燃烧温度控制的。然而,这种温度是受涡轮能够忍受的高温应力和机械应力限制的。研制尽可能减少这 些限制的新材料和新技术一直是人们追求的目标。 39.动能转变成推进功的效率被称作推进效率或外部效率,它受到推进机构浪费的动能的数量的影响。喷气尾流中浪费的无用能是一种损失,可表示为……,式中(……)是无效速度。因此,很显然,在飞机低速范围,纯喷气流浪费的能量比螺旋桨系统要多得多,因而在这个范围内效率也较低。不过。随着飞机速度增大,这个因素也发生变化,因为虽然喷气流继续从发动机高速喷出,但是它相对于周围大气的速度减小了,这样,就减少了废能损失。
Administrator
文本框
36.增压比控制燃油系统(第10章)可安排燃油流量,以保持发动机增压比不变,因此,在低于预定的大气温度时推力不变。在这个温度之上,燃油流量得到自动控制,以防止涡轮进口温度超过限制,因而导致推力下降。总的来说.其曲线特性与图21-8中表示的类似。在三转子发动机中,增压比表示为P4/P1,即高压压气机出口压力/发动机进口压力。
Administrator
文本框
推进效率 37.喷气发动机的性能不仅与产生的推力有关,而且与将燃油的热能有效地转变成用喷气速度来表示的动能有关,还与最好地利用这种速度来推动飞机向前飞行,即推进系统的效率有关。
Administrator
文本框
推力(P3限制)
Administrator
文本框
图21-8 气温对一种典型的双转子发动机的影响
Administrator
文本框
40.简单来说,推进效率可表示为:对飞机做功/加给发动机气流的能量 或简化为 所做的功/(所做的功+排气中浪费的功) 所做的功是净推力乘上飞机速度。因此,从第18段中给出的净推力方程可推导得出下列方程: 推进效率 …… 采用非堵塞喷管的发动机中(第20章),该方程变为:……
Administrator
文本框
高压压气机轴转速
Administrator
文本框
低压压气机轴转速
Administrator
文本框
大气空气温度
Page 232: Rolls royce jet engine

In the instance of an engine operating with a non-choked nozzle (Part 20), the equation becomes:

41. This latter equation can also be used for thechoked nozzle condition by using vj to represent thejet velocity when fully expanded to atmosphericpressure, thereby dispensing with the nozzlepressure term (P-P0)A.

42. Assuming an aircraft speed (V) of 375 m.p.h.and a jet velocity (vj) of 1,230 rn.p.h., the efficiencyof a turbo-jet is:

On the other hand, at an aircraft speed of 600 m.p.h.the efficiency is:

Propeller efficiency at these values of V is approxi-mately 82 and 55'per cent, respectively, and from

Performance

224

Fig. 21-9 Propulsive efficiencies and aircraft speed.

J

2J2

1J

J

vVV2:toSimplified

)Vv(W)Vv(WV)Vv(WV

+

−+−−

centper47.approx230,1375

3752 =+

×

centper66.approx230,1600

6002 =+

×

Administrator
文本框
41.当完全膨胀到大气压力时,用VJ代表喷气速度,而这个方程也可用于堵塞喷管条件,英尺省略了喷口压力(P-P0)A这一项。
Administrator
文本框
42.假定飞机速度(V)为375英里/小时,喷气速度(vj)为1,230英里/小时,涡轮喷气发动机的效率就为:…… 另一方面,当飞机速度为600英里/小时时,效率为:…… 当V为这些数值时,螺旋桨的效率分别约为82%和55%。参考图21-9,可以看到,对于海平面设计时速低于约400英里的飞机来说。将功率用齿轮传到螺旋桨,而不是以纯喷气流的形式直接使用来吸收喷气发动机中产生的功率,会更加有效。在飞机速度较高时螺旋桨的缺点是,当叶尖速度接近M数1.0时,由于在螺旋桨周围产生激波,其效率迅速下降。然而,先进的螺旋桨技术已产生出一种多叶片后掠设计,能使叶尖速度超过M数1.0而不损失螺旋桨效率。将这种螺旋桨设计用于对转布局,因而减小旋涡损失,据此可以制造出一种具有很好的推进效率的“螺桨风扇”发动机,这种发动机能在海平面飞机速度超过500英里/小时时有效工作。
Administrator
标注
桨扇
Administrator
标注
对转风扇
Administrator
文本框
推进效率
Administrator
文本框
高涵道比
Administrator
文本框
低涵道比
Administrator
标注
涡桨
Administrator
标注
内外涵涡轮喷气
Administrator
标注
纯涡轮喷气
Administrator
文本框
图21-9 推进效率和飞机速度的关系图
Page 233: Rolls royce jet engine

reference to fig. 21-9 it can be seen that for aircraftdesigned to operate at sea level speeds belowapproximately 400 m.p.h. it is more effective toabsorb the power developed in the jet engine bygearing it to a propeller instead of using it directly inthe form of a pure jet stream. The disadvantage ofthe propeller at the higher aircraft speeds is its rapidfall off in efficiency, due to shock waves createdaround the propeller as the blade tip speedapproaches Mach 1.0. Advanced propellertechnology, however, has produced a multi-bladed,swept back design capable of turning with tip speedsin excess of Mach 1.0 without loss of propellerefficiency. By using this design of propeller in acontra-rotating configuration, thereby reducing swirllosses, a 'prop-fan' engine, with very good propulsiveefficiency capable of operating efficiently at aircraftspeeds in excess of 500 m.p.h. at sea level, can beproduced.

43. To obtain good propulsive efficiencies withoutthe use of a complex propeller system, the by-passprinciple (Part 2) is used in various forms. With thisprinciple, some part of the total output is provided bya jet stream other than that which passes through theengine cycle and this is energized by a fan or avarying number of LP. compressor stages. Thisbypass air is used to lower the mean jet temperatureand velocity either by exhausting through a separatepropelling nozzle, or by mixing with the turbinestream to exhaust through a common nozzle.

44. The propulsive efficiency equation for a high by-pass ratio engine exhausting through separatenozzles is given below, where W1 and VJ1 relate tothe by-pass function and W2 and vJ2 to the enginemain function.

Propulsive efficiency =

By calculation, substituting the following values,which will be typical of a high by-pass ratio engine oftriple-spool configuration, it will be observed that apropulsive efficiency of approximately 85 per centresults.

V = 583 rn.p.h.W1 = 492 lb. per sec.W2 = 100 lb. per sec.VJ1 = 781 m.p.h.VJ2 = 812 m.p.h.

Propulsive efficiency can be further improved byusing the rear mounted contra-rotating fan configura-tion of the by-pass principle. This gives very high by-

pass ratios in the order of 15:1, and reduced 'drag'results due to the engine core being 'washed' by thelow velocity aircraft slipstream and not the relativelyhigh velocity fan efflux.

45. The improved propulsive efficiency of thebypass system bridges the efficiency gap betweenthe turbo-propeller engine and the pure turbo-jetengine. A graph illustrating the various propulsiveefficiencies with aircraft speed is shown in fig. 21-9.

FUEL CONSUMPTION AND POWER-TO-WEIGHTRELATIONSHIP

46. Primary engine design considerations, particu-larly for commercial transport duty, are those of lowspecific fuel consumption and weight. Considerableimprovement has been achieved by use of the by-pass principle, and by advanced mechanical andaerodynamic features, and the use of improvedmaterials. With the trend towards higher by-passratios, in the range of 15:1, the triple-spool andcontra-rotating rear fan engines allow the pressureand by-pass ratios to be achieved with short rotors,using fewer compressor stages, resulting in a lighterand more compact engine.

47. S.f.c. is directly related to the thermal andpropulsive efficiencies; that is, the overall efficiencyof the engine. Theoretically, high thermal efficiencyrequires high pressures which in practice also meanshigh turbine entry temperatures. In a pure turbo-jetengine this high temperature would result in a highjet velocity and consequently lower the propulsiveefficiency (para. 40). However, by using the by-passprinciple, high thermal and propulsive efficienciescan be effectively combined by bypassing aproportion of the L.P. compressor or fan delivery airto lower the mean jet temperature and velocity asreferred to in para. 43. With advanced technologyengines of high by-pass and overall pressure ratios,a further pronounced improvement in s.f.c. isobtained.

48. The turbines of pure jet engines are heavybecause they deal with the total airflow, whereas theturbines of by-pass engines deal only with part of theflow; thus the H.P. compressor, combustionchambers and turbines, can be scaled down. Theincreased power per lb. of air at the turbines, to takeadvantage of their full capacity, is obtained by theincrease in pressure ratio and turbine entrytemperature. It is clear that the by-pass engine islighter, because not only has the diameter of the highpressure rotating assemblies been reduced but theengine is shorter for a given power output. With a low

Performance

225

2J22

12J12

1J2J1

J2J1

)Vv(VW)Vv(VW)Vv(VW)Vv(VW)Vv(VW)Vv(VW

2121

21

−+−+−+−−+−

Administrator
文本框
43.为了获得良好的推进效率而不采用复杂的螺旋桨系统,内外涵原理(第2章)以各种形式得到利用。采用这一原理时,总输出的一部分是由喷气流而不是通过发动机循环的燃气流提供,而且这是由风扇或一台级数可变的低压压气机来提供。借助于外涵气流从一单独的推进喷管或与涡轮气流混合后从一共用的喷管排出,这种外涵道空气可用于降低平均喷气温度和速度。
Administrator
文本框
44.下面给出的是通过分别喷口排气的高涵道比发动机的推进效率方程。这里W1 和 VJ1。与外涵道功能有关,W2 和 vJ2与发动机主功能有关。 推进效率=…… 代入下列数值,进行计算。这些数值对三转子布局的高涵道比发动机是典型值。将会看到,结果是推进效率约为85%。 …… 采用后置式内外涵道原理的对转风扇布局可进一步提高推进效率。这得出很高的涵道比,达15:1。由于发动机核心机被低速飞机的滑流而不是速度相当高的风扇气流“冲刷”,结果是阻力减小。 45.内外涵道系统推进效率的提高填补了涡轮螺桨发动机和纯涡轮喷气发动机之间的效率差距。图21-9表示了推进效率随飞机速度变化的图表。
Administrator
文本框
46.发动机设计的主要考虑因索,尤其是对于民用运输机来说,是低的耗油率和重量。由于采用了内外涵道原理,借助于先进的机械和气动特性并使用了更好的材料,使发动机设计得到相当大的改进。随着向更高涵道比即15:1的范围发展的趋势,三转子和对转的后风扇发动机可达到这种压力比和涵道比。它们的转子短而压气机级数少,从而得到一种更轻和结构更加紧凑的发动机。
Administrator
文本框
油耗和功率重量的关系
Page 234: Rolls royce jet engine

Performance

226

Fig. 21-10 International Standard Atmosphere.

