69
A presentation on Continuous-Time Fourier Transform By:- Sunil Kumar Yadav (2013UEE1176) Pawan Kumar Jangid (2013UEE1166) Manish Kumar Bagara (2013UEE1180) Chandan Kumar (2013UEE1203) Subject:- Network, Signal & Systems

4. cft

Embed Size (px)

Citation preview

Page 1: 4. cft

A presentation on Continuous-Time Fourier Transform

By:-Sunil Kumar Yadav (2013UEE1176)Pawan Kumar Jangid (2013UEE1166)Manish Kumar Bagara (2013UEE1180)Chandan Kumar (2013UEE1203)

Subject:- Network, Signal & Systems

Page 2: 4. cft

ContentIntroductionFourier IntegralFourier TransformProperties of Fourier TransformConvolutionParseval’s Theorem

Page 3: 4. cft

Continuous-Time Fourier Transform

Introduction

Page 4: 4. cft

The Topic

FourierSeries

FourierSeries

DiscreteFourier

Transform

DiscreteFourier

Transform

ContinuousFourier

Transform

ContinuousFourier

Transform

FourierTransform

FourierTransform

ContinuousTime

DiscreteTime

Per

iodi

cA

peri

odic

Page 5: 4. cft

Review of Fourier Series

Deal with continuous-time periodic signals. Discrete frequency spectra.

A Periodic SignalA Periodic Signal

T 2T 3T

t

f(t)

Page 6: 4. cft

Two Forms for Fourier Series

T

ntb

T

nta

atf

nn

nn

2sin

2cos

2)(

11

0

T

ntb

T

nta

atf

nn

nn

2sin

2cos

2)(

11

0SinusoidalForm

ComplexForm:

n

tjnnectf 0)(

n

tjnnectf 0)( dtetf

Tc

T

T

tjnn

2/

2/

0)(1

dttfT

aT

T2/

2/0 )(2

tdtntfT

aT

Tn 0

2/

2/cos)(

2

tdtntfT

bT

Tn 0

2/

2/sin)(

2

Page 7: 4. cft

How to Deal with Aperiodic Signal?

A Periodic SignalA Periodic Signal

T

t

f(t)

If T, what happens?

Page 8: 4. cft

Continuous-Time Fourier Transform

Fourier Integral

Page 9: 4. cft

tjn

nnT ectf 0)(

Fourier Integral

n

tjnT

T

jnT edef

T00

2/

2/)(

1

dtetfT

cT

T

tjnTn

2/

2/

0)(1

T

20

2

1 0

T

n

tjnT

T

jnT edef 00

0

2/

2/)(

2

1

LetT

20

0 dT

n

tjnT

T

jnT edef 00

2/

2/)(

2

1

dedef tjjT )(

2

1

Page 10: 4. cft

dedeftf tjj)(2

1)(

Fourier Integral

F(j)

dtetfjF tj

)()(

dejFtf tj)(2

1)( Synthesis

Analysis

Page 11: 4. cft

Fourier Series vs. Fourier Integral

n

tjnnectf 0)(

n

tjnnectf 0)(

FourierSeries:

FourierIntegral:

dtetfT

cT

T

tjnTn

2/

2/

0)(1 dtetf

Tc

T

T

tjnTn

2/

2/

0)(1

dtetfjF tj

)()( dtetfjF tj

)()(

dejFtf tj)(2

1)(

dejFtf tj)(2

1)(

Period Function

Discrete Spectra

Non-PeriodFunction

Continuous Spectra

Page 12: 4. cft

Continuous-Time Fourier Transform

Fourier Transform

Page 13: 4. cft

Fourier Transform Pair

dtetfjF tj

)()( dtetfjF tj

)()(

dejFtf tj)(2

1)(

dejFtf tj)(2

1)( Synthesis

Analysis

Fourier Transform:

Inverse Fourier Transform:

