46
Sir Peter Mansfield Magne0c Resonance Centre University of No:ngham, UK FP7 Neurophysics Workshop Pharmacological fMRI Warwick Conference Centre, 23 January 2012 Mul0modal approaches to func0onal neuroimaging Peter Morris

Multimodal functional MRI (多模态功能磁共振成像)

Embed Size (px)

DESCRIPTION

 

Citation preview

Page 1: Multimodal functional MRI (多模态功能磁共振成像)

Sir  Peter  Mansfield  Magne0c  Resonance  Centre  

 University  of  No:ngham,  UK  

FP7  Neurophysics  Workshop    Pharmacological  fMRI  

Warwick  Conference  Centre,  23  January  2012    

Mul0modal  approaches  to  func0onal  neuroimaging    

Peter  Morris    

Page 2: Multimodal functional MRI (多模态功能磁共振成像)

Functional MRI

Page 3: Multimodal functional MRI (多模态功能磁共振成像)

Functional CNR          

ΔS/N    =      SNR  .  ΔR2*  /  R2*    

Page 4: Multimodal functional MRI (多模态功能磁共振成像)

7T MPRAGE, 0.5mm isotropic resolution, SENSE factor 2, acquisition time 11 mins for the whole head

Page 5: Multimodal functional MRI (多模态功能磁共振成像)

1.5T

3T

7T

5 s-1

0.39 s-1

5 s-1

5 s-1

0.39 s-1

0.39 s-1

ΔR2*  maps  as  a  func0on  of  strength  

Page 6: Multimodal functional MRI (多模态功能磁共振成像)

0

0.02

0.04

0.06

0.08

0.1

0 1 2 3 4 5 6 7 8Field Strength (T)

Composite ROI Inclusion ROI

ΔR

2* /R

2*

0

0.02

0.04

0.06

0.08

0.1

0 1 2 3 4 5 6 7 8Field Strength (T)

Composite ROI Inclusion ROI

0

0.02

0.04

0.06

0.08

0.1

0 1 2 3 4 5 6 7 8Field Strength (T)

Composite ROI Inclusion ROI

Field dependence of ΔR2*/R2*

Page 7: Multimodal functional MRI (多模态功能磁共振成像)

Field dependence of fMRI responses

pcorr < 0.05 for motor task

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0 20 40 60 80 100

TE (ms)

7 T3 T1.5 T

ΔS/S

Motor task (8 s ON; 20 s off; 5 cycles) Same 6 subjects scanned at 1.5, 3 & 7 T Data co-registered across fields and echo times.

W. van der Zwaag, S. Francis, K. E. Head, A. Peters, P. Gowland, P. Morris and R. Bowtell, Neuroimage 47, 1425-1434 (2009)

Page 8: Multimodal functional MRI (多模态功能磁共振成像)

anterior

posterior

1-thumb 2-index 3-middle 4-ring 5-little

ventral

dorsal

right

High resolution somatosensory mapping at 7T

2

1

4 3

5

Page 9: Multimodal functional MRI (多模态功能磁共振成像)

Relating structure to function in the visual cortex at 7T

medial lateral fMRI

Structural

Rotating wedge

V1

posterior anterior

structural

functional

1.5 mm isotropic resolution

Resolution:0.35x0.35x1.5mm3

Stria of Gennari

seen as a dark band

Page 10: Multimodal functional MRI (多模态功能磁共振成像)

Resting state networks      

Page 11: Multimodal functional MRI (多模态功能磁共振成像)

J.R. Hale, M.J. Brookes, E.L. Hall, J.M. Zummer, C.M. Stevenson, S.T. Francis and P.G. Morris, Magn. Reson. Mater. Phy. 23, 339-349 (2010)

Correlation coefficients for sensorimotor and default mode resting state networks

Page 12: Multimodal functional MRI (多模态功能磁共振成像)

J.R. Hale, M.J. Brookes, E.L. Hall, J.M. Zummer, C.M. Stevenson, S.T. Francis and P.G. Morris, Magn. Reson. Mater. Phy. 23, 339-349 (2010)

Default mode network

Page 13: Multimodal functional MRI (多模态功能磁共振成像)

Sternberg Working Memory Task

Paradigm: Two visual stimuli presented in quick succession

Following a maintenance period of 8s, a third “probe” stimulus presented

Subject responds if the the probe is the same as either of the two initial stimuli

Visual Stimulus 1

Visual Stimulus 2

M a i n t e n a n c e P e r i o d

Probe Stimulus

Page 14: Multimodal functional MRI (多模态功能磁共振成像)

Working  Memory  (Sternberg)  Paradigm  

S. Clare, M. Humberstone, J.L. Hykin, L.D. Blumhardt, R. Bowtell and P.G. Morris, Magn Reson Med 42, 1117-1122 (1999)

Page 15: Multimodal functional MRI (多模态功能磁共振成像)

