40
Thermal Sneutrino Dark Matter Thermal Sneutrino Dark Matter in the in the F F D -Term Model of Hybrid Inflation -Term Model of Hybrid Inflation The University of Manchester Frank Deppisch [email protected] University of Manchester in collaboration with A. Pilaftsis FFD, A. Pilaftsis, JHEP 0810 (2008) 080 Particle Physics Seminar Oxford, 7 May 2009

Sneutrino Cold Dark Matter, Oxford

  • Upload
    spinor

  • View
    431

  • Download
    1

Embed Size (px)

Citation preview

Page 1: Sneutrino Cold Dark Matter, Oxford

Thermal Sneutrino Dark Matter Thermal Sneutrino Dark Matter in the in the FFDD-Term Model of Hybrid Inflation-Term Model of Hybrid Inflation

The

Uni

vers

ity

of M

anch

este

r

Frank [email protected]

University of Manchester

in collaboration with A. Pilaftsis

FFD, A. Pilaftsis, JHEP 0810 (2008) 080

Particle Physics Seminar Oxford, 7 May 2009

Page 2: Sneutrino Cold Dark Matter, Oxford

7/5/2009Frank Deppisch Sneutrino Dark Matter in the F(D) Term Model22/40/40

OverviewOverview

IntroductionDark Matter EvidenceSupersymmetryNeutrino Physics

FD Term Hybrid ModelSuperpotentialInflaton VEVHybrid Inflation

RH Sneutrino Dark MatterMass Spectrum

Annihilation

Conclusion

Page 3: Sneutrino Cold Dark Matter, Oxford

7/5/2009Frank Deppisch Sneutrino Dark Matter in the F(D) Term Model33/40/40

Evidence for Dark MatterEvidence for Dark Matter

Cluster FormationGalactic Rotation CurvesGravitational LensingCMB FluctuationsLarge Scale StructureStandard Cosmological Model:

Cold Dark Matter Component of the Universe

CDM h2≈0.11

Page 4: Sneutrino Cold Dark Matter, Oxford

7/5/2009Frank Deppisch Sneutrino Dark Matter in the F(D) Term Model44/40/40

SupersymmetrySupersymmetryMSSM: Minimal extension of the Standard Model with two Higgs doublets and conserved R-parity

http://www.physics.gla.ac.uk/ppt/susy.htm

Page 5: Sneutrino Cold Dark Matter, Oxford

7/5/2009Frank Deppisch Sneutrino Dark Matter in the F(D) Term Model55/40/40

SupersymmetrySupersymmetryMSSM: Minimal extension of the Standard Model with two Higgs doublets and conserved R-parity

SUSY must be broken⇒ In general: Introduction of more than 100 free parameters⇒ Required: Theoretical framework for SUSY breaking⇒ Minimal Supergravity (mSUGRA), Universality at GUT Scale

http://www.physics.gla.ac.uk/ppt/susy.htm

Page 6: Sneutrino Cold Dark Matter, Oxford

7/5/2009Frank Deppisch Sneutrino Dark Matter in the F(D) Term Model66/40/40

Neutrino Oscillations⇒ Mixing angles and mass differences

Absolute Mass Scale

NeutrinosNeutrinos

sin212=0.30−0.050.04 ,sin223=0.50−0.12

0.14 ,sin2130.028m12

2 =8.1−0.60.6⋅10−5 eV2 ,m13

2 =±2.2−0.50.7⋅10−3 eV2

m10.5eV

Page 7: Sneutrino Cold Dark Matter, Oxford

7/5/2009Frank Deppisch Sneutrino Dark Matter in the F(D) Term Model77/40/40

Neutrino Oscillations⇒ Mixing angles and mass differences

Absolute Mass Scale

Seesaw Mechanism⇒ Add heavy right-handed neutrinos

But: With suitable flavor symmetry in MR and mD, right-handed neutrinos can be as light as 100 GeV