Administrator
文本框
图21-10 国际标准大气
Administrator
文本框
从这一点至65,617英尺大气温度不变
Administrator
文本框
从这一点至65,617英尺音速不变
Page 235: Rolls royce jet engine

by-pass ratio engine, the weight reduction comparedwith a pure jet engine is in the order of 20 per centfor the same air mass flow.

49. With a high by-pass ratio engine of the triple-spool configuration, a further significant improvementin specific weight is obtained- This is derived mainlyfrom advanced mechanical and aerodynamic design,which in addition to permitting a significant reductionin the total number of parts, enables rotatingassemblies to be more effectively matched and towork closer to optimum conditions, thus minimizingthe number of compressor and turbine stages for a

given duty. The use of higher strength light-weightmaterials is also a contributory factor.

50. For a given mass flow less thrust is produced bythe by-pass engine due to the lower exit velocity.Thus, to obtain the same thrust, the by-pass enginemust be scaled to pass a larger total mass airflowthan the pure turbo-jet engine. The weight of theengine, however, is still less because of the reducedsize of the H.P. section of the engine. Therefore, inaddition to the reduced specific fuel consumption, animprovement in the power-to-weight ratio is obtained.

Performance

227

Administrator
文本框
47.耗油率与热效率和推进效率有直接关系,也就是与发动机的总效率有关。从理论上来说,高的热效率需要高的压力,这实际上还意味着高的涡轮进口温度。在纯涡轮喷气发动机中,这种高温度将导致高的喷气速度,因而会降低推进效率(第40段)。然而,正如第43段谈到的,利用内外涵道原理,将一定比例的低压压气机或风扇出口空气从旁路排出。以降低平均喷气温度和速度,可以有效地同时达到高的热效率和推进效率。随着高涵道比和总增压比的先进技术发动机的问世,耗油率又得到进一步明显的改进。 48.纯喷气发动机的涡轮比较重,因为它们要处理所有气流,而内外涵发动机的涡轮只处理一部分气流;因而高压压气机、燃烧室和涡轮可以缩小尺寸。增大流过涡轮的每磅空气的功率以充分利用它们的能力,可采用提高增压比和涡轮进口温度的方法来实现。显然,内外涵发动机比较轻,因为不仅减小了高压转动组件的直径,而且对一定的功率输出而言。发动机比较短。对一种低涵道比发动机来说,在空气质量流量相同时,与纯喷气发动机相比,重量减轻的数量级达20%。
Administrator
文本框
49.对三转子布局的高涵道比发动机来说,单位重量又获得很大改进。这主要得益于先进的机械和气动设计,它除了允许大大减少零件的总数外,还使转动组件能更加有效地匹配并且工作更加接近于最佳状态,因而在负载一定时,使得压气机和涡轮级数最少。采用高强度的轻质材料也是一个重要因素。 50.对一定的质量流量来说,由于排气速度较低,内外涵发动机产生的推力较小。因此,为了获得同样的推力,内外涵发动机必须按比例比纯涡轮喷气发动机通过更大的总质量流量。然而,由于发动机的高压部分的尺寸减小,发动机的重量仍然较轻。因此,除了耗油率减少外,功率重量比也得到提高。
Page 236: Rolls royce jet engine

Rolls-Royce RB168 Mk202/Mk203

Rolls-Royce RB39 Clyde

Encouraged by results obtained from theTrent, Rolls-Royce decided to go ahead withan engine designed from the start as a turbo-prop. Named the Clyde it utilized the axialcompressor from the Metrovick F2 as firststage and a scaled up supercharger impellerfrom a Merlin as second stage. First running inAugust 1945 at 2000 shp, later enginesproduced up to 4200 shp.

Page 237: Rolls royce jet engine

22: ManufactureContents Page

Introduction 229Manufacturing strategy 230Forging 231Casting 233Fabrication 234Welding 235

Tungsten inert gas (T.I.G.) welding Electron beam welding (E.B.W.)

Electro-chemical machining (E.C.M.) 237

Stem drilling Capillary drilling

Electro-discharge machining (E.D.M.) 238 Composite materials andsandwich casings 240Inspection 240

INTRODUCTION

1. During the design stages of the aircraft gasturbine engine, close liaison is maintained betweendesign, manufacturing, development and productsupport to ensure that the final design is a matchbetween the engineering specification and the man-ufacturing process capability.

2. The functioning of this type of engine, with itshigh power-to-weight ratio, demands the highestpossible performance from each component.Consistent with this requirement, each componentmust be manufactured at the lowest possible weightand cost and also provide mechanical integritythrough a long service life. Consequently, themethods used during manufacture are diverse andare usually determined by the duties eachcomponent has to fulfil.

3. No manufacturing technique or process that Inany way offers an advantage is ignored and mostavailable engineering methods and processes areemployed in the manufacture of these engines, Insome instances, the technique or process mayappear by some standards to be elaborate, timeconsuming and expensive, but is only adopted afterconfirmation that it does produce maximizedcomponent lives comparable with rig test achieve-ments.

4. Engine components are produced from a varietyof high tensile steel and high temperature nickel andcobalt alloy forgings. A proportion of components arecast using the investment casting process. Whilstfabrications, which form an increasing content, areproduced from materials such as stainless steel,titanium and nickel alloys using modern joining

229

Administrator
文本框
2.由于这种发动机具有很高的推重比,所以其功能要求每个部件具有尽可能高的性能。为了符合这种要求,每个部件必须造得重量尽可能轻,费用尽可能低,而且在很长的使用寿命期中具有机械完整性。因此,制造中采用的方法是多种多样的,通常取决于每个部件必须完成的任务。
Administrator
文本框
钨惰性气体(T.I.G.)焊接 电子束焊接(B.E.W.) 电化学加工(E.C.M.) 深孔钻削 微孔钻削 电火花加工(E.D.M.) 复合材料和夹芯壳体 检验
Administrator
文本框
第二十二章 制造
Administrator
文本框
绪言 制造策略
Administrator
文本框
锻造 铸造
Administrator
文本框
组装加工 焊接
Administrator
文本框
4.发动机的一些部件是用多种高强度钢和高温和钴合金锻件制成的。一部分部件是采甩熔模铸造工艺过程的铸件。同时,占比例越来越大的制造是采用不锈钢、钛和镍合金这类材料用现代接合技术即钨惰性气体保护焊接、接触焊、电子束焊和真空中的高温钎焊制成的。
Administrator
文本框
绪言 1.在航空燃气涡轮发动机的设计阶段,设计、制造、发展和产品支援之间应保持密切联系,以确保最后的设计在工程规范和制造工艺能力之间的协调。
Administrator
文本框
3.任何制造技术和工艺过程只要它能以任何形式提供某种优点就不会被忽略,最有用的工程方法和工艺过程都用于这些发动机的生产。在某些情况下,按某些标准来看,技术和工艺过程可能显得复杂、赞时间而且花费大,但是,只有在证实它确实产生了与部件试验台试验成果类似的最大部件寿命后才被采用。
Page 238: Rolls royce jet engine

techniques i.e., tungsten inert gas welding,resistance welding, electron beam welding and hightemperature brazing in vacuum furnaces.

5. The methods of machining engine componentsinclude grinding, turning, drilling, boring andbroaching whenever possible, with the more difficultmaterials and configurations being machined byelectro-discharge, electro-chemical, laser holedrilling and chemical size reduction.

6. Structural components i.e., cold spoiler, locationrings and by-pass ducts, benefit by considerableweight saving when using composite materials.

7. In addition to the many manufacturing methods,chemical and thermal processes are used on partfinished and finished components. These includeheat treatment, electro-plating, chromate sealing,chemical treatments, anodizing to prevent corrosion,chemical and mechanical cleaning, wet and dryabrasive blasting, polishing, plasma spraying, elec-trolytic etching and polishing to reveal metallurgicaldefects. Also a variety of barrelling techniques forremoval o! burrs and surface improvement. Mostprocesses are concerned with surface changes,

some give resistance to corrosion whilst others canbe used to release unwanted stress.

8. The main structure of an aero gas turbine engineis formed by a number of circular casings, ref. fig. 22-1, which are assembled and secured together byflanged joints and couplings located with dowels andtenons. These engines use curvic and hurthcouplings to enable accurate concentricity of matingassemblies which in turn assist an airline operatorwhen maintenance is required.

MANUFACTURING STRATEGY

9. Manufacturing is changing and will continue tochange to meet the increasing demands ofaeroengine components for fuel efficiency, cost andweight reductions and being able to process thematerials required to meet these demands.

10. With the advent of micro-processors andextending the use of the computer, full automation ofcomponents considered for in house manufactureare implemented in line with supply groups manufac-turing strategy, all other components beingresourced within the world-wide supplier network.

Manufacture

230

Fig. 22-1 Arrangements of a triple-spool turbo-jet engine.

Page 239: Rolls royce jet engine

11. This automation is already applied in themanufacture of cast turbine blades with the sevencell and computer numerical controlled (C.N.C.)grinding centres, laser hardfacing and film coolinghole drilling by electro-discharge machining (E.D.M.).Families of turbine and compressor discs areproduced in flexible manufacturing cells, employingautomated guided vehicles delivering palletizedcomponents from computerized storage to C.N.C.machining cells that all use batch of one techniques.The smaller blades, with very thin airfoil sections, areproduced by integrated broaching and 360 degreeelectrochemical machining (E.C.M.) while inspectionand processing are being automated using thecomputer.

12. Tolerances between design and manufacturingare much closer when the design specification ismatched by the manufacturing proven capability.

13. Computer Aided Design (C.A.D.) and ComputerAided Manufacture (CAM.) provides an equivalentlink when engine components designed by C.A.D.can be used for the preparation of manufacturingdrawings, programmes for numerically controlledmachines, tool layouts, tool designs, operation

sequence, estimating and scheduling. Computersimulation allows potential cell and flow linemanufacture to be proven before physical machinepurchase and operation, thus preventing equipmentnot fulfilling their intended purpose.

14. Each casing is manufactured from the lightestmaterial commensurate with the stress and tempera-tures to which it is subjected in service. For example,magnesium alloy, composites and materials ofsandwich construction are used for air intakecasings, fan casings and low pressure compressorcasings, since these are the coolest parts of theengine. Alloy si eels are used for the turbine andnozzle casings where the temperatures are high andbecause these casings usually incorporate theengine rear mounting features. For casingssubjected to intermediate temperatures i.e. by-passduct and combustion outer casings, aluminium alloysand titanium alloys are used.

