15
Introduction to Computational Tribology: Contact Pairs Modeling Xavier Borras Twente University November 2015 des are available at my profile page in

Computational Tribology Introduction

Embed Size (px)

Citation preview

Page 1: Computational Tribology Introduction

Introduction to Computational Tribology: Contact Pairs Modeling

Xavier BorrasTwente UniversityNovember 2015

The slides are available at my profile page in

Page 2: Computational Tribology Introduction

3. Collar

2. Fluid

1. Pad

Tribological Contact Pairs

Page 3: Computational Tribology Introduction

3. Collar

2. Fluid

1. Pad

Thin Film Flow: Reynolds PDE

𝜕𝜕𝑥 ( 𝜌 h

3

12𝜂𝜕𝑝𝜕 𝑥 )=𝑈

2𝜕𝜕 𝑥 (𝜌 h)

gap height velocity

density

viscosity

pressure

1. Fluid Cavitation2. Non-Newtonian Fluid3. Density = f(Temp, Pressure)4. Viscosity = f(Temp, Pressure)5. Homogenization Techniques6. Fluid Starvation7. Time dependent

𝑝𝑝 :𝐻𝑦𝑑𝑟𝑜𝑑𝑦𝑛𝑎𝑚𝑖𝑐 𝑃𝑟𝑒𝑠𝑠𝑢𝑟𝑒

Page 4: Computational Tribology Introduction

3. Collar

2. Fluid

1. Pad

Lubrication Regimes

NO CONTACTCONTACT

DRY WET FULL FILM LUBRICATION

Page 5: Computational Tribology Introduction

3. Collar

2. Fluid

1. Pad

Lubrication Regimes

NO CONTACTCONTACT

DRY WET FULL FILM LUBRICATION

Page 6: Computational Tribology Introduction

3. Collar

2. Fluid

1. Pad

Lubrication Regimes

NO CONTACTCONTACT

DRY WET FULL FILM LUBRICATION

Gap Height

No Contact ModelContact Model

Asperities

Reynolds PDEModified Reynolds+ Homogenization

+ Starvation

No Reynolds

Fluid Film

Page 7: Computational Tribology Introduction

3. Collar

2. Fluid

1. Pad

HLHydrodynamic

Lubrication model- Reynolds PDE

Computational Models Coupling

𝑃𝐻𝐷Reynolds PDE

(…)

𝑈

𝑝

h

Page 8: Computational Tribology Introduction

3. Collar

2. Fluid

1. Pad

HLHydrodynamic

Lubrication model- Reynolds PDE

EHLElastoHydrodynamic

Lubrication model- Reynolds PDE- Linear Elastic

Linear Elastic𝑢  

𝐸 , ν+𝐵𝐶(𝑃𝐻𝐷 ,…)

Computational Models Coupling Degree

𝑝

𝑃𝐻𝐷Reynolds PDE

(…)

𝑈

𝑝

h

Page 9: Computational Tribology Introduction

3. Collar

2. Fluid

1. Pad

HLHydrodynamic

Lubrication model- Reynolds PDE

EHLElastoHydrodynamic

Lubrication model- Reynolds PDE- Linear Elastic

TEHLThermal

ElastoHydrodynamic Lubrication model- Reynolds PDE- Linear Elastic- Heat Balance

Computational Models Coupling Degree

𝑝

𝑈

𝑃𝐻𝐷Reynolds PDE

(…)

Linear Elastic𝑢  

𝐸 , ν+𝐵𝐶(𝑃𝐻𝐷 ,…)

𝑇Heat Balance

𝑘 ,𝐶𝑝 ,ρ ,𝛼+𝐵𝐶 (𝑃𝐻𝐷 ,…)

h

Page 10: Computational Tribology Introduction

3. Collar

2. Fluid

1. Pad

Spring-supported Thrust Bearings

THRUST BEARING

Page 11: Computational Tribology Introduction

3. Collar

2. Fluid

1. Pad COLLAR

PAD SUPPORT

SHAFT WEIGHT

Pressure distribution

p Fluid Velocity Field

U

Gap Height h

Spring-supported Thrust Bearings

𝜕𝜕𝑥 ( 𝜌 h

3

12𝜂𝜕𝑝𝜕 𝑥 )=𝑈

2𝜕𝜕 𝑥 (𝜌 h)

gap heightvelocity

densityviscosity

pressure

Page 12: Computational Tribology Introduction

3. Collar

2. Fluid

1. Pad

Spring-supported Thrust Bearings

Pressure on the Gap Pad TemperatureFluid Film Thickness

PAD

COLLAR

FLUID

Page 13: Computational Tribology Introduction

3. Collar

2. Fluid

1. Pad

Stern Tube Seals: Rotary Seals

Page 14: Computational Tribology Introduction

3. Collar

2. Fluid

Stern Tube Seals: Rotary Seals

Pgas

Pambient

A) No pressure build-up is expected between rod due to the rod rotation.B) Any axial displacement will easily cause a leakage.C) The negative pressure gradient towards ambient will hamper leakage into the

machine.

Page 15: Computational Tribology Introduction

Introduction to Computational Tribology: Contact Pairs Modeling

Xavier BorrasTwente UniversityNovember 2015

The slides are available at my profile page in