Page 14: 4. cft

Existence of the Fourier Transform

dttf |)(|

dttf |)(|

Sufficient Condition:

f(t) is absolutely integrable, i.e.,

Page 15: 4. cft

dtetfjF tj

)()(

Continuous Spectra

)()()( jjFjFjF IR

)(|)(| jejF FR(j)

FI(j)

|F(j)|

()

MagnitudePhase

Page 16: 4. cft

Example

1-1

1

t

f(t)

dtetfjF tj

)()( dte tj

1

1

1

1

1

tje

j

)(

jj eej

sin2

Page 17: 4. cft

Example

1-1

1

t

f(t)

dtetfjF tj

)()( dte tj

1

1

1

1

1

tje

j

)(

jj eej

sin2

-10 -5 0 5 10-1

0

1

2

3

F(

)-10 -5 0 5 10

0

1

2

3

|F(

)|

-10 -5 0 5 100

2

4ar

g[F

()]

-10 -5 0 5 10-1

0

1

2

3

F(

)-10 -5 0 5 10

0

1

2

3

|F(

)|

-10 -5 0 5 100

2

4ar

g[F

()]

Page 18: 4. cft

Example

dtetfjF tj

)()( dtee tjt

0

t

f(t)

et

dte tj

0

)(

j

1

Page 19: 4. cft

Example

dtetfjF tj

)()( dtee tjt

0

t

f(t)

et

dte tj

0

)(

j

1

-10 -5 0 5 100

0.5

1

|F(j

)|

-10 -5 0 5 10-2

0

2

arg[

F(j

)]

=2

-10 -5 0 5 100

0.5

1

|F(j

)|

-10 -5 0 5 10-2

0

2

arg[

F(j

)]

=2

Page 20: 4. cft

Continuous-Time Fourier Transform

Properties of

Fourier Transform

Page 21: 4. cft

Notation

)()( jFtf F )()( jFtf F

)()]([ jFtfF )()]([ jFtfF

)()]([1 tfjF- F )()]([1 tfjF- F

Page 22: 4. cft

Linearity

)()()()( 22112211 jFajFatfatfa F )()()()( 22112211 jFajFatfatfa F

Page 23: 4. cft

Time Scaling

a

jFa

atf||

1)( F

a

jFa

atf||

1)( F

Page 24: 4. cft

Time Reversal

jFtf F)( jFtf F)(

Pf) dtetftf tj

)()]([F dtetft

t

tj

)(

)()( tdetft

t

tj

)()( tdetft

t

tj

dtetft

t

tj

)( dtetft

t

tj

)(

dtetf tj

)( )( jF

Page 25: 4. cft

Time Shifting

0)( 0tjejFttf F 0)( 0

tjejFttf F

Pf) dtettfttf tj

)()]([ 00F dtettft

t

tj

)( 0

)()( 0)(0

0

0 ttdetftt

tt

ttj

dtetfet

t

tjtj

)(0

dtetfe tjtj

)(0 tjejF 0)(

Page 26: 4. cft

Frequency Shifting (Modulation)

)()( 00 jFetf j F )()( 0

0 jFetf j F

Pf)dteetfetf tjtjtj

00 )(])([F

dtetf tj

)( 0)(

)( 0 jF

Page 27: 4. cft

Symmetry Property

)(2)]([ fjtFF )(2)]([ fjtFF

Pf)

dejFtf tj)()(2

dejFtf tj)()(2

dtejtFf tj

)()(2

Interchange symbols and t

)]([ jtFF

Page 28: 4. cft

Fourier Transform for Real Functions

If f(t) is a real function, and F(j) = FR(j) + jFI(j)

F(j) = F*(j)

dtetfjF tj

)()(

dtetfjF tj

)()(* )( jF

Page 29: 4. cft

Fourier Transform for Real FunctionsFourier Transform for Real Functions

If f(t) is a real function, and F(j) = FR(j) + jFI(j)

F(j) = F*(j)

FR(j) is even, and FI(j) is odd.

F R( j) = F R(j) F I( j) = F I(j)

Magnitude spectrum |F(j)| is even, and phase spectrum () is odd.