FORGING

15. The engine drive shafts, compressor discs,turbine discs and gear trains are forged to as nearoptimum shape as is practicable commensurate withnon-destructive testing i.e., ultrasonic, magneticparticle and penetrant inspection. With turbine andcompressor blades, the accurately produced thinairfoil sections with varying degrees of camber andtwist, in a variety of alloys, entails a high standard ofprecision forging, ret. fig. 22-2. Neverthelessprecision forging of these blades is a recognisedpractice and enables one to be produced from ashaped die with the minimum of further work.

Manufacture

231

Fig. 22-2 Precision forging.

Page 240: Rolls royce jet engine

Manufacture

232

Fig. 22-3 Method of producing an engine component by sand casting.

Page 241: Rolls royce jet engine

16. The high operating temperatures at which theturbine discs must operate necessitates the use ofnickel base alloys. The compressor discs at the rearend of the compressor are produced from creep-resisting steels, or even nickel base alloys, becauseof the high temperatures to which they are subjected.The compressor discs at the front end of thecompressor are produced from titanium. The higherstrength of titanium at the moderate operating tem-peratures at the front end of the compressor,together with its lower weight provides a consider-able advantage over steel.

17. Forging calls for a very close control of thetemperature during the various operations. Anexceptionally high standard of furnace controlequipment, careful maintenance and cleanliness ofthe forging hammers, presses and dies, is essential.

18. Annular combustion rings can be cold forged toexacting tolerances and surfaces which alleviatesthe need for further machining before weldingtogether to produce the combustion casing.

19. H.P. compressor casings of the gas turbineengine are forged as rings or half rings which, whenassembled together, form the rigid structure of theengine. They are produced in various materials, i.e.,stainless steel, titanium and nickel alloys.

CASTING

20. An increasing percentage of the gas turbineengine is produced from cast components using

Manufacture

233

Fig. 22-4 Automatic investment casting.

Page 242: Rolls royce jet engine

sand casting, ref. fig. 22-3, die casting andinvestment casting techniques; the latter becomingthe foremost in use because of its capability toproduce components with surfaces that require nofurther machining. It is essential that all castings aredefect free by the disciplines of cleanliness duringthe casting process otherwise they could causecomponent failure.

21. All casting techniques depend upon care withmethods of inspection such as correct chemicalcomposition, test of mechanical properties, radiolog-ical and microscopic examination, tensile strengthand creep tests.

22. The complexity of configurations together withaccurate tolerances in size and surface finish istotally dependent upon close liaison with design,manufacturing, metallurgist, chemist, die maker,furnace operator and final casting.

23. In the pursuit of ever increasing performance,turbine blades are produced from high temperature

nickel alloys that are cast by the investment castingor lost wax' technique. Directionally solidified andsingle crystal turbine blades are cast using thistechnique in order to extend their cyclic lives.

24. Figure 22-4 illustrates automatic casting used inthe production of equi-axed, directional solidified andsingle crystal turbine blades. The lost wax process isunparalleled in its ability to provide the higheststandards of surface finish, repeatable accuracy andsurface detail in a cast component. The increasingdemands of the engine has manifested itself in theneed to limit grain boundaries and provide complexinternal passages. The moulds used for directionalsolidified and single crystal castings differ from con-ventional moulds in that they are open at both ends,the base of a mould forms a socketed bayonet fittinginto which a chill plate is located during casting.Metal is introduced from the central sprue into themould cavities via a ceramic filter. These andorientated seed crystals, if required, are assembledwith the patterns prior to investment. Extensiveautomation is possible to ensure the wax patternsare coated with the shell material consistently byusing robots. The final casting can also have theirrises removed using elastic cut-off wheels drivenfrom robot arms, ref. fig. 22-5.

FABRICATION

25. Major components of the gas turbine engine i.e.bearing housings, combustion and turbine casings,exhaust units, jet pipes, by-pass mixer units and lowpressure compressor casings can be produced asfabricated assemblies using sheet materials such asstainless steel titanium and varying types of nickelalloys.

Manufacture

234

Fig. 22-5 Robot cut-off

Page 243: Rolls royce jet engine

26. Other fabrication techniques for themanufacture of the low pressure compressor widechord fan blade comprise rolled titanium side panelsassembled in dies, hot twisted in a furnace and finallyhot creep formed to achieve the necessary configu-ration. Chemical milling is used to recess the centreof each panel which sandwiches a honeycomb core,both panels and the honeycomb are finally joinedtogether using automated furnaces where anactivated diffusion bonding process takes place, ref.fig. 22-6.

WELDING

27. Welding processes are used extensively in thefabrication of gas turbine engine components i.e.,resistance welding by spot and seam, tungsten inertgas and electron beam are amongst the most widelyused today. Care has to be taken to limit thedistortion and shrinkage associated with thesetechniques.

Tungsten inert gas (T.I.G.) welding28. The most common form of tungsten inert gaswelding, fig, 22-7, in use is the direct current straightpolarity i.e., electrode negative pole. This is widelyused and the most economical method of producinghigh quality welds for the range of high strength/hightemperature materials used in gas turbine engines.For this class of work, high purity argon shielding gasis fed to both sides of the weld and the welding torchnozzle is fitted with a gas lens to ensure maximumefficiency for shielding gas coverage. A consumable

Manufacture

235

Fig. 22-6 Wide chord fan bladeconstruction.

Fig. 22-7 Typical tungsten inert gas welding details.

Page 244: Rolls royce jet engine

four per cent thoriated tungsten electrode, togetherwith a suitable non-contact method o! arc starting isused and the weld current is reduced in a controlledmanner at the end of each weld to prevent theformation of finishing cracks. All welds are visuallyand penetrant inspected and in addition, weldsassociated with rotating parts i.e., compressor and/orturbine are radiologically examined to QualityAcceptance Standards. During welding operationsand to aid in the control of distortion and shrinkagethe use of an expanding fixture is recommendedand, whenever possible, mechanised weldingemployed together with the pulsed arc technique ispreferred. A typical T.I.G. welding operation isillustrated in fig. 22-8.

Electron beam welding (E.B.W.)29. This system, which can use either low or highvoltage, uses a high power density beam ofelectrons to join a wide range of different materialsand of varying thickness. The welding machine ref.fig. 22-9, comprises an electron gun, optical viewingsystem, work chamber and handling equipment,vacuum pumping system, high or low voltage powersupply and operating controls. Many major rotatingassemblies for gas turbine engines are manufac-tured as single items in steel, titanium and nickelalloys and joined together i.e., intermediate and highpressure compressor drums. This technique allows

Manufacture

236

Fig. 22-8 Tungsten inert gas welding.

Fig. 22-9 Electron beam welding.

Page 245: Rolls royce jet engine

design flexibility in that distortion and shrinkage arereduced and dissimilar materials, to serve quitedifferent functions, can be homogeneously joinedtogether. For example, the H.P. turbine stub shaftsrequiring a stable bearing steel welded to a materialwhich can expand with the mating turbine disc.Automation has been enhanced by the application ofcomputer numerical control (C.N.C.) to the workhandling and manipulation. Seam tracking to ensurethat the joint is accurately followed and close loopunder bead control to guarantee the full depth ofmaterial thickness is welded. Focus of the beam iscontrolled by digital voltmeters. See fig. 22-10 forweld examples.

ELECTRO-CHEMICAL MACHINING (E.C.M.)

30. This type of machining employs both electricaland chemical effects in the removal of metal.Chemical forming, electro-chemical drilling and elec-trolytic grinding are techniques of electro-chemicalmachining employed in the production of gas turbineengine components.

31. The principle of the process is that when acurrent flows between the electrodes immersed in asolution of salts, chemical reactions occur in whichmetallic ions are transported from one electrode to

another (fig. 22-11). Faraday's law of electrolysisexplains that the amount of chemical reactionproduced by a current is proportional to the quantityof electricity passed.

32. In chemical forming, (fig. 22-11), the toolelectrode (the cathode) and the workpiece (theanode) are connected into a direct current circuit.Electrolytic solution passes, under pressure, throughthe tool electrode and metal is removed from thework gap by electrolytic action. A hydraulic ramadvances the tool electrodes into the workpiece toform the desired passage.

33. Electrolytic grinding employs a conductivewheel impregnated with abrasive particles. Thewheel is rotated close to the surface of theworkpiece, in such a way that the actual metalremoval is achieved by electro-chemical means. Theby-products, which would inhibit the process, areremoved by the sharp particles embodied in thewheel.

34. Stem drilling and capillary drilling techniquesare used principally in the drilling of small holes,usually cooling holes, such as required whenproducing turbine blades.

Manufacture

237

Fig. 22-10 Examples of T.I.G. and E.B. welds.

Page 246: Rolls royce jet engine

Stem drilling35. This process consists of tubes (cathode)produced from titanium and suitably insulated toensure a reaction at the tip. A twenty per centsolution of nitric acid is fed under pressure onto theblade producing holes generally in the region of0.026 in. diameter. The process is more speedy inoperation than electro-discharge machining and iscapable of drilling holes up to a depth two hundredtimes the diameter of the tube in use.

Capillary drilling36. Similar in process to stem drilling but usingtubes produced from glass incorporating a core ofplatinum wire (cathode). A twenty per cent nitric acidsolution is passed through the tube onto theworkpiece and is capable of producing holes assmall as 0.009 in. diameter. Depth of the hole is upto forty times greater than the tube in use andtherefore determined by tube diameter.

37. Automation has also been added to the processof electro-chemical machining (E.C.M.) with the intro-duction of 360 degree E.G. machining of smallcompressor blades, ref. fig. 22-12. For some bladesof shorter length airfoil, this technique is more costeffective than the finished shaped airfoil when usingprecision forging techniques. Blades produced byE.C.M. employ integrated vertical broachingmachines which take pre-cut lengths of bar material,produce the blade root feature, such as a fir-tree, andthen by using this as the location, fully E.C.M. fromboth sides to produce the thin airfoil section in oneoperation.

ELECTRO-DISCHARGE MACHINING (E.D.M.)

38. This type of machining removes metal from theworkpiece by converting the kinetic energy of electricsparks into heat as the sparks strike the workpiece.

39. An electric spark results when an electricpotential between two conducting surfaces reachesthe point at which the accumulation of electrons hasacquired sufficient energy to bridge the gap betweenthe two surfaces and complete the circuit. At thispoint, electrons break through the dielectric mediumbetween the conducting surfaces and, moving fromnegative (the tool electrode) to positive (theworkpiece), strike the latter surface with greatenergy; fig, 22-13 illustrates a typical spark erosioncircuit.

40. When the sparks strike the workpiece, the heatis so intense that the metal to be removed is instan-taneously vaporized with explosive results. Away

Manufacture

238

Fig. 22-11 Electro-chemical machining.

