11

Click here to load reader

Communications satellite wikipedia, the free encyclopedia

Embed Size (px)

DESCRIPTION

ok

Citation preview

Page 1: Communications satellite   wikipedia, the free encyclopedia

An Advanced Extremely High

Frequency communications satellite

relays secure communications for the

United States and other allied

countries.

Communications satelliteFrom Wikipedia, the free encyclopedia

A communications satellite or comsat is an artificial satellite sent to space for the purpose oftelecommunications. Modern communications satellites use a variety of orbits including geostationary orbits,Molniya orbits, elliptical orbits and low (polar and non-polar) Earth orbits.

For fixed (point-to-point) services, communications satellites provide a microwave radio relay technologycomplementary to that of communication cables. They are also used for mobile applications such ascommunications to ships, vehicles, planes and hand-held terminals, and for TV and radio broadcasting.

Contents

1 History

1.1 Geostationary orbits

1.2 Low-Earth-orbiting satellites

1.3 Molniya satellites

2 Structure

3 Applications

3.1 Telephone

3.2 Television

3.3 Digital cinema

3.4 Radio

3.5 Internet access

3.6 Military

4 See also

5 References

6 External links

Page 2: Communications satellite   wikipedia, the free encyclopedia

History

The Merriam-Webster dictionary defines a satellite as a celestial body orbiting another of larger size or a manufactured object or vehicle intended to orbit

the earth, the moon, or another celestial body.[1]

Today's satellite communications can trace their origins all the way back to the Moon. A project named Communication Moon Relay was atelecommunication project carried out by the United States Navy. Its objective was to develop a secure and reliable method of wireless communicationby using the Moon as a natural communications satellite.

The first artificial satellite used solely to further advances in global communications was a balloon named Echo 1.[2] Echo 1 was the world's first artificialcommunications satellite capable of relaying signals to other points on Earth. It soared 1,000 miles (1,609 km) above the planet after its Aug. 12, 1960launch, yet relied on humanity's oldest flight technology — ballooning. Launched by NASA, Echo 1 was a giant metallic balloon 100 feet (30 meters)across. The world's first inflatable satellite — or "satelloon", as they were informally known — helped lay the foundation of today's satellitecommunications. The idea behind a communications satellite is simple: Send data up into space and beam it back down to another spot on the globe.Echo 1 accomplished this by essentially serving as an enormous mirror 10 stories tall that could be used to bounce communications signals off of.

The first American satellite to relay communications was Project SCORE in 1958, which used a tape recorder to store and forward voice messages. It

was used to send a Christmas greeting to the world from U.S. President Dwight D. Eisenhower.[3] NASA launched the Echo satellite in 1960; the 100-foot (30 m) aluminised PET film balloon served as a passive reflector for radio communications. Courier 1B, built by Philco, also launched in 1960, wasthe world's first active repeater satellite.

It is commonly believed that the first "communications" satellite was Sputnik 1. Put into orbit by the Soviet Union on October 4, 1957, it was equippedwith an onboard radio-transmitter that worked on two frequencies: 20.005 and 40.002 MHz. Sputnik 1 was launched as a step in the exploration ofspace and rocket development. While incredibly important it was not placed in orbit for the purpose of sending data from one point on earth to another.Hence, it was not the first "communications" satellite, but it was the first artificial satellite in the steps leading to today's satellite communications.

Telstar was the first active, direct relay communications satellite. Belonging to AT&T as part of a multi-national agreement between AT&T, BellTelephone Laboratories, NASA, the British General Post Office, and the French National PTT (Post Office) to develop satellite communications, it waslaunched by NASA from Cape Canaveral on July 10, 1962, the first privately sponsored space launch. Relay 1 was launched on December 13, 1962,

and became the first satellite to broadcast across the Pacific on November 22, 1963.[4]

An immediate antecedent of the geostationary satellites was Hughes' Syncom 2, launched on July 26, 1963. Syncom 2 revolved around the earth onceper day at constant speed, but because it still had north-south motion, special equipment was needed to track it.