NeutrinosNeutrinos

sin212=0.30−0.050.04 ,sin223=0.50−0.12

0.14 ,sin2130.028m12

2 =8.1−0.60.6⋅10−5 eV2 ,m13

2 =±2.2−0.50.7⋅10−3 eV2

m10.5eV

0 mDT

mD M R ⇒ m≈0.1eV mD

100GeV 2

M R

1014GeV −1

Page 8: Sneutrino Cold Dark Matter, Oxford

7/5/2009Frank Deppisch Sneutrino Dark Matter in the F(D) Term Model88/40/40

FFDD-Term Hybrid Model-Term Hybrid Model

Extension of the MSSMW=W MSSM=0

Garbrecht, Pallis, Pilaftsis '06Garbrecht, Pallis, Pilaftsis '06

A Minimal Particle-Cosmology Supersymmetric Model

Page 9: Sneutrino Cold Dark Matter, Oxford

7/5/2009Frank Deppisch Sneutrino Dark Matter in the F(D) Term Model99/40/40

FFDD-Term Hybrid Model-Term Hybrid Model

Extension of the MSSMInflaton-Waterfall sector

W=W MSSM=0

S X 1X 2−M 2

Garbrecht, Pallis, Pilaftsis '06Garbrecht, Pallis, Pilaftsis '06

A Minimal Particle-Cosmology Supersymmetric Model

Page 10: Sneutrino Cold Dark Matter, Oxford

7/5/2009Frank Deppisch Sneutrino Dark Matter in the F(D) Term Model1010/40/40

FFDD-Term Hybrid Model-Term Hybrid Model

Extension of the MSSMInflaton-Waterfall sector

Effective µ term, µ = λ ⟨S⟩

W=W MSSM=0

S X 1X 2−M 2

S H uH d

Garbrecht, Pallis, Pilaftsis '06Garbrecht, Pallis, Pilaftsis '06

A Minimal Particle-Cosmology Supersymmetric Model

Page 11: Sneutrino Cold Dark Matter, Oxford

7/5/2009Frank Deppisch Sneutrino Dark Matter in the F(D) Term Model1111/40/40

FFDD-Term Hybrid Model-Term Hybrid Model

Extension of the MSSMInflaton-Waterfall sector

Effective µ term, µ = λ ⟨S⟩Effective neutrino Majorana mass, M = ρ ⟨S⟩Neutrino Yukawa coupling

W=W MSSM=0

S X 1X 2−M 2

S H uH d

ij

2S N i

N j

hij Li

H uN j

Garbrecht, Pallis, Pilaftsis '06Garbrecht, Pallis, Pilaftsis '06

A Minimal Particle-Cosmology Supersymmetric Model

Page 12: Sneutrino Cold Dark Matter, Oxford

7/5/2009Frank Deppisch Sneutrino Dark Matter in the F(D) Term Model1212/40/40

FFDD-Term Hybrid Model-Term Hybrid Model

Extension of the MSSMInflaton-Waterfall sector

Effective µ term, µ = λ ⟨S⟩Effective neutrino Majorana mass, M = ρ ⟨S⟩Neutrino Yukawa coupling

Fayet-Iliopoulos D-Term

W=W MSSM=0

S X 1X 2−M 2

S H uH d

ij

2S N i

N j

hij Li

H uN j

−g X

2mFI

2 D X

Garbrecht, Pallis, Pilaftsis '06Garbrecht, Pallis, Pilaftsis '06

A Minimal Particle-Cosmology Supersymmetric Model

Page 13: Sneutrino Cold Dark Matter, Oxford

7/5/2009Frank Deppisch Sneutrino Dark Matter in the F(D) Term Model1313/40/40

Inflaton VEVInflaton VEV

Soft SUSY breaking Lagrangian

−Lsoft⊃M S2 S∗ SM N

2 N i∗ N i A S X 1 X 2 AS H u H d

ij

2A S N i

N j−a S M 2 S

Page 14: Sneutrino Cold Dark Matter, Oxford

7/5/2009Frank Deppisch Sneutrino Dark Matter in the F(D) Term Model1414/40/40

Inflaton VEVInflaton VEV

Soft SUSY breaking Lagrangian

Scalar Potential ( ⟨X1,2⟩ = M )