Page 247: Rolls royce jet engine

from the actual centre of the explosion, the metal istorn into fragments which may themselves be meltedby the intense heat. The dielectric medium, usuallyparaffin oil. pumped into the gap between the toolelectrode and the workpiece, has the tendency toquench the explosion and to sweep away metallicvapour and molten particles.

41. The amount of work that can be effected in thesystem is a function of the energy of the individualsparks and the frequency at which they occur.

42. The shape of the tool electrode is a mirror imageof the passage to be machined in the workpiece and,to maintain a constant work gap, the electrode is fedinto the workpiece as erosion is effected.

Manufacture

239

Fig. 22-12 Typical automated manufacture of compressor blades.

Fig. 22-13 Electro-discharge machiningcircuit.

Page 248: Rolls royce jet engine

COMPOSITE MATERIALS AND SANDWICHCASINGS

43. High power to weight ratio and low componentcosts are very important considerations in the designof any aircraft gas turbine engine, but when thefunction of such an engine is to support a verticaltake-off aircraft during transition, or as an auxiliarypower unit, then the power to weight ratio becomesextremely critical.

44. In such engines, the advantage of compositematerials allows the designer to produce structuresin which directional strengths can be varied bydirectional lay-up of fibres according to the appliedloads.

45. Composite materials have and will continue toreplace casings which, in previous engines, wouldhave been produced in steels or titanium. By-passduct assemblies comprising of three casings arecurrently being produced up to 4ft-7in. in diameterand 2ft-0in in length using pre-cured compositematerials for the casing fabric. Flanges and mountingbosses are added during the manufacturing process,which are then drilled for both location and machined

for peripheral feature attachment on C.N.C.machining centres, which at one component load,completely machine all required features. Examplesof composite material applications are illustrated infig. 22-14.

46. Conventional cast and fabricated casings andcowlings are also being replaced by casings ofsandwich construction which provide strength alliedwith lightness and also act as a noise suppressionmedium. Sandwich construction casings comprise ahoneycomb structure of aluminium or stainless steelinterposed between layers of dissimilar material. Thematerials employed depend upon the environment inwhich they are used.

INSPECTION

47. During the process of manufacture, componentparts need to be inspected to ensure defect freeengines are produced. Using automated machineryand automated inspection, dimensional accuracy ismaintained by using multi-directional applied probesthat record sizes and position of features. The C.N.C.inspection machine can inspect families ofcomponents at pre-determined allotted intervals

Manufacture

240

Fig. 22-14 Some composite material applications.

Page 249: Rolls royce jet engine

without further operator intervention. In the chipmachining (i.e., turning, boring, milling etc.) andmetal forming processes C.N.C. machine toolsenable consistency of manufacture which can be sta-tistically inspected i.e., one in ten. Component

integrity is achieved by use of ultrasonic, radiologi-cal, magnetic particle and penetrant inspectiontechniques, as well as electrolytic and acid etching toensure all material properties are maintained to bothlaboratory and quality acceptance standards.

Manufacture

241

Fig. 22-15 Advanced integrated manufacturing system (A.I.M.S.).

Page 250: Rolls royce jet engine

Rolls-Royce Turbomeca RTM 332 Turboshaft

Rolls-Royce RB 93 Soar

Developed as a lightweight expendableengine for winged missiles, the Soar first ranin 1952. At that time it had the best thrust toweight ratio of any gas turbine in the world,producing 1810 lb thrust from only 275 lb totalweight. The Soar was flight tested in a GlosterMeteor with one engine on each wingtip. Itwas also built under licence in the USA as theJ81 for the XQ4 supersonic drone.

Page 251: Rolls royce jet engine

23: Power plant installation

Contents Page

Introduction 243Power plant location 243Air intakes 245Engine and jet pipe mountings 248Accessories 249Cowlings 249

INTRODUCTION

1. When a gas turbine engine is installed in anaircraft it usually requires a number of accessoriesfitting to it and connections made to various aircraftsystems. The engine, jet pipe and accessories, andin some installations a thrust reverser, must besuitably cowled and an air intake must be providedfor the compressor, the complete installation formingthe aircraft power plant.

POWER PLANT LOCATION

2. The power plant location and aircraft configura-tion are of an integrated design and this dependsupon the duties that the aircraft has to perform.Turbo-jet engine power plants may be in the form ofpod installations that are attached to the wings bypylons (fig. 23-1), or attached to the sides of the rearfuselage by short stub wings (fig. 23-2), or they maybe buried in the fuselage or wings. Some aircrafthave a combination of rear fuselage and tail-mounted power plants, others, as shown in fig. 23-3,have wing-mounted pod installations with a thirdengine buried in the tail structure. Turbo-propellerengines, however, are normally limited to installationin the wings or nose of an aircraft.

243

Page 252: Rolls royce jet engine

Power plant installation

244

Fig. 23-1 Wing-mounted pod installation.

Fig. 23-2 Fuselage - mounted pod installation.

Fig. 23-3 Tail and wing-mounted pod installation.

Page 253: Rolls royce jet engine

3. The position of the power plant must not affectthe efficiency of the air intake, and the exhaust gasesmust be discharged clear of the aircraft and itscontrol surfaces. Any installation must also be suchthat it produces the minimum drag effect.

4. Power plant installations are numbered from leftto right when viewed from the rear of the aircraft.

5. Supersonic aircraft usually have the power plantsburied in the aircraft for aerodynamic reasons.Vertical lift aircraft can use either the buried installa-tion or the podded power plant, or in some instancesboth types may be combined in one aircraft (Part 18).

AIR INTAKES

6. The main requirement of an air intake is that,under all operating conditions, delivery of-the air tothe engine is achieved with the minimum loss ofenergy occurring through the duct. To enable thecompressor to operate satisfactorily, the air mustreach the compressor at a uniform pressuredistributed evenly across the whole inlet area.

7. The ideal air intake for a turbo-jet engine fitted toan aircraft flying at subsonic or low supersonicspeeds, is a short, pitot-type circular intake (fig. 23-4). This type of intake makes the fullest use of theram effect on the air due to forward speed, andsuffers the minimum loss of ram pressure withchanges of aircraft attitude. However, as sonic speed

is approached, the efficiency of this type of air intakebegins to fall because of the formation of a shockwave at the intake lip.

8. The pitot-type intake can be used for engines thatare mounted in pods or in the wings, although the lattersometimes require a departure from the circular cross-section because of the wing thickness (fig. 23-5).

Power plant installation

245

Fig. 23-5 Wing leading edge intakes.

Fig. 23-4 Pitot-type intake.

Page 254: Rolls royce jet engine

9. Single engined aircraft sometimes use a pilot-type intake; however, because this generally involvesthe use of a long duct ahead of the compressor, adivided type of intake on each side of the fuselage isoften used (fig. 23-6).

10. The disadvantage of the divided type of airintake is that when the aircraft yaws, a loss of rampressure occurs on one side of the intake, as shownin fig. 23-7, causing an uneven distribution of airflowinto the compressor.

Power plant installation

246

Fig. 23-6 Single engined aircraft with fuselage intakes.

Fig. 23-7 Loss of ram pressure in divided intakes.

Page 255: Rolls royce jet engine

11. At higher supersonic speeds, the pitot type of airintake is unsuitable due to the severity of theshockwave that forms and progressively reduces theintake efficiency as speed increases. A more suitabletype of intake for these higher speeds is known asthe external/internal compression intake (fig. 23-8).This type of intake produces a series of mild shockwaves without excessively reducing the intakeefficiency.

12. As aircraft speed increases still further, so alsodoes the intake compression ratio and, at high Machnumbers, it is necessary to have an air intake that hasa variable throat area and spill valves to accommodate

and control the changing volumes of air (fig. 23-9).The airflow velocities encountered in the higher speedrange of the aircraft are much higher than the enginecan efficiently use; therefore, the air velocity must bedecreased between the intake and the engine air inlet.The angle of the variable throat area intake automati-cally varies with aircraft speed and positions the shockwave to decrease the air velocity at the engine inletand maintain maximum pressure recovery within theinlet duct. However, continued development enablesthis to be achieved by careful design of the intake andducting. This, coupled with auxiliary air doors to permitextra air to be taken in under certain engine operatingconditions, allows the airflow to be controlled withoutthe use of variable geometry intakes. The fuselageintakes shown in fig. 23-10 are of the variable throatarea type.

Power plant installation

247

Fig. 23-8 External/internal compressionintake.

Fig. 23-9 Variable throat area intake.

Page 256: Rolls royce jet engine

ENGINE AND JET PIPE MOUNTINGS

13. The engine is mounted in the aircraft in amanner that allows the thrust forces developed bythe engine to be transmitted to the aircraft mainstructure, in addition to supporting the engine weightand carrying any flight loads. Because of the widevariations in the temperature of the engine casings,

the engine is mounted so that the casings canexpand freely in both a longitudinal and a radialdirection. Types of engine mountings, however, varyto suit the particular installation requirement. Turbo-jet engines are usually either side mounted orunderslung as illustrated in fig. 23-11. Turbo-propeller engines are mounted forward on a tubularframework as illustrated in fig. 23-13.

Power plant installation

248

Fig. 23-10 Fuselage intakes.

Fig. 23-11 Typical turbo-jet engine mountings.

Page 257: Rolls royce jet engine

14. The jet pipe is normally attached to the rear ofthe engine and supported by the engine mountings.In some installations, particularly where long jetpipes are employed, an additional mounting isprovided, usually in the form of small rollers attachedto each side of the jet pipe. The rollers locate inairframe-mounted channels and support the weightof the jet pipe, whilst still allowing it to freely expandin a longitudinal direction.

ACCESSORIES

15. An aircraft power plant installation generallyincludes a number of accessories that are electrical-ly operated, mechanically driven or driven by highpressure air.

16. Electrically operated accessories such asengine control actuators, amplifiers, air controlvalves and solenoids, are supplied with power fromthe aircraft electrical system or an engine drivendedicated electrical generator.

17. Mechanically driven units, such as generators,constant speed drive units, hydraulic pumps, low andhigh pressure fuel pumps, and engine speedsignalling, measuring or governing units are drivenfrom the engine through internal and externalgearboxes (Part 7).

18. Air-driven accessories, such as the air starterand possibly the thrust reverser, afterburner and

water injection pumps, are driven by air tapped fromthe engine compressor. Air conditioning and cabinpressurization units may have a separate air-drivencompressor or use air direct from the enginecompressor. The amount of air that is taken for allaccessories and services must always be a verysmall percentage of the total airflow, as it representsa thrust or power loss and an increase in specific fuelconsumption.