Page 30: 4. cft

Fourier Transform for Real FunctionsFourier Transform for Real Functions

If f(t) is real and even

F(j) is real

If f(t) is real and odd

F(j) is pure imaginary

Pf))()( tftf

Pf)Even

)()( jFjF

)(*)( jFjFReal

)(*)( jFjF

)()( tftf Odd

)()( jFjF

)(*)( jFjFReal

)(*)( jFjF

Page 31: 4. cft

Example:

)()]([ jFtfF ?]cos)([ 0 ttfF

Sol)

))((2

1cos)( 00

0tjtj eetfttf

])([2

1])([

2

1]cos)([ 00

0tjtj etfetfttf FFF

)]([2

1)]([

2

100 jFjF

Page 32: 4. cft

Example:

d/2d/2

1

t

wd(t)

d/2d/2t

f(t)=wd(t)cos0t

2sin

2)]([)(

2/

2/

ddtetwjW

d

d

tjdd F

]cos)([)( 0ttwjF d F0

0

0

0 )(2

sin)(2

sin

dd

Page 33: 4. cft

Example:

d/2d/2

1

t

wd(t)

d/2d/2t

f(t)=wd(t)cos0t

2sin

2)]([)(

2/

2/

ddtetwjW

d

d

tjdd F

]cos)([)( 0ttwjF d F0

0

0

0 )(2

sin)(2

sin

dd

-60 -40 -20 0 20 40 60-0.5

0

0.5

1

1.5

F(j

)

d=2

0=5

-60 -40 -20 0 20 40 60-0.5

0

0.5

1

1.5

F(j

)

d=2

0=5

Page 34: 4. cft

Example:

t

attf

sin)( ?)( jF

Sol)

d/2d/2

1

t

wd(t)

2sin

2)(

djWd

)(22

sin2

)]([

dd w

td

tjtW FF

)(sin

)]([ 2

aw

t

attf FF

||1

||0

a

a

Page 35: 4. cft

Fourier Transform of f’(t)

0)(lim and )(

tfjFtft

F 0)(lim and )(

tfjFtft

F

Pf) dtetftf tj

)(')]('[F

dtetfjetf tjtj )()(

)()(' jFjtf F )()(' jFjtf F

)( jFj

Page 36: 4. cft

Fourier Transform of f (n)(t)

0)(lim and )(

tfjFtft

F 0)(lim and )(

tfjFtft

F

)()()()( jFjtf nn F )()()()( jFjtf nn F

Page 37: 4. cft

Fourier Transform of f (n)(t)

0)(lim and )(

tfjFtft

F 0)(lim and )(

tfjFtft

F

)()()()( jFjtf nn F )()()()( jFjtf nn F

Page 38: 4. cft

Fourier Transform of Integral

00)( and )(

FdttfjFtf F 00)( and )(

FdttfjFtf F

jFj

dxxft 1

)(F

jFj

dxxft 1

)(F

Let dxxftt

)()( 0)(lim

t

t

)()()]([)]('[ jjjFtft FF

)(1

)(

jFj

j

Page 39: 4. cft

The Derivative of Fourier Transform

d

jdFtjtf FF )]([

d

jdFtjtf FF )]([

Pf)dtetfjF tj

)()(

dtetfd

d

d

jdF tj

)()(

dtetf tj

)(

dtetjtf tj

)]([ )]([ tjtfF

Page 40: 4. cft

Continuous-Time Fourier Transform

Convolution

Page 41: 4. cft

Basic Concept

Linear SystemLinear Systemfi(t) fo(t)=L[fi(t)]

fi(t)=a1 fi1(t) + a2 fi2(t) fo(t)=L[a1 fi1(t) + a2 fi2(t)]

A linear system satisfies fo(t) = a1L[fi1(t)] + a2L[fi2(t)]

= a1fo1(t) + a2fo2(t)

Page 42: 4. cft

Basic Concept

Time InvariantSystem

Time InvariantSystem

fi(t) fo(t)

fi(t +t0) fo(t + t0)fi(t t0) fo(t t0)

tfi(t)

tfo(t)

tfi(t+t0)

tfo(t+t0)

tfi(tt0)

tfo(tt0)

