8
Experiment 1: Fourier’s Law study for linear conduction of heat along a homogeneous bar Test Section: Brass, dia 30 mm Heater Power, Q (Watts) T1 (°C) T2 (°C) T3 (°C) T4 (°C) T5 (°C) T6 (°C) T7 (°C) T8 (°C) T9 (°C) Distance from heater end , X (m) Signature__________ Experiment 2: Conduction of heat and overall heat transfer along a composite bar Test Section: stainless steel, dia 30mm Test Heater Power, Q (Watts) T1 (°C) T2 (°C) T3 (°C) T7 (°C) T8 (°C) T9 (°C) A B C Distance from heater end , X (m) Signature__ ________ Experiment 3: The effect of a change in cross-sectional area on the temperature profile along a thermal conductor Test Section: Brass, dia 13mm

Manual tables all new

Embed Size (px)

DESCRIPTION

hmt lab manual tables

Citation preview

Page 1: Manual tables all new

Experiment 1: Fourier’s Law study for linear conduction of heat along a homogeneous bar

Test Section: Brass, dia 30 mm

Heater Power, Q(Watts)

T1 (°C)

T2 (°C)

T3 (°C)

T4 (°C)

T5 (°C)

T6 (°C)

T7 (°C)

T8 (°C)

T9 (°C)

Distance from heater end , X

(m)

Signature__________

Experiment 2: Conduction of heat and overall heat transfer along a composite bar

Test Section: stainless steel, dia 30mm

Test Heater Power, Q(Watts)

T1 (°C)

T2 (°C)

T3 (°C)

T7 (°C)

T8 (°C)

T9 (°C)

A

B

C

Distance from heater end , X

(m)

Signature__________

Experiment 3: The effect of a change in cross-sectional area on the temperature profile along a thermal conductor

Test Section: Brass, dia 13mm

TestHeater

Power, Q(Watts)

T1 (°C)

T2 (°C)

T3 (°C)

T7 (°C)

T8 (°C)

T9 (°C)

A

B

C

Distance from heater end , X

(m)

Signature__________

Page 2: Manual tables all new

Experiment 4: The temperature profile and rate of heat transfer for radial conduction through the wall of cylinder

Test Section: Brass , dia 110, length 3mm

TestHeater

Power, Q(Watts)

T1 (°C)

T2 (°C)

T3 (°C)

T4 (°C)

T5 (°C)

T6(°C)

A

B

C

In r

Distance from heater end , X

(m)

Signature__________

Experiment 5: To measure the thermal conductivity of the Glass, we’ll use the apparatus of Thermal Conductivity of Building Materials apparatus.

Test Heat Input Q Temperature Measurement

Volt Amp Watt T1hot T2hot T3hot T4cold T5cold T6cold

TempInlet of water

TempOutlet of water

A

B

C

Signature__________

Experiment 6: To measure the thermal conductivity of the Wood, we’ll use the apparatus of Thermal Conductivity of Building Materials apparatus.

Test Heat Input Q Temperature Measurement

Volt Amp Watt T1hot T2hot T3hot T4cold T5cold T6cold

TempInlet of water

TempOutlet of water

A

B

Page 3: Manual tables all new

C

Signature__________

Experiment 7: To measure the thermal conductivity of liquids and gases.

Sample

heater Power supply Q(W)

T1(oC)

T2(oC)

∆T(T1-T2)

(oC)

Qgenerate

(W)Qlost

(W)Qconduction

(W)K

(W/mk)Error(%)

Signature__________

Experiment 8: To demonstrate the relationship between power input and surface temperature in free convection

Ambient air temperature (tA) = ________ C

Input Power, Q Watts Finned Plate Temp, (tH) ºC tH - tA , ºC

Signature__________

Experiment 9: To demonstrate the relationship between power input and surface temperature in forced convection.

Ambient air temperature (tA) = ________ CInput Power Q = ________ Watts

Air Velocity, m/s Finned Plate Temp (tH), ºC tH - tA, ºC

0

0.5

1.0

1.5

Signature__________

Page 4: Manual tables all new

Experiment 10: To demonstrate the use of extended surface to improve heat transfer from the surface.Ambient air temperature (tA) = ________ CInput Power Q = ________ Watts

Air Velocity, m/s Plate Temp (tH), ºC tH-tA, ºC

Pinned Finned Flat Pinned Finned Flat

0

1.0

2.0

2.5

Signature__________

Experiment 11: INVERSE SQUARE LAW FOR HEAT

Observations:

Distance,x(mm)

R (W/m2)

Tb (BLACK) (°K)

Ts(Source) (°K)

qb = σ [(Ts)4 – (Tb)4]θ = tan-1(50

X ) sin2 θ qr = qb x Sin2 θ

C=qr / R (constant)

800

700

600

500

400

300

Signature__________

Experiment 12: STEFAN-BOLTZMANN LAW

Observations:

Heater Temperature

(°C)

Distance,x(mm) R(W/m2) Tb (BLACK)

(°K)Ts(Source)

(°K)qb = σ [(Ts)4 – (Tb)4] C=qr / R

(Constant)

Rc = R x c F =qb / Rc

150 300

125 300

100 300

Page 5: Manual tables all new

75 300

Signature__________

Experiment 13: Co-Current and counter current Shell & Tube Heat Exchanger.

FL1 hot FL 2 cold TT 1 inlet hot TT 2 out hot TT 3 out cold TT 4 inlet cold(LPM) (LPM) (°C) (°C) (°C) (°C)

Signature__________

Experiment 14: Co-Current and counter current Concentric Heat Exchanger

FL1 hot FL 2 cold TT 1 inlet hot TT 2 out hot TT 3 out cold TT 4 inlet cold(LPM) (LPM) (°C) (°C) (°C) (°C)

Signature__________

Experiment 15: Co-Current and counter current plate Heat Exchanger

FL1 hot FL 2 cold TT 1 inlet hot TT 2 out hot TT 3 out cold TT 4 inlet cold(LPM) (LPM) (°C) (°C) (°C) (°C)

Signature__________

Experiment 16: Co-Current and counter current coil Heat Exchanger

FL1 hot FL 2 cold TT 1 inlet hot TT 2 out hot TT 3 out cold TT 4 inlet cold(LPM) (LPM) (°C) (°C) (°C) (°C)

Page 6: Manual tables all new

Signature__________