COWLINGS

19. Access to an engine mounted in the wing orfuselage is by hinged doors; on pod and turbo-propeller installations the main cowlings are hinged.Access for minor servicing is by small detachable orhinged panels. All fasteners are of the quick-releasetype.

20. A turbo-propeller engine, or a turbo-jet enginemounted in a pod, is usually far more accessible thana buried engine because of the larger area of hingedcowling that can be provided. The accessibility of apodded turbo-fan engine is shown in fig, 23-12 andthat of a turbo-propeller engine is shown in fig, 23-13.

Power plant installation

249

Fig. 23-12 Engine accessibility, turbo-fan engine.

Fig. 23-13 Engine accessibility, turbo-propeller engine.

Page 258: Rolls royce jet engine

I.A.E. International Aero Engines V2500

Rolls-RoyceRB 162

Design of the RB162 began in 1959 usingexperience, gained on the RB108, ofsimplified lightweight constructions andsystems. These measures, combined withlightweight materials, served to keep theengine weight down to 280 lb; giving a thrustto weight ratio of 16:1. First run in December1961, the RB162 was used to provide lift for avariety of VTOL research aircraft.

Page 259: Rolls royce jet engine

24: Maintenance

Contents Page

Introduction 251 On-wing maintenance 252

Scheduled maintenance Unscheduled maintenance

Condition monitoring 252Flight deck indicators In-flight recorders Ground indicators

Maintenance precautions 254Trouble shooting 254Adjustments 256Ground testing 256

INTRODUCTION

1. Maintenance covers both the work that isrequired to maintain the engine and its systems in anairworthy condition while installed in an aircraft (on-wing or line maintenance) and the work required toreturn the engine to airworthy condition whenremoved from an aircraft (overhaul or shopmaintenance). On-wing maintenance is covered inthis Part; overhaul is covered in Part 25.

2. Because many aspects of maintenance aresubject to the approval of a recognized authority, itshould be fully understood that the information givenin this Part is of a general nature and is not intendedas a substitute for any official instructions.

3. The comprehensive instructions covering theactual work to be done to support scheduledmaintenance (para. 8) and unscheduled maintenance(para. 10) are contained in the aircraft maintenancemanual. Both this publication, and the aircraftmaintenance schedule mentioned in para. 8, arebased on manufacturers' recommendations and areapproved by the appropriate airworthiness authority.

4. The maximum time an engine can remaininstalled in an aircraft (engine life) is limited to a fixedperiod agreed between the engine manufacturer andairworthiness authority. On some engines this periodis referred to as the time between overhaul (T.B.O.)and on reaching it the engine is removed forcomplete overhaul.

251

Page 260: Rolls royce jet engine

5. Because the T.B.O. is actually determined by thelife of one or two assemblies within the engine,during overhaul, it is generally found that the otherassemblies are mechanically sound and fit tocontinue in service for a much longer period.Therefore, with the introduction of modular enginesand the improved inspection and monitoringtechniques available, the T.B.O. method on limitingthe engine's life on-wing has been replaced by the'on-condition' method.

6. Basically this means that a life is not declared for the totalengine but only for certain parts of the engine. On reachingtheir life limit, these parts are replaced and the enginecontinues in service, the remainder of the engine beingoverhauled 'on condition', Modular constructed engines areparticularly suited to this method, as the module containinga life limited part can be replaced by a similar module andthe engine returned to service with minimum delay, Themodule is then disassembled for life limited partreplacement, repair or complete overhaul as required.

ON-WING MAINTENANCE

7. On-wing maintenance falls into two basiccategories: scheduled maintenance andunscheduled maintenance.

Scheduled maintenance8. Scheduled maintenance embraces the periodicand recurring checks that have to be effected inaccordance with the engine section of theappropriate aircraft maintenance schedule. Thesechecks range from transit items, which do notnormally entail opening cowls, to more elaboratechecks within specified time limits, usually calculatedin aircraft flying hours and phased with the aircraftcheck cycle.

9. Continuous 'not-exceed-limit' maintenance,whereby checks are carried out progressively and asconvenient within given time limits rather than atspecific aircraft check periods, has been widelyadopted to supersede the check cycle. With theprogressive introduction of condition monitoringdevices (para. 11) of increased efficiency andreliability, a number of traditionally acceptedscheduled checks may become unnecessary.Extracts from a typical maintenance schedule areshown in fig. 24-1.

Unscheduled maintenance10. Unscheduled maintenance covers work neces-sitated by occurrences that are not normally relatedto time limits, e.g. bird ingestion, a strike by lightning,a crash or heavy landing, Unscheduled work

required may also result from malfunction, troubleshooting, scheduled maintenance, and occasionally,manufacturers' specific recommendations. This typeof maintenance usually involves rectificationadjustment or replacement.

CONDITION MONITORING

11. Condition monitoring devices must giveindication of any engine deterioration at the earliestpossible stage and also enable the area or module inwhich deterioration is occurring to be identified. Thisfacilitates quick diagnosis, which can be followed byscheduled monitoring and subsequent programmedrectification at major bases, thereby avoiding in-flightshut-down, with resultant aircraft delay, andminimizing secondary damage. Monitoring devicesand facilities can be broadly categorized as flight deckindicators, in-flight recorders and ground indicators.

Flight deck indicators12. Flight deck indicators are used to monitorengine parameters such as thrust or power, r.p.m.,turbine gas temperature, oil pressure and vibration.Most of the indicators used are described in Part 12.Other devices, however, may be used and theseinclude:

Accelerometers for more reliable and precisevibration monitoring.Radiation pyrometers for direct measurement ofturbine blade temperature.Return oil temperature indicators.Remote indicators for oil tank content.Engine surge or stall detectors.Rub indicators to sense eccentric running ofrotating assemblies.

In-flight recorders13. Selected engine parameters are recorded, eithermanually or automatically, during flight. Therecordings are processed and analyzed for significanttrends indicative of the commencement of failure. Anin-flight recording device that may be used is thetime/temperature cycle recorder. The purpose of thisdevice is to accurately record the engine time spentoperating at critical high turbine gas temperatures,thus providing a more realistic measure of 'hot-end'life than that provided by total engine running hours.

14. Automatic systems (Part 12) known as aircraftintegrated data systems (A.I.D.S.) are able to recordparameters additional to those normally displayede.g. certain pressures, temperatures and flows.

15. Many of the electronic components used inmodern control systems have the ability to monitor

Maintenance

252

Page 261: Rolls royce jet engine

their own and associated component operation. Anyfault detected is recorded in its built-in memory forsubsequent retrieval and rectification by the groundcrew. On aircraft that feature electronic engineparameter flight deck displays (Part 12) certain faultsare also automatically brought to the flight crew'sattention.

Ground indicators16. The devices used or checked on the ground, asdistinct from those used or checked in flight, mayconveniently be referred to as ground indicators; thistitle is also taken to embrace instruments used forengine internal inspection.

17. Internal viewing instruments can be eitherflexible or rigid, designed either for end or angledviewing and, in some instances adaptable for still or

video photography which may be linked to closedcircuit television. These instruments are used forexamining and assessing the condition of thecompressor and turbine assemblies, nozzle guidevanes (fig. 24-2) and combustion system, and can beinserted through access ports located at strategicpoints in the engine main casings.

18. The engine condition indicators includemagnetic chip detectors, oil filters and certain fuelfilters. These indicators are frequently used to sub-stantiate indications of failures shown by flight deckmonitoring and in-flight recordings. For instance,inspection of the oil filters and chip detectors canreveal deposits from which experienced personnelcan recognize early signs of failure. Somemaintenance organizations progressively log oil filter

Maintenance

253

Fig. 24-1 A typical maintenance schedule (extracts).

Page 262: Rolls royce jet engine

and magnetic chip detector history and catalogue theyield of particles. Fuel filters may incorporate a silverstrip indicator that detects any abnormal concentra-tion of sulphur in the fuel.

MAINTENANCE PRECAUTIONS

19. During engine maintenance, it is necessary toobserve certain precautions. The ignition system ispotentially lethal and, therefore, before any work isdone on the high energy ignition units, igniter plugsor harness, the low tension supply to the units mustbe disconnected and at least one minute allowed toelapse before disconnecting the high tension lead.Similarly, before carrying out work on unitsconnected to the electrical system, the system mustbe made safe, either by switching off power or bytripping and tagging appropriate circuit breakers.With some installations, the isolation of certainassociated systems may be required.

20. When the oil system is being replenished, caremust be taken that no oil is spilt. If any oil is acciden-tally spilt, it should be cleaned off immediately as it isinjurious to paintwork and to certain rubbercompounds such as could be found in the electricalharnesses, Oil can also be toxic through absorptionif allowed to come into contact with the human skinfor prolonged periods. Care should be taken not tooverfill the oil system; this may easily occur if theaircraft is not on level ground or if the engine hasbeen stationary for a long period before the oil levelis checked.

21. Before an inspection of the air intake or exhaustsystem is made it must be ascertained that there Isno possibility of the starter system being operated orthe ignition system being energized.

22. A final inspection of the engine, air intake andexhaust system, must always be made after anyrepair, adjustment or component change, to ensurethat no loose items, no matter how small, have beenleft inside. Unless specific local instructions ruleotherwise, air intake and exhaust blanks or coversshould be fitted when engines are not running.

TROUBLE SHOOTING

23. The procedure for locating a fault is commonlyreferred to as trouble shooting, and the requirementunder this procedure is for quick and accuratediagnosis with the minimum associated work and theprevention of unnecessary unit or engine removals.

24. The basic principle of effective trouble shootingis to clearly define and interpret the reportedsymptom and then proceed to a logical andsystematic method of diagnosis (fig. 24-3).

Maintenance

254

Fig. 24-2 Inspection of H.P. nozzle guidevanes.

Fig. 24-3 Trouble shooting - logicalsequence.

Page 263: Rolls royce jet engine

25. The reported symptom will frequently originatefrom flight deck instrument readings and, unless it isapparent from supporting information that thereadings are genuine, instrumentation should bechecked before proceeding further. Similarly, quick

elimination checks should normally be undertakenbefore more involved tasks. The manufacturers'maintenance manual contains trouble shootinginformation, usually in chart form and fig. 24-4 showsa typical example.

Maintenance

255

Fig. 24-4 A typical trouble shooting chart.

Page 264: Rolls royce jet engine

26. The progressive introduction of improved andmore reliable condition monitoring devices (para. 11)will have considerable influence on accepted troubleshooting practice, since to a large extent thesedevices are designed to pin-point, at an early stage,the specific system or assembly at fault. Thedevelopment of suitable test sets could eventuallyeliminate the need for engine ground testing aftertrouble shooting

ADJUSTMENTS

27. There are usually some adjustments that can bemade to the engine controlling the fuel trimmingdevices. Typical functions for which adjustmentprovision is normally made include idling andmaximum r.p.m., acceleration and decelerationtimes, and compressor air bleed valve operation.