Challenges  of  pharmacological  MRI  

•  Direct  affect  (BOLD  response)  of  agent  – DifferenCaCon  between  direct  and  acCvity  mediated  effects  on  haemodynamic  response  

– Pharmacodynamics    

•  Modulatory  effect  of  agent    – Pharmacodynamics  

 

Page 16: Multimodal functional MRI (多模态功能磁共振成像)

Rat Model of Persistent Nociception

Intraplantar injection of formalin into rat hindpaw

Page 17: Multimodal functional MRI (多模态功能磁共振成像)

Ascending and descending pain pathways

Page 18: Multimodal functional MRI (多模态功能磁共振成像)

hl fl

a

vpm

vpl

vl

PAG

Thalamus

Formalin evoked increase in BOLD response

P<0.05

P<0.01

P<0.001

Hindlimb area of Somatosensory

cortex

Thalamus Amygdala

PAG

P.G. Morris, J. Psychopharm. 13 (4), 330-336 (1999)

Page 19: Multimodal functional MRI (多模态功能磁共振成像)

-0.5

0

0.5

1

1.5

2

salinemorphine

10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180

-0.5

0

0.5

1

1.5

2

salinemorphine

10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180

Time in minutes Time in minutes % c

hang

e in

sig

nal i

nten

sity

% c

hang

e in

sig

nal i

nten

sity

Periaqueductal gray Thalamus

An acute high dose of morphine (5mg/kg, IP

cannula) evoked significant increases (p<0.002) in

BOLD response in the PAG, thalamus and cingulate

cortex -0.5

0

0.5

1

1.5

2

salinemorphine

10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180

Time in minutes % c

hang

e in

sig

nal i

nten

sity

Cingulate cortex

Effects of morphine injection

Page 20: Multimodal functional MRI (多模态功能磁共振成像)

MEG at the SPMMRC

Page 21: Multimodal functional MRI (多模态功能磁共振成像)

w1

w2

w3

w275

m1

m2

m3

w1 m1 + w2 m2 + w3 m VE = 3+

m275

MEG beamformer

Vq=Σi=1..275wqimi

Σ

virtual electrode output

Page 22: Multimodal functional MRI (多模态功能磁共振成像)

Stimulus was a rotating wedge containing a 10Hz

flashing checkerboard.

Wedge rotated through 360 degrees smoothly once

every 25 seconds.

Functional images created using adaptive beamformer

using short covariance windows

Functional images show the location of the 10Hz driven neuromagnetic response

Response is mapped retinotopically onto the

occipital cortex

Retinotopic mapping using MEG

M. J. Brookes, J. M. Zumer, C. M. Stevenson, J. R. Hale, G. R. Barnes, J. Vrba, and P. G. Morris, Neuroimage 49(1), 525-538 (2010)

Page 23: Multimodal functional MRI (多模态功能磁共振成像)

MEG  responses  

0 500 1000 1500 2000 2500 3000 3500 4000 4500 50000.5

1

1.5

2

2.5

3

Samples

Sour

ce S

treng

th Q

(nAm

)

Hilbert Transform of VE timecourse from peak of gamma 60-80Hz Subj2

•  Evoked response

•  Gamma band ERS

•  Beta band ERD and ERS

Page 24: Multimodal functional MRI (多模态功能磁共振成像)

Multimodal imaging: fMRI / MEG

7T BOLD

T>6

fMRI

3T BOLD

T>5.5

MEG β-band ERS (15-30Hz) Ŧ>1.2

VEP Ŧ>5

γ-band ERS (60-80Hz) Ŧ>4

β-band ERD (15-30Hz) Ŧ>1.2

M.J. Brookes, A.M. Gibson, S.D. Hall, P.L. Furlong, G.R. Barnes, A. Hillebrand, K.D. Singh, I.E. Holliday, S.T. Francis, P.G. Morris, Neuroimage 26 (1), 302-308 (2005)

Page 25: Multimodal functional MRI (多模态功能磁共振成像)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