−Lsoft⊃M S2 S∗ SM N

2 N i∗ N i A S X 1 X 2 AS H u H d

ij

2A S N i

N j−a S M 2 S

V S≈∣ S ⟨X 1⟩∣2∣S ⟨X 2⟩∣

2M S2 S∗ S[M 2A−aS Sh.c.]

=22 M 2M S2 S∗ S[M 2 A−aS Sh.c. ]

Page 15: Sneutrino Cold Dark Matter, Oxford

7/5/2009Frank Deppisch Sneutrino Dark Matter in the F(D) Term Model1515/40/40

Inflaton VEVInflaton VEV

Soft SUSY breaking Lagrangian

Scalar Potential ( ⟨X1,2⟩ = M )

Inflaton VEV (κ ≈ λ ≈ ρ ≈ 10−2)

−Lsoft⊃M S2 S∗ SM N

2 N i∗ N i A S X 1 X 2 AS H u H d

ij

2A S N i

N j−a S M 2 S

V S≈∣ S ⟨X 1⟩∣2∣S ⟨X 2⟩∣

2M S2 S∗ S[M 2A−aS Sh.c.]

=22 M 2M S2 S∗ S[M 2 A−aS Sh.c. ]

⟨S ⟩= 12∣A−aS∣O M SUSY

2 /M ≈102 M SUSY

Page 16: Sneutrino Cold Dark Matter, Oxford

7/5/2009Frank Deppisch Sneutrino Dark Matter in the F(D) Term Model1616/40/40

Inflaton VEVInflaton VEV

Soft SUSY breaking Lagrangian

Scalar Potential ( ⟨X1,2⟩ = M )

Inflaton VEV (κ ≈ λ ≈ ρ ≈ 10−2)

−Lsoft⊃M S2 S∗ SM N

2 N i∗ N i A S X 1 X 2 AS H u H d

ij

2A S N i

N j−a S M 2 S

V S≈∣ S ⟨X 1⟩∣2∣S ⟨X 2⟩∣

2M S2 S∗ S[M 2A−aS Sh.c.]

=22 M 2M S2 S∗ S[M 2 A−aS Sh.c. ]

⟨S ⟩= 12∣A−aS∣O M SUSY

2 /M ≈102 M SUSY

=⟨S ⟩≈M SUSY

µ-Parametermij

N=ij ⟨S ⟩≈M SUSY

Majorana Mass Matrix

Page 17: Sneutrino Cold Dark Matter, Oxford

7/5/2009Frank Deppisch Sneutrino Dark Matter in the F(D) Term Model1717/40/40

FFDD-Term Hybrid Inflation-Term Hybrid Inflation

Hybrid Inflation (Linde '91)

New scalar field ends inflation by acquiring VEV

Page 18: Sneutrino Cold Dark Matter, Oxford

7/5/2009Frank Deppisch Sneutrino Dark Matter in the F(D) Term Model1818/40/40

FFDD-Term Hybrid Inflation-Term Hybrid Inflation

Hybrid Inflation (Linde '91)

New scalar field ends inflation by acquiring VEV

F-Term Hybrid Inflation(Copeland et al., Dvali, Shafi, Schaefer '94)

Waterfall Fields X1, X2

Scalar Potential from F terms and supergravity/loop corrections

W= S X 1X 2−M 2

Page 19: Sneutrino Cold Dark Matter, Oxford

7/5/2009Frank Deppisch Sneutrino Dark Matter in the F(D) Term Model1919/40/40

FFDD-Term Hybrid Inflation-Term Hybrid Inflation

Hybrid Inflation (Linde '91)