28. Adjustment of an engine should be made only ifit is quite certain that no other fault exists that couldbe responsible for the particular condition, Themaintenance manual instructions relative to theadjustment must be closely adhered to at all times. Inmany instances, subject to local instructions, aground adjustment can be made with the enginerunning.

29. Adjusters are usually designed with some formof friction locking (fig. 24-5) that dispenses withlocknuts, lockplates and locking wire. On someengines, provision is also made for fitting remoteadjustment equipment (fig. 24-6) that permitsadjustment to be made during ground test with thecowls closed, the adjustment usually being madefrom the flight deck.

GROUND TESTING

30. The basic purpose of engine ground testing is toconfirm performance and mechanical integrity and tocheck a fault or prove a rectification during troubleshooting. Ground testing is essential after engineinstallation, but scheduled ground testing may notnormally be called for where satisfactory operationon the last flight is considered to be the authority oracceptance for the subsequent flight. In someinstances, this is backed up by specific checks madein cruise or on approach and, of course, by evidencefrom flight deck indicators and recordings.

31. For economic reasons and because of thenoise problem, ground testing is kept to a minimum

and is usually only carried out after engine installa-tions, during trouble shooting, or to test an aircraftsystem. With the improved maintenance methodsand introduction of system test sets which simulaterunning conditions during the checking of a staticengine, the need for ground testing, particularly athigh power, is becoming virtually unnecessary.

32. Before a ground test is made, certainprecautions and procedures must be observed toprevent damage to the engine or aircraft and injury topersonnel.

33. Because of the mass of air that will be drawninto the intake and the resultant high velocity andtemperature of the exhaust gases during a groundtest, danger zones exist at the front and rear of theaircraft. These zones will extend for a considerabledistance, and atypical example is shown in fig. 24-7.The jet efflux must be clear o! buildings and otheraircraft. Personnel engaged in ground testing mustensure that any easily detachable clothing issecurely fastened and should wear acoustic earmuffs.

Maintenance

256

Fig. 24-5 Typical friction locked adjusters.

Page 265: Rolls royce jet engine

Maintenance

257

Fig. 24-6 Remote adjustment equipment fitted to a turbo-propeller engine.

Page 266: Rolls royce jet engine

34. The aircraft should be headed into wind andpositioned so that the air intake and exhaust are overfirm concrete, or a prepared area that is free fromloose material and loose objects, and clear ofequipment. Where noise suppression installationsare used, the aircraft should be positioned in

accordance with local instructions. When verticaltake-off aircraft are being tested, protective steelplates and deflectors may be used to prevent grounderosion and engine ingestion of exhaust gases anddebris. Aircraft wheels should be securely chockedand braked; with vertical take-off aircraft, anchoring

Maintenance

258

Fig. 24-7 Ground running danger zones.

Page 267: Rolls royce jet engine

or restraining devices are also used. Adequate firefighting equipment must be readily available andlocal fire regulations must be strictly enforced.

35. Before an engine is started, the air intake andjet pipe must be inspected to ensure that they arefree from any debris or obstruction. Each operatorwill detail his individual pre-start inspection require-ments; a typical example of this for a multi-enginedaircraft is shown in fig. 24-8.

36. The starting drill varies between differentaircraft types and a starting check procedure isnormally used. Generally, all non-essential systems

are switched or selected off; warning and emergencysystems are checked when applicable. Finally, afterensuring that the low pressure fuel supply is selectedon, the starting cycle is initiated.

37. At a predetermined point during the startingcycle, the high pressure fuel shut-off valve (cock) isopened to allow fuel to pass to the fuel spraynozzles, this point varying with aircraft and enginetype; on some installations the shut-off valve may beopened before the starting cycle is initiated. Duringthe engine light-up period and subsequent accelera-tion to idling speed, the engine exhaust gastemperature must be carefully monitored to ensure

Maintenance

259

Fig. 24-8 A pre-start inspection sequence.

Page 268: Rolls royce jet engine

that the maximum temperature limitation is notexceeded. If the temperature limitation appears likelyto be exceeded, the shut-off valve must be closedand the starting cycle cancelled; the cause andpossible effect of the high temperature must then beinvestigated before the engine is again started.

38. When a turbo-propeller engine is being started,the propeller must be set to the correct starting pitch,as recommended by the engine manufacturer. Toprovide the minimum resistance to turning and thusprevent an excessive exhaust gas temperatureoccurring during the starting cycle, some propellershave a special fine pitch setting.

39. Throttle movements should be kept to aminimum and be smooth and progressive to avoidthermal stresses associated with rapid changes intemperature. Rapid throttle movements to check theacceleration and deceleration capabilities of theengine should be made only after all other majorchecks have proved satisfactory and after someslower accelerations and decelerations have provedsuccessful.

40. Before an engine is stopped, it should normallybe allowed to run for a short period at idling speed toensure gradual cooling of the turbine assembly. Theonly action required to stop the engine is the closing

Maintenance

260

Fig. 24-9 Overheated turbine blades.

Page 269: Rolls royce jet engine

of the shut-off valve. The shut-off valve must not bere-opened during engine rundown, as the resultingsupply of fuel can spontaneously ignite withconsequent severe overheating of the turbineassembly. An example of turbine blades which havebeen subjected to overheating is shown in fig. 24-9.

41. The time taken for the engine to come to restafter the shut-off valve is closed is known as the'rundown time' and this can give an indication of anyrubbing inside the engine. However it should beborne in mind that variations in wind velocity anddirection may affect the run-down time of an engine.

Maintenance

261

Page 270: Rolls royce jet engine

Rolls-Royce Tyne

Bristol BE 25 Orion

The Orion was a two-spool turbo-propdesigned to operate at its full rated power to20,000ft, achieved by throttling its sea levelpower to a maximum of 5150 ehp. Flighttesting commenced in August 1956 with theengine installed in the port outer nacelle of theBristol Britannia. Development was disconti-nued owing to lack of demand for turbo-propsat this time.

Page 271: Rolls royce jet engine

25: Overhaul

INTRODUCTION

1. It is most important that the cost of maintainingan engine in service is considered at the designstage. All aspects of engine repairability are alsoconsidered, both to reduce the requirement foroverhaul or repair and to avoid, where possible,designs which make repairs difficult to effect. Engineconstruction must allow the operator to complete theoverhaul or repair work as quickly and cheaply aspossible.

2. In service, the engine is inspected at routineperiods based on manufacturers' recommendationsand agreed between the operator and the relevantairworthiness authority. The engine is removed fromthe aircraft when it fails, during these inspections, tomeet the specified standards. This concept is a formof 'on-condition' monitoring, reference para. 9,however, regardless of condition, some engines areremoved when a stipulated number of engine flying

hours have been achieved, this concept is known astime between overhauls (T.B.O.). Operators will oftenremove engines in order to acquire 'fleet stagger'thus preventing a situation when an unacceptablenumber of engines require removal at the sameperiod of time.

3. The length of time between overhauls varies con-siderably between different engine types, beingestablished as a result of discussions between theoperator, the airworthiness authority and the manu-facturer, when such considerations as the totalexperience gained with the particular engine series,the type of operation, the utilization, and sometimesclimatic conditions, are taken into account. Inimproving the overhaul period the airworthinessauthority may take into consideration the backgroundof the operator, his servicing facilities and theexperience of his maintenance personnel.

4. When a new type of engine enters service,sampling (i.e. engine removal, dismantling andinspection) may be called for at a modest life. Thesampling will be continued until the life at which theengine should be overhauled is indicated by thecondition of the sample engines or by its reliabilityrecord in service. In some instances, the ultimate life

Contents Page

Introduction 263 Overhaul/Repair 265

DisassemblyCleaningInspectionRepairBalancingMoment weighing of bladesAssemblingTestingPreparing for storage/despatch

263

Page 272: Rolls royce jet engine

obtained may be two, three, or even four times theoriginal period permitted. The development of theT.B.O, from the introduction of an engine into service,through several years of operation, is shown as anexample in fig, 25-1.

5. Among the main factors affecting the overhaulperiod for an engine is the use to which it is put inservice. For example, a military engine will generallyhave a much lower T.B.O. than its civil counterpart,as performance capability is the operating criterionrather than economics. Due to the effect of rapidtemperature changes in the hot parts of the engine,the most arduous treatment is the frequent changingof power output to which short-haul transports andfighter aircraft are subjected.

6. When aircraft are based in areas with exception-ally high humidity or salt content in the atmosphere,there exists the added danger of corrosion, resultingin the need for more frequent overhauls. In peacetime, some military aircraft have a very low utilization,this introduces the additional problem of certainmaterials used in its construction deteriorating beforethe engine has otherwise reached a condition whichwould normally require an overhaul. Elapsed time, aswell as flying hours, would then influence theoverhaul period.

7. In addition to scheduled overhauls, there areproblems that arise from damage and defects. Aproportion of these, which are uneconomic orimpractical to rectify in the aircraft, necessitateunscheduled removals and require the engine to bereturned to an engineering base or an overhaul shopfor partial or complete overhaul.

8. The purpose of overhaul is to restore an engineenabling it to complete a further life by complyingwith new engine performance acceptance limitationsand maintaining the same reliability. This is achievedby dismantling the engine in order that parts can beinspected for condition and to determine the need forrenewal or repair of those parts whose deteriorationwould reduce the performance, or would not remainin a serviceable condition until the next overhaul.

9. The design of the modular constructed engine(Part 22, fig. 22-1) makes it particularly suited to adifferent technique of overhaul/repair. This techniqueis based on 'on-condition' monitoring (Part 24). Thismeans that a life is not declared for the total enginebut only certain parts of the engine. On reaching theirlife limit, these parts are replaced and the enginereturned to service, the remainder of the enginebeing overhauled 'on-condition'.

Overhaul

264

Fig. 25-1 Example of growth of time between overhaul (T.B.O.).

Page 273: Rolls royce jet engine

10. Modular construction, together with associatedtooling, enables the engine to be disassembled intoa number of major assemblies (modules). Moduleswhich contain life limited parts can be replaced bysimilar assemblies and the engine returned toservice with minimum delay. The removed modulesare disassembled into mini-modules for life limitedpart replacement, repair or complete overhaul asrequired.

OVERHAUL/REPAIR

11. The high cost of new engines has a consider-able influence on the overhaul/repair arrangements,as the number of spare engines normally bought bythe operator is kept to an absolute minimum. Thismeans that an unserviceable engine must be quicklyrestored to serviceability by changing a module, or apart if the modular construction will permit it, or bycareful scheduling of planned removals for overhaulsat time expiry. This scheduling, through theworkshop, of engines or modules that require the useof specialized equipment for repair is important, bothto keep the flow of work even and to staggerremovals to avoid aircraft being grounded byshortage of serviceable engines or modules.