Page 43: 4. cft

Basic Concept

CausalSystemCausalSystem

fi(t) fo(t)

A causal system satisfies

fi(t) = 0 for t < t0 fo(t) = 0 for t < t0

Page 44: 4. cft

Basic Concept

CausalSystemCausalSystem

fi(t) fo(t)

tfi(t)

tfo(t)

t0t0

t0

tfi(t)

tfo(t)

t0fi(t)

t tfo(t)

t0t0

Which of the following systems are causal?

Which of the following systems are causal?

Page 45: 4. cft

Unit Impulse Response

LTISystem

LTISystem

(t) h(t)=L[(t)]

f(t) L[f(t)]=?

Facts: )()()()()( tfdtfdtf

dtfLtfL )()()]([

dtLf )]([)(

dthf )()( Convolution

Page 46: 4. cft

Unit Impulse Response

LTISystem

LTISystem

(t) h(t)=L[(t)]

f(t) L[f(t)]=?

Facts: )()()()()( tfdtfdtf

dtfLtfL )()()]([

dtLf )]([)(

dthf )()( Convolution

)(*)()]([ thtftfL )(*)()]([ thtftfL

Page 47: 4. cft

Unit Impulse Response

Impulse ResponseLTI System

h(t)

Impulse ResponseLTI System

h(t)f(t) f(t)*h(t)

Page 48: 4. cft

Convolution Definition

dtfftf )()()( 21

The convolution of two functions f1(t) and f2(t) is defined as:

)(*)( 21 tftf

Page 49: 4. cft

Properties of Convolution

)(*)()(*)( 1221 tftftftf )(*)()(*)( 1221 tftftftf

dtfftftf )()()(*)( 2121

dtff )()( 21

)(])([)( 21

tdttftf

t

t

dftf )()( 21

dftf )()( 21 )(*)( 12 tftf

Page 50: 4. cft

Impulse ResponseLTI System

h(t)

Impulse ResponseLTI System

h(t)

f(t) f(t)*h(t)

Properties of Convolution

)(*)()(*)( 1221 tftftftf )(*)()(*)( 1221 tftftftf

Impulse ResponseLTI System

f(t)

Impulse ResponseLTI System

f(t)

h(t) h(t)*f(t)

Page 51: 4. cft

Properties of Convolution

)](*)([*)()(*)](*)([ 321321 tftftftftftf )](*)([*)()(*)](*)([ 321321 tftftftftftf

Page 52: 4. cft

Properties of Convolution

)](*)([*)()(*)](*)([ 321321 tftftftftftf )](*)([*)()(*)](*)([ 321321 tftftftftftf

h1(t)h1(t) h2(t)h2(t) h3(t)h3(t)

h2(t)h2(t) h3(t)h3(t) h1(t)h1(t)

The following two systems are identical

The following two systems are identical

Page 53: 4. cft

Properties of Convolution

)()(*)( tfttf )()(*)( tfttf (t)(t)f(t) f(t)

dtfttf )()()(*)(

dtf )()(

)(tf

Page 54: 4. cft

Properties of Convolution

)()(*)( tfttf )()(*)( tfttf (t)(t)f(t) f(t)

)()(*)( TtfTttf )()(*)( TtfTttf

dTtfTttf )()()(*)(

dTtf )()(

)( Ttf

Page 55: 4. cft

Properties of Convolution

f(t) f(t T)

)()(*)( TtfTttf )()(*)( TtfTttf

0 T

(tT)

tf (t)

0t

f (t)

0 T

Page 56: 4. cft

Properties of Convolution

f(t) f(t T)

)()(*)( TtfTttf )()(*)( TtfTttf

0 T

(tT)

tf (t)

0t

f (t)

0 T

System function (tT) serves as an ideal delay or a copier.System function (tT) serves as an ideal delay or a copier.