Geostationary orbits

Page 3: Communications satellite   wikipedia, the free encyclopedia

Geostationary orbit

To an observer on the earth, a satellite in a geostationary orbit appears motionless, in a fixed position in thesky. This is because it revolves around the earth at the earth's own angular velocity (360 degrees every 24hours, in an equatorial orbit).

A geostationary orbit is useful for communications because ground antennas can be aimed at the satellitewithout their having to track the satellite's motion. This is relatively inexpensive. In applications that require alarge number of ground antennas, such as DirectTV distribution, the savings in ground equipment can morethan outweigh the cost and complexity of placing a satellite into orbit.

The concept of the geostationary communications satellite was first proposed by Arthur C. Clarke, building onwork by Konstantin Tsiolkovsky and on the 1929 work by Herman Potočnik (writing as Herman Noordung)Das Problem der Befahrung des Weltraums — der Raketen-motor. In October 1945 Clarke published an

article titled "Extra-terrestrial Relays" in the British magazine Wireless World.[5] The article described thefundamentals behind the deployment of artificial satellites in geostationary orbits for the purpose of relayingradio signals. Thus, Arthur C. Clarke is often quoted as being the inventor of the communications satellite.

The first geostationary satellite was Syncom 3, launched on August 19, 1964, and used for communication across the Pacific starting with televisioncoverage of the 1964 Summer Olympics. Shortly after Syncom 3, Intelsat I, aka Early Bird, was launched on April 6, 1965 and placed in orbit at 28°west longitude. It was the first geostationary satellite for telecommunications over the Atlantic Ocean.

On November 9, 1972, Canada's first geostationary satellite serving the continent, Anik A1, was launched by Telesat Canada, with the United Statesfollowing suit with the launch of Westar 1 by Western Union on April 13, 1974.

On May 30, 1974, the first geostationary communications satellite in the world to be three-axis stabilized was launched: the experimental satellite ATS-6built for NASA

After the launches of the Telstar through Westar 1 satellites, RCA Americom (later GE Americom, now SES) launched Satcom 1 in 1975. It wasSatcom 1 that was instrumental in helping early cable TV channels such as WTBS (now TBS Superstation), HBO, CBN (now ABC Family) and TheWeather Channel become successful, because these channels distributed their programming to all of the local cable TV headends using the satellite.Additionally, it was the first satellite used by broadcast television networks in the United States, like ABC, NBC, and CBS, to distribute programming totheir local affiliate stations. Satcom 1 was widely used because it had twice the communications capacity of the competing Westar 1 in America (24transponders as opposed to the 12 of Westar 1), resulting in lower transponder-usage costs. Satellites in later decades tended to have even highertransponder numbers.

By 2000, Hughes Space and Communications (now Boeing Satellite Development Center) had built nearly 40 percent of the more than one hundredsatellites in service worldwide. Other major satellite manufacturers include Space Systems/Loral, Orbital Sciences Corporation with the STAR Busseries, Indian Space Research Organization, Lockheed Martin (owns the former RCA Astro Electronics/GE Astro Space business), Northrop

Page 4: Communications satellite   wikipedia, the free encyclopedia

Low Earth orbit in Cyan

Grumman, Alcatel Space, now Thales Alenia Space, with the Spacebus series, and Astrium.

Low-Earth-orbiting satellites

A low Earth orbit (LEO) typically is a circular orbit about 200 kilometres (120 mi) above the earth's surfaceand, correspondingly, a period (time to revolve around the earth) of about 90 minutes. Because of their lowaltitude, these satellites are only visible from within a radius of roughly 1000 kilometers from the sub-satellitepoint. In addition, satellites in low earth orbit change their position relative to the ground position quickly. Soeven for local applications, a large number of satellites are needed if the mission requires uninterruptedconnectivity.

Low-Earth-orbiting satellites are less expensive to launch into orbit than geostationary satellites and, due toproximity to the ground, do not require as high signal strength (Recall that signal strength falls off as the squareof the distance from the source, so the effect is dramatic). Thus there is a trade off between the number ofsatellites and their cost. In addition, there are important differences in the onboard and ground equipmentneeded to support the two types of missions.