New scalar field ends inflation by acquiring VEV

F-Term Hybrid Inflation(Copeland et al., Dvali, Shafi, Schaefer '94)

Waterfall Fields X1, X2

Scalar Potential from F terms and supergravity/loop corrections

FD-Term Hybrid Inflation (Garbrecht, Pilaftsis '06)

Subdominant non-anomalous FI D-term breaking discrete D-parity in waterfall sectorU(1)X gauge sector fields can decay ⇒ entropy release ⇒ avoid gravitino overabundance problem

W= S X 1X 2−M 2

Page 20: Sneutrino Cold Dark Matter, Oxford

7/5/2009Frank Deppisch Sneutrino Dark Matter in the F(D) Term Model2020/40/40

Constraints from InflationConstraints from Inflation

Bounds on model parameters κ, λ, ρ fromNumber of e-folds

Power spectrum of curvature perturbations

Spectral index

N e=1

mPl2 ∫end

exit

d V inf

V inf' ≈55

P R1/2= 1

23mPl

V inf3/2exit

V inf' exit

≈4.86⋅10−5

ns−1=2mPl2 V inf

' ' exitV inf exit

=−0.037−0.0150.014

Page 21: Sneutrino Cold Dark Matter, Oxford

7/5/2009Frank Deppisch Sneutrino Dark Matter in the F(D) Term Model2121/40/40

Constraints from InflationConstraints from Inflation

Spectral Index

Slow-roll slope from SUGRA and radiative corrections

≈≈23.2⋅10−2⇒ At inflationary scale M≈1016 GeV for minimal (next-to-minimal) Kähler potential

≈≈1.11.8⋅10−2⇒ At EW scale

RG Evolution

Page 22: Sneutrino Cold Dark Matter, Oxford

7/5/2009Frank Deppisch Sneutrino Dark Matter in the F(D) Term Model2222/40/40

Sneutrino Mass SpectrumSneutrino Mass Spectrum

FD-Term Model conserves R-parity → LSP is stable

Page 23: Sneutrino Cold Dark Matter, Oxford

7/5/2009Frank Deppisch Sneutrino Dark Matter in the F(D) Term Model2323/40/40

Sneutrino Mass SpectrumSneutrino Mass Spectrum

FD-Term Model conserves R-parity → LSP is stableRight-Handed Sneutrino Mass Matrix(small Yukawa interactions with LH sneutrinos neglected)

→ 3 Heavy and 3 Light Right-Handed Sneutrinos

→ Lightest Right-Handed Sneutrino can be LSP

N 1,2,3 , N 1,2,3∗ T 2 vS

2M N2 Avu vd

A∗vu vd 2 vS

2M N2 N 1,2,3

N 1,2,3∗

m N LSP

2 =2 vS2M N

2 −∣ AvSvu vd∣

≈2m02−∣A0∣, mSUGRA, tan ≫1,=≪1

Page 24: Sneutrino Cold Dark Matter, Oxford

7/5/2009Frank Deppisch Sneutrino Dark Matter in the F(D) Term Model2424/40/40

Right-Handed Sneutrino LSP Right-Handed Sneutrino LSP Scan over mSUGRA parameters (A0 = 300 GeV, µ > 0, tanβ = 10,30)

Sneutrino LSP points to low-energy SUSY spectrum, consistent with annihilation via Higgs m N 1

≈20−100 GeV

Page 25: Sneutrino Cold Dark Matter, Oxford

7/5/2009Frank Deppisch Sneutrino Dark Matter in the F(D) Term Model2525/40/40

Sneutrino Cold Dark MatterSneutrino Cold Dark Matter

MSSM (+ RH Neutrinos)Left-Handed Sneutrino LSP

Annihilates too efficiently (gauge interaction)