12. Because the work that is to be implementedmust be planned and subsequently recorded, theengine or module is received in the workshop withdocuments to show its modification standard and itsreason for rejection from service. The planning willinclude a list of the modifications that can or must beincorporated to improve engine reliability orperformance or to reduce operating costs.

13. The layout of the overhaul/repair workshop isdesigned to facilitate work movement through thecomplete range of operations, to achieve maximumutilization of floor space and to allow specialequipment to be sited in positions that will suit thegeneral flow pattern. All these considerations areaimed at achieving a quick turnround of engines. Asan example of how shop layouts may be planned, atypical arrangement is shown in fig, 25-2.

Disassembly14. The engine can be disassembled in the verticalor horizontal position. When it is disassembled in thevertical position, the engine is mounted, usually frontend downwards, on a floor-fixture stool or a ram-topfixture. To enable it to be disassembled horizontally,the engine is mounted in a special turnover stand.

15. When the floor-fixture stool is used, thepersonnel use a mobile work platform to raisethemselves to a reasonable working position aroundthe engine. When the ram-top fixture is used, the ramand engine are retracted into a pit, so enabling theworkmen to remain at floor level.

16. The engine is disassembled into main sub-assemblies or modules, which are fitted in trans-portation stands and despatched to the separateareas where they are further disassembled toindividual parts. The individual parts are conveyed insuitable containers to a cleaning area in preparationfor inspection.

Cleaning17. The cleaning agents used during overhaulrange from organic solvents to acid and otherchemical cleaners, and extend to electrolyticcleaning solutions.

18. Organic solvents include kerosine for washing,trichloroethane for degreasing and paint strippingsolutions which can generally be used on themajority of components for carbon and paintremoval. The more restricted and sometimes rigidlycontrolled acid and other chemical cleaners are usedfor corrosion, heat scale and carbon removal fromcertain components. To give the highest degree ofcleanliness to achieve the integrity of inspection thatis considered necessary on certain major rotatingparts, such as turbine discs, electrolytic cleaningsolutions are often used.

19. Aircraft which operate at high altitudes canbecome contaminated with radio-active particlesheld in the atmosphere, this radio-activity is retainedin the dirt and carbon deposits in the engine.

20. If contamination is suspected the radio-activitylevel of the engine must be determined to ensure thelimitations agreed by the health authorities are notexceeded, Evidence of contamination will entailadditional cleaning in a designated region, separatefrom the overhaul area, to safeguard the health ofpersonnel in the workshop. Arrangements have tomade with the health authorities for disposal of thewaste radio-active cleaning material.

Inspection21. After cleaning, and prior to inspection, thesurfaces of some parts, e.g. turbine discs, areetched. This process removes a small amount ofmaterial from the surface of the part, leaving an even

Overhaul

265

Page 274: Rolls royce jet engine

Overhaul

266

Fig. 25-2 Typical overhaul workshop layout.

Page 275: Rolls royce jet engine

matt finish which reveals surface defects that cannotnormally be seen with the naked eye. The metalremoval is normally achieved either by an electrolyt-ic process in which the part forms the anode, or byimmersing the part for a short time in a special acidbath. Both methods must be carefully controlled toavoid the removal of too much material.

22. After the components have been cleaned theyare visually and, when necessary, dimensionallyinspected to establish general condition and thensubjected to crack inspection. This may includebinocular and magnetic or penetrant inspectiontechniques, used either alone or consecutively,depending on the components being inspected andthe degree of inspection considered necessary.

23. The non-dimensional inspections can bedivided into visual examination for general conditionand inspection for cracks. The visual examinationdepends on the inspector's judgement, based onexperience and backed by guidance from the manu-facturer. Although the visual examination of manyparts of the engine conform to normal engineeringpractice, for some parts the acceptance standardsare specialized, for example, the combustionchambers, which are subjected to very high temper-atures and high speed airflows in service.

24. Dimensional inspection consists of measuringspecific components to ensure that they are withinthe limits and tolerances laid down and known as'Fits and Clearances'. Some of the components aremeasured at each overhaul, because only a smallamount of wear or distortion is permissible or toenable the working clearances with matingcomponents to be calculated. Other components aremeasured only when the condition found duringvisual inspection requires dimensional verification.The tolerances laid down for overhaul, supported byservice experience, are often wider than those usedduring original manufacture.

25. The detection of cracks that are not normallyvisible to the naked eye is most important, particular-ly on major rotating parts such as turbine discs, sincefailure to detect them could result in crackpropagation during further service and eventuallylead to component failure. Various methods ofaccentuating these are used for inspection, the twoprincipal techniques being penetrant inspection fornonmagnetic materials and electro-magneticinspection for those parts that can be magnetized.

26. Two forms of penetrant inspection in commonuse are known as the dye penetrant and the

fluorescent test. With the dye test, a penetratingcoloured dye is induced to enter any cracks or poresin the surface of the part. The surface is then washedand a developer fluid containing white absorbents isapplied. Dye remaining in cracks or other surfacedefects is drawn to the surface of the developer bycapillary action and the resultant stains indicate theirlocations.

27. Fluorescent testing is based on the principlethat when ultra-violet radiation falls on a chemicalcompound, known as fluorescent ink, it is absorbedand its energy re-emitted as visible light. If a suitableink is allowed to penetrate surface cavities, theplaces where it is trapped will be revealed under therays of an ultra-violet lamp by brilliant lightemissions.

28. Magnetic crack testing (fig. 25-3) can only beapplied to components which can be magnetized.The part is first magnetized and then sprayed with, orimmersed in, a low viscosity fluid which containsferrous particles and is known as 'ink'. The two wallsof a crack in the magnetized part form magneticpoles and the magnetic field between these polesattracts the particles in the ink, so indicating the crack(fig. 25-4). In some instances, the ink may containfluorescent particles which enable their build-up to beviewed under an ultra-violet lamp, A part that hasbeen magnetically crack tested must be de-magnetized after inspection.

29. Chromic acid anodizing may be used as ameans of crack detection on aluminium parts, e.g.compressor blades. This process, in addition toproviding an oxide film that protects againstcorrosion, gives a surface that reveals even thesmallest flaws.

Overhaul

267

Fig. 25-3 Magnetic crack testing.

Page 276: Rolls royce jet engine

30. When the requirement for a detailed inspectionon a component such as a turbine disc is necessary,etching of the disc surfaces would be followed bybinocular inspection of the blade retention areas. Thewhole disc would then be subjected to magneticcrack test, followed by re-inspection of the discincluding a further binocular inspection of the bladeretention areas.

Repair31. To ensure that costs are maintained at thelowest possible level, a wide variety of techniquesare used to repair engine parts to make them suitablefor further service. Welding, the fitting of interferencesleeves or liners, machining and electro-plating aresome of the techniques employed during repair.

32. The welding techniques detailed in Part 22 areextensively used and range from welding of cracksby inert gas welding to the renewing of sections offlame tubes and jet pipes by electric resistancewelding.

33. On some materials now being used for gasturbine engine parts, different techniques may haveto be employed. An example of this is the highstrength titanium alloys which suffer from brittlewelds if they are allowed to become contaminated byoxygen during the cooling period. Parts made in

these alloys, which have to withstand high stressloadings in service, are often welded in a bag orplastic dome that is purged by an inert gas beforewelding commences.

34. More advanced materials and constructionsmay have to be welded by electron-beam welding.This method not only enables dissimilar metals to bewelded, but also complete sections of the moreadvanced fabricated constructions, e.g. a section ofa fabricated rotor drum, to be replaced at a lowpercentage cost of a new drum.

35. Some repair methods, such as welding, mayaffect the properties of the materials and, to restorethe materials to a satisfactory condition, it may benecessary to heat treat the parts to remove thestresses, reduce the hardness of the weld area orrestore the strength of the material in the heataffected area, Heat treatment techniques are alsoused for removing distortions after welding. The partsare heated to a temperature sufficient to remove thestresses and, during the heat treatment process,fixtures are often used to ensure the parts maintaintheir correct configuration.

36. Electro-plating methods are also widely used forrepair purposes and these range from chromiumplating, which can be used to provide a very hardsurface, to thin coatings of copper or silver plating,which can be applied to such areas as bearinglocations on a shaft to restore a fitting diameter thatis only slightly worn.

37. Many repairs are effected by machiningdiameters and/or faces to undersize dimensions orbores to oversize dimensions and then fitting shims,liners or metal spraying coatings of wear resistantmaterial. The effected surfaces are then restored totheir original dimensions by machining or grinding.

38. The inspection of parts after they have beenrepaired consists mainly of a penetrant or magneticinspection. However, further inspection may berequired on parts that have been extensivelyrepaired and this may involve pressure testing or X-ray inspection of welded areas.

39. Re-balancing of the main rotating assembly willbe necessary during overhaul, even though all theoriginal parts may be refitted, and this is done asdescribed in para 40.

Overhaul

268

Fig. 25-4 Cracks revealed by magneticcrack detection.

Page 277: Rolls royce jet engine

Balancing40. Because of the high rotational speeds, anyunbalance in the main rotating assembly of a gasturbine engine is capable of producing vibration andstresses which increase as the square of therotational speed. Therefore very accurate balancingof the rotating assembly is necessary.

41. The two main methods of measuring andcorrecting unbalance are single plane (static)balancing and two plane (dynamic) balancing. Withsingle plane, the unbalance is only in one plane i.e.,centrally through the component at 90 degrees to theaxis. This is appropriate for components such asindividual compressor or turbine discs.

42. For compressor and/or turbine rotor assembliespossessing appreciable axial length, unbalance maybe present at many positions along the axis. Ingeneral it is not possible to correct this combinationof distributed unbalance in a single plane. However,if two correction planes are chosen, usually at axiallyopposed ends of the assembly, it is always possibleto find a combination of two unbalance weights whichare equivalent for the unbalances present in theassembled rotor, hence two plane balancing.

43. To illustrate this point refer to fig. 25-5, the dis-tribution of unbalance in the rotor has been reducedto an equivalent system of two unbalances 'A' and'B'. The rotor is already in static balance because inthis example 'A' and 'B' are equal and opposed.However, when the part is rotating, each weightproduces its own centrifugal force in opposition to theother causing unbalance couples, with the tendencyto turn the part end-over-end. This action is restrictedby the bearings, with resultant stresses and vibration.It will be seen, therefore, that to bring the part to astate of dynamic balance, an equal amount of weightmust be removed at 'A' and 'B' or added at 'P' and 'O'.When the couples set up by the centrifugal forces areequal, it is said that a part is dynamically balanced.Unbalance is expressed in units of ounce-inches,thus one ounce of excess weight displaced twoinches from the axis of a rotor is two ounce inches ofunbalance.