Page 57: 4. cft

Properties of Convolution

)()()(*)( 2121 jFjFtftf F )()()(*)( 2121 jFjFtftf F

dtedtfftftfF tj

)()()](*)([ 2121

ddtetff tj)()( 21

dejFf j)()( 21

defjF j)()( 12 )()( 21 jFjF

Page 58: 4. cft

Properties of Convolution

)()()(*)( 2121 jFjFtftf F )()()(*)( 2121 jFjFtftf F

dtedtfftftfF tj

)()()](*)([ 2121

ddtetff tj)()( 21

dejFf j)()( 21

defjF j)()( 12 )()( 21 jFjF

Time Domain Frequency Domain

convolution multiplication

Page 59: 4. cft

Properties of Convolution

)()()(*)( 2121 jFjFtftf F )()()(*)( 2121 jFjFtftf F

Time Domain Frequency Domain

convolution multiplication

Impulse ResponseLTI System

h(t)

Impulse ResponseLTI System

h(t)f(t) f(t)*h(t)

Impulse ResponseLTI System

H(j)

Impulse ResponseLTI System

H(j)F(j) F(j)H(j)

Page 60: 4. cft

Properties of Convolution

)()()(*)( 2121 jFjFtftf F )()()(*)( 2121 jFjFtftf F

Time Domain Frequency Domain

convolution multiplication

F(j)

F(j)H1(j)

H2(j)H2(j)H1(j)H1(j) H3(j)H3(j)

F(j)H1(j)H2(j)

F(j)H1(j)H2(j)H3(j)

Page 61: 4. cft

Properties of Convolution

)()()(*)( 2121 jFjFtftf F )()()(*)( 2121 jFjFtftf F

An Ideal Low-Pass Filter

0

Fi(j)

0

Fo(j)

0

H(j)

pp

1

Page 62: 4. cft

Properties of Convolution

)()()(*)( 2121 jFjFtftf F )()()(*)( 2121 jFjFtftf F

An Ideal High-Pass Filter

0

Fi(j)

0

H(j)

pp

1

0

Fo(j)

Page 63: 4. cft

Properties of Convolution

)(*)(2

1)()( 2121

jFjFtftf F )(*)(

2

1)()( 2121

jFjFtftf F

djFjFtftf )]([)(

2

1)()( 2121

F

djFjFtftf )]([)(

2

1)()( 2121

F

Page 64: 4. cft

Properties of Convolution

)(*)(2

1)()( 2121

jFjFtftf F )(*)(

2

1)()( 2121

jFjFtftf F

djFjFtftf )]([)(

2

1)()( 2121

F

djFjFtftf )]([)(

2

1)()( 2121

F

Time Domain Frequency Domain

multiplication convolution

Page 65: 4. cft

Continuous-Time Fourier Transform

Parseval’s Theorem

Page 66: 4. cft

Properties of Convolution

djFjFdttftf ][)(

2

1)]()([ 2121

djFjFdttftf ][)(

2

1)]()([ 2121

djFjFtftf )]([)(

2

1)()( 2121

F

djFjFtftf )]([)(

2

1)()( 2121

F

djFjFdtetftf tj )]([)(

2

1)]()([ 2121

djFjFdttftf )]([)(

2

1)]()([ 2121=0=0

Page 67: 4. cft

Properties of Convolution

djFjFdttftf ][)(

2

1)]()([ 2121

djFjFdttftf ][)(

2

1)]()([ 2121

If f1(t) and f2(t) are real functions,

djFjFdttftf ][)(

2

1)]()([ *

2121

djFjFdttftf ][)(

2

1)]()([ *

2121

f2(t) real ][][ *22 jFjF

Page 68: 4. cft

Parseval’s Theorem:Energy Preserving

djFdttf 22 |)(|

2

1|)(|

djFdttf 22 |)(|

2

1|)(|

dtetftf tj

)(*)](*[F

djFjF )]([*)(

2

1

dttftfdttf

)(*)(|)(| 2

*

)(

dtetf tj )(* jF

djF 2|)(|

2

1

Page 69: 4. cft

Thank You