A group of satellites working in concert is known as a satellite constellation. Two such constellations, intendedto provide satellite phone services, primarily to remote areas, are the Iridium and Globalstar systems. TheIridium system has 66 satellites.

It is also possible to offer discontinuous coverage using a low-Earth-orbit satellite capable of storing data received while passing over one part of Earthand transmitting it later while passing over another part. This will be the case with the CASCADE system of Canada's CASSIOPE communicationssatellite. Another system using this store and forward method is Orbcomm.

Molniya satellites

Geostationary satellites must operate above the equator and therefore appear lower on the horizon as the receiver gets the farther from the equator. Thiswill cause problems for extreme northerly latitudes, affecting connectivity and causing multipath (interference caused by signals reflecting off the groundand into the ground antenna). For areas close to the North (and South) Pole, a geostationary satellite may appear below the horizon. Therefore Molniyaorbit satellite have been launched, mainly in Russia, to alleviate this problem. The first satellite of the Molniya series was launched on April 23, 1965 andwas used for experimental transmission of TV signal from a Moscow uplink station to downlink stations located in Siberia and the Russian Far East, inNorilsk, Khabarovsk, Magadan and Vladivostok. In November 1967 Soviet engineers created a unique system of national TV network of satellitetelevision, called Orbita, that was based on Molniya satellites.

Page 5: Communications satellite   wikipedia, the free encyclopedia

Molniya orbits can be an appealing alternative in such cases. The Molniya orbit is highly inclined, guaranteeing good elevation over selected positionsduring the northern portion of the orbit. (Elevation is the extent of the satellite's position above the horizon. Thus, a satellite at the horizon has zeroelevation and a satellite directly overhead has elevation of 90 degrees.)

The Molniya orbit is designed so that the satellite spends the great majority of its time over the far northern latitudes, during which its ground footprintmoves only slightly. Its period is one half day, so that the satellite is available for operation over the targeted region for six to nine hours every secondrevolution. In this way a constellation of three Molniya satellites (plus in-orbit spares) can provide uninterrupted coverage.

Structure

Communications Satellites are usually composed of the following subsystems:

Communication Payload, normally composed of transponders, antenna, and switching systems

Engines used to bring the satellite to its desired orbit

Station Keeping Tracking and stabilization subsystem used to keep the satellite in the right orbit, with its antennas pointed in the right direction, and

its power system pointed towards the sun

Power subsystem, used to power the Satellite systems, normally composed of solar cells, and batteries that maintain power during solar eclipse

Command and Control subsystem, which maintains communications with ground control stations. The ground control earth stations monitor the

satellite performance and control its functionality during various phases of its life-cycle.

The bandwidth available from a satellite depends upon the number of transponders provided by the satellite. Each service (TV, Voice, Internet, radio)requires a different amount of bandwidth for transmission. This is typically known as link budgeting and a network simulator can be used to arrive at theexact value.

Applications

Telephone

The first and historically most important application for communication satellites was in intercontinental long distance telephony. The fixed PublicSwitched Telephone Network relays telephone calls from land line telephones to an earth station, where they are then transmitted to a geostationarysatellite. The downlink follows an analogous path. Improvements in submarine communications cables, through the use of fiber-optics, caused somedecline in the use of satellites for fixed telephony in the late 20th century.

Page 6: Communications satellite   wikipedia, the free encyclopedia

An Iridium satellite

Satellite communications are still used in many applications today. Remote islands such as Ascension Island, Saint Helena, Diego Garcia, and EasterIsland, where no submarine cables are in service need satellite telephones. There are also regions of some continents and countries where landlinetelecommunications are rare to nonexistent, for example large regions of South America, Africa, Canada, China, Russia, and Australia. Satellitecommunications also provide connection to the edges of Antarctica and Greenland. Other land use for satellite phones are rigs at sea, a back up for

hospitals, military, and recreation. Ships at sea often use satellite phones, and planes. [6]

Satellite phones can be accomplished in many different ways. On larger scale often there will be local telephone systemin the isolated area with a link to a telephone system in a main land area. There are services that will patch a radio signalto a telephone system in this example most any type of satellite can be used. Satellite phones connect directly to aconstellation of either geostationary or low-earth-orbit satellites. Calls are then forwarded to a satellite teleportconnected to the Public Switched Telephone Network .