Page 26: Sneutrino Cold Dark Matter, Oxford

7/5/2009Frank Deppisch Sneutrino Dark Matter in the F(D) Term Model2626/40/40

Sneutrino Cold Dark MatterSneutrino Cold Dark Matter

MSSM (+ RH Neutrinos)Left-Handed Sneutrino LSP

Annihilates too efficiently (gauge interaction)

Right-Handed Sneutrino LSPOvercloses Universe as thermal DM (small Yukawa interaction)

Possible as non-thermal DM (Gopalakrishna, de Gouvêa, Porod '06)

Page 27: Sneutrino Cold Dark Matter, Oxford

7/5/2009Frank Deppisch Sneutrino Dark Matter in the F(D) Term Model2727/40/40

Sneutrino Cold Dark MatterSneutrino Cold Dark Matter

MSSM (+ RH Neutrinos)Left-Handed Sneutrino LSP

Annihilates too efficiently (gauge interaction)

Right-Handed Sneutrino LSPOvercloses Universe as thermal DM (small Yukawa interaction)

Possible as non-thermal DM (Gopalakrishna, de Gouvêa, Porod '06)

Left-Right Mixtures possible (Arina, Fornengo '06)

Page 28: Sneutrino Cold Dark Matter, Oxford

7/5/2009Frank Deppisch Sneutrino Dark Matter in the F(D) Term Model2828/40/40

Sneutrino Cold Dark MatterSneutrino Cold Dark Matter

MSSM (+ RH Neutrinos)Left-Handed Sneutrino LSP

Annihilates too efficiently (gauge interaction)

Right-Handed Sneutrino LSPOvercloses Universe as thermal DM (small Yukawa interaction)

Possible as non-thermal DM (Gopalakrishna, de Gouvêa, Porod '06)

Left-Right Mixtures possible (Arina, Fornengo '06)

FD-Term Model → New Interaction12 N i

∗ N i∗H u H dh.c. F S=

12 N i

N i H uH dfrom inflaton F-term

Quartic Coupling to Higgs Fields (McDonald '94, Burgess et al. '01)

Page 29: Sneutrino Cold Dark Matter, Oxford

7/5/2009Frank Deppisch Sneutrino Dark Matter in the F(D) Term Model2929/40/40

Annihilation ChannelsAnnihilation Channels

12

Page 30: Sneutrino Cold Dark Matter, Oxford

7/5/2009Frank Deppisch Sneutrino Dark Matter in the F(D) Term Model3030/40/40

Dark Matter SearchesDark Matter Searches

Direct SearchesElastic Scattering between Sneutrino and Nucleus

via t-channel Higgs exchangePer Nucleon

Experiments: CDMS-II, SuperCDMS, Xenon1T

elnucleon≈5⋅10−50 cm2 10−4

2

100GeVmH 1

4

50GeVm N 1

2

Page 31: Sneutrino Cold Dark Matter, Oxford

7/5/2009Frank Deppisch Sneutrino Dark Matter in the F(D) Term Model3131/40/40

Dark Matter SearchesDark Matter Searches

Direct SearchesElastic Scattering between Sneutrino and Nucleus

via t-channel Higgs exchangePer Nucleon

Experiments: CDMS-II, SuperCDMS, Xenon1T

Indirect SearchesDetection of Dark Matter annihilation products

such as photons, positrons, anti-protonsHigh-energy Neutrinos from Sun and Earth

elnucleon≈5⋅10−50 cm2 10−4

2

100GeVmH 1

4

50GeVm N 1

2

Page 32: Sneutrino Cold Dark Matter, Oxford

7/5/2009Frank Deppisch Sneutrino Dark Matter in the F(D) Term Model3232/40/40

Sneutrino AnnihilationSneutrino Annihilation

Calculation of Sneutrino Relic Density

Higgs properties calculated using CPSuperH (Lee at al. '03)