44. When balancing assemblies such as L.P.compressor rotors, the readings obtained are incon-sistent due to blade scatter. Blade scatter is causedby the platform and root or retaining pin clearancesallowing the blades to interlock at the platforms andassume a different radial position during each

balancing run. This only occurs at the relatively lowr.p.m. used for balancing, because, during enginerunning, the blades will assume a consistent radialposition as they are centrifuged outwards.

45. To obtain authentic balance results when bladescatter is present, it is necessary to record readingsfrom several balance runs, e.g. 8 runs, thereafterdetermining a vector mean.

46. A typical dynamic balancing machine forindicating the magnitude and angular position ofunbalance in each plane is shown in fig. 25-6.Correction of unbalance may be achieved by one ora combination of the following basic methods; redis-tribution of weight, addition of weight and removal ofweight.

47. Redistribution of weight is possible for suchassemblies as turbine and compressor discs, whenblades of different weight can be interchanged and,on some engines, clamped weights are provided forpositioning around the disc.

48. The addition of weight is probably the mostcommon method used, certain parts of the assemblyhaving provision for the fitting of screwed or rivetedplugs, heavy wire, balancing plates or nuts.

Overhaul

269

Fig. 25-5 Unbalance couples due tocentrifugal force.

Page 278: Rolls royce jet engine

49. Removing weight by machining metal frombalancing lands is the third basic method, butnormally it is only employed on initial manufacturewhen balancing a component, e.g. a turbine shaft ora compressor shaft, that is part of a larger assembly.

50. Modular assembled engines demand differentbalancing methods which include the use ofsimulated engine rotors. The dummy rotors mustreproduce the bearing span, weight, centre of gravityand dynamic characteristics of the sub-assembly it

Overhaul

270

Fig. 25-6 Dynamic balancing machine.

Fig. 25-7 Simulated engine rotor assemblies.

Page 279: Rolls royce jet engine

replaces and must be produced and maintained sothat their own contribution to the measuredunbalance is minimal. In order to obtain the correctdynamic reactions when balancing a compressorand/or turbine rotor assembly on its own, with theintention of making it an independent module, asimulated engine rotor must be used to replace themating assembly, ref. fig. 25-7. The compressorand/or turbine rotor assembly having then been inde-pendently balanced with the appropriate dummyrotor is thus corrected both for its own unbalance andinfluence due to geometric errors on any othermating assembly.

Moment weighing of blades51. With the introduction of the large fan blade,moment weighing of blades has assumed a greatersignificance, ref. fig. 25-8. This operation takes intoaccount the mass of each blade and also the positionof its centre of gravity relative to the centre line of thedisc into which the blade is assembled. Themechanical system of blade moment weighing maybe integrated with a computer, ref. fig, 25-9, whichwill automatically optimise the blade distribution. Themoment weight of a blade in units i.e. g.mm. or oz.in.,is identical to the unbalance effect of the blade wheninstalled into a disc. The recorded measurement ofblade moment weights enables each blade to be

distributed around the disc in order that theseunbalances are cancelled.

Assembling52. The engine can be built in the vertical orhorizontal position, using the ram or stand illustratedin fig. 25-TO and 25-11 respectively. Assembling ofthe engine sub-assemblies or modules is done inseparate areas, thus minimizing the build time on thebuild rams or stands.

Overhaul

271

Fig. 25-8 Principle of blade moment weighing.

Fig. 25-9 Integrated blade momentweighing.

Page 280: Rolls royce jet engine

Overhaul

272

Fig. 25-10 Engine assembly --- vertical.

Fig. 25-11 Engine assembly--- horizontal.

Page 281: Rolls royce jet engine

53. During assembling, inspection checks aremade. These checks can establish dimensions toenable axial and radial clearances to be calculatedand adjustments to be made, or they can ascertainthat vital fitting operations have been correctlyeffected. Dimensional checks are effected duringdisassembly to establish datums which must berepeated on subsequent re-assernbly.

54. To ensure that the nuts, bolts and setscrewsthroughout the engine and its accessories areuniformly tight, controlled torque tightening isapplied, fig. 25-12, the torque loading figure isdetermined by the thread diameter and the differingcoefficients of friction allied with thread finish i.e.,silver or cadmium plating and the lubricant used.

Testing55. On completion of assembly, every productionand/or overhauled engine must be tested in a 'sea-level' test cell (fig. 25-14), i.e. a test cell in which theengine is run at ambient temperature and pressureconditions, the resultant performance figures beingcorrected to International Standard Atmosphere(I.S.A.) sea-level conditions (Part 21).

56. To ensure that the engine performance meetsthat guaranteed to the customer and the require-ments of the Government licensing and purchasingauthorities, each engine is tested to an acceptancetest schedule.

57. In addition to the 'sea-level' tests, sampleengines are tested to a flight evaluation test

Overhaul

273

Fig. 25-12 Torque tightening.

Page 282: Rolls royce jet engine

Overhaul

274

Fig. 25-13 A high altitude test cell.

Fig. 25-14 A sea-level test cell.

Page 283: Rolls royce jet engine

schedule. These tests cover such characteristics asanti-icing, combustion and reheat efficiencies,performance, mechanical reliability, and oil and fuelconsumptions at the variety of conditions to whichthe engine may be subjected during its operationallife. Flight evaluation testing can be effected byinstalling the engine in an aircraft or in an altitude testcell (fig. 25-13) to test the variations of air humidity,pressure and temperature on the engine, itsaccessories and the oil and fuel systems. When in anaircraft, the engine is operated at the actualatmospheric conditions specified in the schedule, butin an altitude test cell, the engine is installed in anenclosed cell and tested to the schedule inconditions that are mechanically simulated.

58. Mechanical simulation comprises supplying theengine inlet with an accurately controlled massairflow at the required temperature and humidity, andadjusting the atmospheric pressure within theexhaust cell to coincide with pressure at varyingaltitudes.

59. The data which is accumulated from either 'sea-level' or altitude testing is retained for futuredevelopment, engine life assessment, material capa-bilities or any aspect of engine history.

60. During the testing of turbo-jet engines there is aneed to reduce the exhaust noise to withinacceptable limits. This may be achieved by severaldifferent means, each involving costly equipment.However, a typical silencer would do this byexpansion in the first section, damping by acoustictubes and final diffusion by a large exit through which

the hot gas would be directed upwards at a lowvelocity.

Preparing for storage/despatch61. The preparation of the engine/module forstorage and/or despatch is of major importance,since storage and transportation calls for specialtreatment to preserve the engine. To resist corrosionduring storage, the fuel system is inhibited by specialoil and all apertures are sealed off. The external andinternal surfaces of the engine are also protected byspecial inhibiting powders or by paper impregnatedwith inhibiting powder and the engine is enclosed ina re-usable bag (fig. 25-15) or plastic sheeting intowhich a specific amount of desiccant is inserted. Iftransportation by rail or sea is involved, the inhibitedand bagged engine may be packed in a woodencrate or metal case.

Overhaul

275

Fig. 25-15 Transportation stand and storagebag.

Page 284: Rolls royce jet engine

277

Appendix 1

Conversion factorsUNIT ABBREVIATIONS

in = inchft = footyd = yardoz = ouncelb = poundcwt = hundredweightBtu = British thermal unithp = horsepowerHg = mercury

s = secondmin = minuteh = hourf = forceW = wattkW = kilowatt (Wx1000)mm = millimetre (mx0.001)m = metre

km = kilometre (mx1000)g = gramkg = kilogramN = newtonPa = pascalkPa = kilopascalJ = JoulekJ = kilojoule (Jx1000)MJ = megajoule (Jx1 000 000)

CONVERSION FACTORS - Exact values are printed in bold type.

LENGTH 1 in = 25.4 mm1 ft = 0.3048 m1 mile = 1 .60934 km1 International nautical mile = 1.852 km

AREA 1 in2 = 645.16 mm2

1 ft2 = 92903.04 mm2

VOLUME 1 UK fluid ounce = 28413.1 mm3

1 US fluid ounce = 29573.5 mm3

1 Imperial pint = 568261.0 mm3

1 US liquid pint = 473176.0 mm3

1 UK gallon = 4546090.0 mm3

1 US gallon = 3785410.0 mm3

1 in3 = 16387.1 mm3

1 ft3 = 0.0283168 m3

MASS 1 oz (avoir.) = 28. 3495 g1 lb = 0.45359237 kg1 UK ton = 1.01605 tonne 1 short ton (2000 lb) = 0.907 tonne

Page 285: Rolls royce jet engine

278

DENSITY 1 lb/in3 = 27679.9 kg/m3

1 lb/ft3 = 16.0185 kg/m3

VELOCITY 1 in/min = 0.42333 mm/s 1 ft/min = 0.00508 m/s1 ft/s = 0.3048 m/s1 mile/h = 1.60934 km/h 1 International knot = 1.852 km/h

ACCELERATION 1 ft/s2 = 0.3048 m/s2

MASS FLOW RATE 1 lb/h = 1.25998x10-4 kg/s

FORCE 1 Ibf = 4.44822 N 1 kgf = 9.80665 N1 tonf = 9964.02 N

PRESSURE 1 in Hg (0.0338639 bar) = 3386.39 Pa1 Ibf/in2 (0.0689476 bar) = 6894.76 Pa1 bar = 100.0 kPa1 standard atmosphere = 101.325 kPa

MOMENT (torque) 1 Ibf in = 0.112985 Nm1 Ibf ft = 1.35582 Nm

ENERGY/ HEAT/ WORK 1 hph = 2.68452 MJ1 therm = 105.506 MJ1 Btu = 1.05506 kJ1 kWh = 3.6 MJ

HEAT FLOW RATE 1 Btu/h = 0.293071 W

POWER 1 hp (550 ft Ibf/s) = 0.745700 kW

KINEMATIC VISCOSITY 1 ft2/s = 929.03 stokes = 0.092903 m2/s

SPECIFIC ENTHALPY 1 Btu/ft3 = 37.2589 kJ/rn2

1 Btu/lb = 2.326 kJ/kg

PLANE ANGLE 1 radian (rad) = 57.2958 degrees1 degree = 0.0174533 rad = 1.1111 grade1 second = 4.84814x10-6 rad = 0.0003 grade1 minute = 2.90888x10-4 rad = 0.0185 grade

VELOCITY OF ROTATION 1 revolution/min = 0.104720 rad/s

Page 286: Rolls royce jet engine