Television

As television became the main market, its demand for simultaneous delivery of relatively few signals of large bandwidth to many receivers being a moreprecise match for the capabilities of geosynchronous comsats. Two satellite types are used for North American television and radio: Direct broadcastsatellite (DBS), and Fixed Service Satellite (FSS).

The definitions of FSS and DBS satellites outside of North America, especially in Europe, are a bit more ambiguous. Most satellites used for direct-to-home television in Europe have the same high power output as DBS-class satellites in North America, but use the same linear polarization as FSS-classsatellites. Examples of these are the Astra, Eutelsat, and Hotbird spacecraft in orbit over the European continent. Because of this, the terms FSS andDBS are more so used throughout the North American continent, and are uncommon in Europe.

Fixed Service Satellites use the C band, and the lower portions of the Ku bands. They are normally used for broadcast feeds to and from television

networks and local affiliate stations (such as program feeds for network and syndicated programming, live shots, and backhauls), as well as being usedfor distance learning by schools and universities, business television (BTV), Videoconferencing, and general commercial telecommunications. FSSsatellites are also used to distribute national cable channels to cable television headends.

Free-to-air satellite TV channels are also usually distributed on FSS satellites in the Ku band. The Intelsat Americas 5, Galaxy 10R and AMC 3 satellites

over North America provide a quite large amount of FTA channels on their Ku band transponders.

The American Dish Network DBS service has also recently utilized FSS technology as well for their programming packages requiring their SuperDishantenna, due to Dish Network needing more capacity to carry local television stations per the FCC's "must-carry" regulations, and for more bandwidth tocarry HDTV channels.

Page 7: Communications satellite   wikipedia, the free encyclopedia

A direct broadcast satellite is a communications satellite that transmits to small DBS satellite dishes (usually 18 to 24 inches or 45 to 60 cm in diameter).Direct broadcast satellites generally operate in the upper portion of the microwave Ku band. DBS technology is used for DTH-oriented (Direct-To-

Home) satellite TV services, such as DirecTV and DISH Network in the United States, Bell TV and Shaw Direct in Canada, Freesat and Sky in theUK, Ireland, and New Zealand and DSTV in South Africa.

Operating at lower frequency and lower power than DBS, FSS satellites require a much larger dish for reception (3 to 8 feet (1 to 2.5m) in diameter forKu band, and 12 feet (3.6m) or larger for C band). They use linear polarization for each of the transponders' RF input and output (as opposed to circular

polarization used by DBS satellites), but this is a minor technical difference that users do not notice. FSS satellite technology was also originally used forDTH satellite TV from the late 1970s to the early 1990s in the United States in the form of TVRO (TeleVision Receive Only) receivers and dishes. Itwas also used in its Ku band form for the now-defunct Primestar satellite TV service.

Some satellites have been launched that have transponders in the Ka band, such as DirecTV's SPACEWAY-1 satellite, and Anik F2. NASA and

ISRO[7][8] have also launched experimental satellites carrying Ka band beacons recently.[9]

Some manufacturers have also introduced special antennas for mobile reception of DBS television. Using Global Positioning System (GPS) technology asa reference, these antennas automatically re-aim to the satellite no matter where or how the vehicle (on which the antenna is mounted) is situated. Thesemobile satellite antennas are popular with some recreational vehicle owners. Such mobile DBS antennas are also used by JetBlue Airways for DirecTV(supplied by LiveTV, a subsidiary of JetBlue), which passengers can view on-board on LCD screens mounted in the seats.

Digital cinema

Realization and demonstration, on October 29, 2001, of the first digital cinema transmission by satellite in Europe[10][11][12] of a feature film by Bernard

Pauchon[13] and Philippe Binant.[14]

Radio

Satellite radio offers audio services in some countries, notably the United States. Mobile services allow listeners to roam a continent, listening to the sameaudio programming anywhere.