-0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1

Michelson Contrast

Nor

mal

ised

VE

F R

espo

nse

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

-0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1

Michelson Contrast

Nor

mal

ised

VE

F R

espo

nse

-0.1

0

0.10.2

0.3

0.4

0.5

0.6

0.7

0.80.9

1

1.1

-0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1

Michelson Contrast

Nor

mal

ised

Gam

ma

Res

pons

e

-1

-0.9-0.8

-0.7

-0.6-0.5

-0.4

-0.3-0.2

-0.1

00.1

0.2

-0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1

Michelson Contrast

Nor

mal

ised

Bet

a E

RD

Res

pons

e

-0.2

-0.10

0.1

0.20.3

0.4

0.50.6

0.7

0.80.9

1

-0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1

Michelson Contrast

Nor

mal

ised

Bet

a E

RS

Res

pons

e

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

-0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1

Michelson Contrast

Nor

mal

ised

VE

F R

espo

nse

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

-0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1

Michelson Contrast

Nor

mal

ised

VE

F R

espo

nse

-0.1

0

0.10.2

0.3

0.4

0.5

0.6

0.7

0.80.9

1

1.1

-0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1

Michelson Contrast

Nor

mal

ised

Gam

ma

Res

pons

e

-1

-0.9-0.8

-0.7

-0.6-0.5

-0.4

-0.3-0.2

-0.1

00.1

0.2

-0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1

Michelson Contrast

Nor

mal

ised

Bet

a E

RD

Res

pons

e

-0.2

-0.10

0.1

0.20.3

0.4

0.50.6

0.7

0.80.9

1

-0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1

Michelson Contrast

Nor

mal

ised

Bet

a E

RS

Res

pons

e

A B

C D

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

-0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1

Michelson Contrast

Nor

mal

ised

VE

F R

espo

nse

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

-0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1

Michelson Contrast

Nor

mal

ised

VE

F R

espo

nse

-0.1

0

0.10.2

0.3

0.4

0.5

0.6

0.7

0.80.9

1

1.1

-0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1

Michelson Contrast

Nor

mal

ised

Gam

ma

Res

pons

e

-1

-0.9-0.8

-0.7

-0.6-0.5

-0.4

-0.3-0.2

-0.1

00.1

0.2

-0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1

Michelson Contrast

Nor

mal

ised

Bet

a E

RD

Res

pons

e

-0.2

-0.10

0.1

0.20.3

0.4

0.50.6

0.7

0.80.9

1

-0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1

Michelson Contrast

Nor

mal

ised

Bet

a E

RS

Res

pons

e

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

-0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1

Michelson Contrast

Nor

mal

ised

VE

F R

espo

nse

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

-0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1

Michelson Contrast

Nor

mal

ised

VE

F R

espo

nse

-0.1

0

0.10.2

0.3

0.4

0.5

0.6

0.7

0.80.9

1

1.1

-0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1

Michelson Contrast

Nor

mal

ised

Gam

ma

Res

pons

e

-1

-0.9-0.8

-0.7

-0.6-0.5

-0.4

-0.3-0.2

-0.1

00.1

0.2

-0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1

Michelson Contrast

Nor

mal

ised

Bet

a E

RD

Res

pons

e

-0.2

-0.10

0.1

0.20.3

0.4

0.50.6

0.7

0.80.9

1

-0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1

Michelson Contrast

Nor

mal

ised

Bet

a E

RS

Res

pons

e

A B

C D

MEG Contrast Response Curves

Page 26: Multimodal functional MRI (多模态功能磁共振成像)

Correlation of fMRI BOLD with neural oscillations

J.M. Zumer, M.J. Brookes, C.M. Stevenson, S.T. Francis and P. G. Morris, Neuroimage 49(2) 1479-1489 (2010)

Page 27: Multimodal functional MRI (多模态功能磁共振成像)

Working  memory  

Page 28: Multimodal functional MRI (多模态功能磁共振成像)

1-BACK 0-BACK 2-BACK RELAX

A… H S S G V D P… X S S D V K D… H Y R D V D

TARGETS

Time (s) 0 32 64 96 126

Time (s)

LETTER PRESENTATION MAINTENANCE RELAX

A D Y C Y M S P

8s 8s 2, 5 or 8 letters: 1 letter presented

every 1.4s

C

1.4s 2s

REL

AX

PRO

BE

N-BACK

STERNBERG TARGET

N-back and Sternberg paradigms

Page 29: Multimodal functional MRI (多模态功能磁共振成像)

8

7

Number of Subjects

Neg

ativ

e C

hang

e

Pos

itive

Cha

nge

8

5

Number of Subjects

Neg

ativ

e C

hang

e

Pos

itive

Cha

nge

Theta (4-8 Hz) activity during N-back (upper) and Sternberg (lower) paradigms. Group effect.