Annihilation via Higgs

Inflationary Bounds

Direct WIMP Searches

DM h2=0.11

Scenario I: m0=70 GeV, m1/2=243 GeV, A0=300 GeV, tanβ =10, µ =303 GeV

m N 1≈mH 1

/22⋅10−4

2.35.8⋅10−4

≈10−1...−3

Page 33: Sneutrino Cold Dark Matter, Oxford

7/5/2009Frank Deppisch Sneutrino Dark Matter in the F(D) Term Model3333/40/40

Sneutrino AnnihilationSneutrino Annihilation

Scenario II: m0=125 GeV, m1/2=212 GeV, A0=300 GeV, tanβ =30, µ =263 GeV

DM h2=0.11

Calculation of Sneutrino Relic Density

Higgs properties calculated using CPSuperH (Lee at al. '03)

Annihilation via Higgs

Inflationary Bounds

Direct WIMP Searches

m N 1≈mH 1

/22⋅10−4

2.35.8⋅10−4

≈10−1...−3

Page 34: Sneutrino Cold Dark Matter, Oxford

7/5/2009Frank Deppisch Sneutrino Dark Matter in the F(D) Term Model3434/40/40

Sneutrino AnnihilationSneutrino Annihilation

Scenario II: m0=125 GeV, m1/2=212 GeV, A0=300 GeV, tanβ =30, µ =263 GeV

DM h2=0.11

Calculation of Sneutrino Relic Density

Higgs properties calculated using CPSuperH (Lee at al. '03)

Annihilation via Higgs

Inflationary Bounds

Direct WIMP Searches

m N 1≈mH 1

/22⋅10−4

2.35.8⋅10−4

≈10−1...−3

H ere be H umans

Page 35: Sneutrino Cold Dark Matter, Oxford

7/5/2009Frank Deppisch Sneutrino Dark Matter in the F(D) Term Model3535/40/40

ConclusionConclusion

FD-Term Model providesInflationary Mechanism

Page 36: Sneutrino Cold Dark Matter, Oxford

7/5/2009Frank Deppisch Sneutrino Dark Matter in the F(D) Term Model3636/40/40

ConclusionConclusion

FD-Term Model providesInflationary MechanismSolution to Gravitino Problem

Page 37: Sneutrino Cold Dark Matter, Oxford

7/5/2009Frank Deppisch Sneutrino Dark Matter in the F(D) Term Model3737/40/40

ConclusionConclusion

FD-Term Model providesInflationary MechanismSolution to Gravitino ProblemSolution to µ Problem

Page 38: Sneutrino Cold Dark Matter, Oxford

7/5/2009Frank Deppisch Sneutrino Dark Matter in the F(D) Term Model3838/40/40

ConclusionConclusion

FD-Term Model providesInflationary MechanismSolution to Gravitino ProblemSolution to µ ProblemEW Scale Heavy Neutrinos

Seesaw MechanismResonant LeptogenesisLepton Flavor Violating ProcessesAccessible at LHC?

Page 39: Sneutrino Cold Dark Matter, Oxford

7/5/2009Frank Deppisch Sneutrino Dark Matter in the F(D) Term Model3939/40/40

ConclusionConclusion

FD-Term Model providesInflationary MechanismSolution to Gravitino ProblemSolution to µ ProblemEW Scale Heavy NeutrinosRight-Handed Sneutrinos as Thermal DM

Low Energy SUSY SpectrumAnnihilation via Higgs Funnel m N LSP

=mH 1/2≈60GeV

Page 40: Sneutrino Cold Dark Matter, Oxford

7/5/2009Frank Deppisch Sneutrino Dark Matter in the F(D) Term Model4040/40/40

ConclusionConclusion

FD-Term Model providesInflationary MechanismSolution to Gravitino ProblemSolution to µ ProblemEW Scale Heavy NeutrinosRight-Handed Sneutrinos as Thermal DM

Low Energy SUSY SpectrumAnnihilation via Higgs FunnelInvisible Higgs DecaysSneutrinos within Cascade Decays

m N LSP=mH 1

/2≈60GeV