A satellite radio or subscription radio (SR) is a digital radio signal that is broadcast by a communications satellite, which covers a much widergeographical range than terrestrial radio signals.

Page 8: Communications satellite   wikipedia, the free encyclopedia

Satellite radio offers a meaningful alternative to ground-based radio services in some countries, notably the United States. Mobile services, such asSiriusXM, and Worldspace, allow listeners to roam across an entire continent, listening to the same audio programming anywhere they go. Otherservices, such as Music Choice or Muzak's satellite-delivered content, require a fixed-location receiver and a dish antenna. In all cases, the antenna musthave a clear view to the satellites. In areas where tall buildings, bridges, or even parking garages obscure the signal, repeaters can be placed to make thesignal available to listeners.

Initially available for broadcast to stationary TV receivers, by 2004 popular mobile direct broadcast applications made their appearance with the arrivalof two satellite radio systems in the United States: Sirius and XM Satellite Radio Holdings. Later they merged to become the conglomerate SiriusXM.

Radio services are usually provided by commercial ventures and are subscription-based. The various services are proprietary signals, requiringspecialized hardware for decoding and playback. Providers usually carry a variety of news, weather, sports, and music channels, with the music channelsgenerally being commercial-free.

In areas with a relatively high population density, it is easier and less expensive to reach the bulk of the population with terrestrial broadcasts. Thus in theUK and some other countries, the contemporary evolution of radio services is focused on Digital Audio Broadcasting (DAB) services or HD Radio,rather than satellite radio.

Amateur radio operators have access to the amateur radio satellites that have been designed specifically to carry amateur radio traffic. Most suchsatellites operate as spaceborne repeaters, and are generally accessed by amateurs equipped with UHF or VHF radio equipment and highly directionalantennas such as Yagis or dish antennas. Due to launch costs, most current amateur satellites are launched into fairly low Earth orbits, and are designedto deal with only a limited number of brief contacts at any given time. Some satellites also provide data-forwarding services using the X.25 or similarprotocols.

Internet access

After the 1990s, satellite communication technology has been used as a means to connect to the Internet via broadband data connections. This can bevery useful for users who are located in remote areas, and cannot access a broadband connection, or require high availability of services.

Military

Communications satellites are used for military communications applications, such as Global Command and Control Systems. Examples of militarysystems that use communication satellites are the MILSTAR, the DSCS, and the FLTSATCOM of the United States, NATO satellites, United Kingdomsatellites (for instance Skynet), and satellites of the former Soviet Union. India has launched its first Military Communication satellite GSAT-7, its

transpinders operate in UHF, F, C and Ku band bands. [15] Typically military satellites operate in the UHF, SHF (also known as X-band) or EHF (also

known as Ka band) frequency bands.

Page 9: Communications satellite   wikipedia, the free encyclopedia

See also

Broadcasting Satellite (Japanese)

Commercialization of space

Computation of radiowave attenuation in the atmosphere

COMSAT

Data Transmission Network

DigiCipher 2

Digital Video Broadcasting

EME (communications)

Free-space optical communication

Integral Satcom Initiative

Intersputnik

List of communication satellite companies

List of communications satellite firsts

List of orbits

PanAmSat

Project West Ford

Reconnaissance satellite

Satellite space segment

Satmodem

Symphonie

VSAT

WorldVu satellite constellation

References

1. ^ Merriam-Webster Dictionary (http://www.merriam-webster.com/dictionary/satellite)

2. ^ ECHO 1 space.com (http://www.space.com/8973-1st-communication-satellite-giant-space-balloon-50-years.html)

Page 10: Communications satellite   wikipedia, the free encyclopedia

External links

Satellite Industry Association (http://www.sia.org/)

European Satellite Operators Association (http://www.esoa.net/)

SatMagazine (http://www.satmagazine.com)

SatNews (http://www.satnews.com)

Satellite Press Releases. (http://www.satprnews.com)

2. ^ ECHO 1 space.com (http://www.space.com/8973-1st-communication-satellite-giant-space-balloon-50-years.html)

3. ^ "The history of satellites" (http://www.satmagazine.com/story.php?number=768488682). http://www.satmagazine.com. January 2008.

4. ^ "Significant Achievements in Space Communications and Navigation, 1958-1964"

(http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19660009169_1966009169.pdf). NASA-SP-93. NASA. 1966. pp. 30–32. Retrieved 2009-10-31.

5. ^ Extra-terrestrial Relays (http://web.archive.org/web/20071225093216/http://www.lsi.usp.br/~rbianchi/clarke/ACC.ETRelaysFull.html)

6. ^ Connected | Maritime (http://www.iridium.com/IridiumConnected/IridiumAtWork/Maritime.aspx). Iridium. Retrieved on 2013-09-19.

7. ^ "GSAT-14" (http://www.isro.org/satellites/gsat-14.aspx). ISRO. Retrieved 16 January 2014.

8. ^ "Indian GSLV successfully lofts GSAT-14 satellite" (http://www.nasaspaceflight.com/2014/01/indian-gslv-launch-gsat-14-communications-satellite/).

NASA Space Flight. 4 January 2014. Retrieved 16 January 2014.

9. ^ "DIRECTV's Spaceway F1 Satellite Launches New Era in High-Definition Programming; Next Generation Satellite Will Initiate Historic Expansion of

DIRECTV" (http://www.spaceref.com/news/viewpr.html?pid=16748). SpaceRef. Retrieved 2012-05-11.

10. ^ France Télécom, Commission Supérieure Technique de l'Image et du Son, Communiqué de presse, Paris, October 29th, 2001.

11. ^ «Numérique : le cinéma en mutation», Projections, 13, CNC, Paris, September 2004, p. 7. (http://www.passeursdimages.fr/IMG/pdf/projections13.pdf)

12. ^ Olivier Bomsel, Gilles Le Blanc, Dernier tango argentique. Le cinéma face à la numérisation, Ecole des Mines de Paris, 2002, p. 12.

(http://books.google.fr/books?

id=JhLwPrW8pggC&printsec=frontcover&dq=olivier+bomsel+mines&hl=fr&sa=X&ei=hKGhUqllpOzSBdulgcgL&ved=0CDMQ6AEwAA#v=onepage&q=

olivier%20bomsel%20mines&f=false)

13. ^ Bernard Pauchon, France Telecom and digital cinema, ShowEast, 2001, p. 10. (http://www.authorstream.com/Presentation/Veronica-45205-france-

telecom-DIGITAL-CINEMA-global-leaderin-professional-broadcastingand-Education-ppt-powerpoint/)

14. ^ Première numérique pour le cinéma français, 01net, 2002. (http://www.01net.com/article/181540.html)

15. ^ India's first 'military' satellite GSAT-7 put into earth's orbit (http://www.ndtv.com/article/india/india-s-first-military-satellite-gsat-7-put-into-earth-s-orbit-

414080). NDTV.com (2013-09-04). Retrieved on 2013-09-18.

Page 11: Communications satellite   wikipedia, the free encyclopedia

The future of communication satellite business (http://news.bbc.co.uk/2/hi/science/nature/3721312.stm)

Communications satellites short history (http://www.hq.nasa.gov/office/pao/History/satcomhistory.html) by David J. Whalen

Beyond The Ionosphere: Fifty Years of Satellite Communication (NASA SP-4217, 1997) (http://history.nasa.gov/SP-4217/sp4217.htm)

Lloyd's Satellite Constellations (http://www.ee.surrey.ac.uk/Personal/L.Wood/constellations/index.html)

Satcom Online (http://www.satcom.co.uk/)

An Overview of Satellite Operating Frequencies and their Applications (http://www.canadaconnects.ca/broadband/main/1113/)

Telecommunications Satellite (http://www.aerospace-technology.com/projects/anik-g1-telecommunications-satellite/)

Retrieved from "http://en.wikipedia.org/w/index.php?title=Communications_satellite&oldid=618940571"

Categories: American inventions Communications satellites Satellite broadcasting Satellites by type

This page was last modified on 29 July 2014 at 08:09.

Text is available under the Creative Commons Attribution-ShareAlike License; additional terms may apply. By using this site, you agree to theTerms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.