Page 30: Multimodal functional MRI (多模态功能磁共振成像)

Gamma (20-40 Hz) activity during N-back (upper) and Sternberg (lower) paradigms Group effect

8

7

Number of Subjects

Neg

ativ

e C

hang

e

Pos

itive

Cha

nge

8

7

Number of Subjects

Neg

ativ

e C

hang

e

Pos

itive

Cha

nge

Page 31: Multimodal functional MRI (多模态功能磁共振成像)

Spectral changes in oscillatory power in medial frontal lobe:

N-back

Spectral changes in oscillatory power in medial frontal lobe:

Sternberg

M.J. Brookes, J.R. Wood, C.M. Stevenson, J.M. Zumer, T.P. White, P.F. Liddle and P.G. Morris, Neuroimage 55, 1804-1815 (2011)

Page 32: Multimodal functional MRI (多模态功能磁共振成像)

ICA analysis of resting state data M.Brookes, M. Woolrich, H. Luckoo, D. Price, J.R. Hale, M.C. Stephenson, G.R. Barnes,

S.M. Smith and P.G. Morris, PNAS 108 (40), 16783-16788 (2011)

Page 33: Multimodal functional MRI (多模态功能磁共振成像)

ICA analysis of resting state data M.Brookes, M. Woolrich, H. Luckoo, D. Price, J.R. Hale, M.C. Stephenson, G.R. Barnes,

S.M. Smith and P.G. Morris, PNAS 108 (40), 16783-16788 (2011)

Page 34: Multimodal functional MRI (多模态功能磁共振成像)

Resting state networks: MEG

Resting state brain networks observable using both fMRI and MEG in the “resting state”

Shows that the haemodynamic networks in fMRI have an electrophysiological basis

MEG also shows that neural oscillatory processes underlies haemodynamic connectivity

Agrees with invasive measurements made in patients

Brookes et al. PNAS 108 (40): 16783-16788 (2011)

Page 35: Multimodal functional MRI (多模态功能磁共振成像)

Networks associated with working memory tasks

A: Visual, B: Fronto-Parietal, C: L/R Insula, D L/R TPJ, E: R Motor, F: L Motor, G Lateral Visual, H: Medial Parietal

Page 36: Multimodal functional MRI (多模态功能磁共振成像)

Sternberg Working Memory Task

Paradigm: Two visual stimuli presented in quick succession

Following a maintenance period of 8s, a third “probe” stimulus presented

Subject responds if the the probe is the same as either of the two initial stimuli

Visual Stimulus 1

Visual Stimulus 2

M a i n t e n a n c e P e r i o d

Probe Stimulus

Page 37: Multimodal functional MRI (多模态功能磁共振成像)

Sternberg Working Memory Task

Primary visual areas

Lateral visual areas

Bilateral Insula network

Fronto-parietal network

Medial Parietal cortex

Bilateral TPJ

Right Motor Cortex

Left Motor Cortex

Time frequency plots for 8 networks associated with Sternberg paradigm

Page 38: Multimodal functional MRI (多模态功能磁共振成像)

Pathways of Glu/Gln and GABA/Glu/Gln Cycling"

Gln

Glu

Gln

Glu

Glu

GABA Gln GABAc

GAD67

GAD65

Na+ Na+ GABA

Glutamatergic neuron GABAergic neuron Astrocyte

TCA Cycle

TCA Cycle

TCA Cycle

Brain Neurotransmission

Page 39: Multimodal functional MRI (多模态功能磁共振成像)

Advantages  of  high  field  for  MRS  

•  Increased  SNR  (~  B0)  –  improved  spa0al  resolu0on  –  shorter  scan  0mes  

•  Increased  spectral  resolu0on  •  Simpler  spin  coupling  paVerns  

–  weak  rather  than  strong  coupling  

Page 40: Multimodal functional MRI (多模态功能磁共振成像)

Click to edit Master title style

•  Click to edit Master text styles •  Second level

•  Third level •  Fourth level •  Fifth level

40

1H MRS Repeatability: %CVs

NAA Glu Gln mI GABA Cr Cho 7T sh 3 (2) 4(2) 10(6) 9(3) 10(6) 3(2) 5(4) 3T sh 5(3) 8(6) 29(11) 8(4) 21(14) 10(4) 16(16)

7T long 6(6) 10(6) 29(19) 19(10) 16(8) 7(6) 8(6) 3T long 6(6) 16(9) 32(30) 22(10) 36(25) 22(13) 8(7)

Values are mean (± SD)

M. C. Stephenson, F. Gunner, A. Napolitano, P. L. Greenhaff, I. A .MacDonald, N. Saeed, W. Vennart, S. T. Francis and P. G. Morris, World J. Radiol. 3(4), 105-113 (2011)

Page 41: Multimodal functional MRI (多模态功能磁共振成像)

7T 1H Spectrum

Page 42: Multimodal functional MRI (多模态功能磁共振成像)

Click to edit Master title style

•  Click to edit Master text styles •  Second level

•  Third level •  Fourth level •  Fifth level

42

The stimulus consists of radial white/black prisms covering the entire visual field and reversing at a frequency of 8Hz.

Visual Stimulus

Page 43: Multimodal functional MRI (多模态功能磁共振成像)

SCmulaCon  induced  changes  in  metabolite  levels  determined  by  1H  MRS  

Lin et al., under revision for JCBFM

Page 44: Multimodal functional MRI (多模态功能磁共振成像)

Time courses of metabolite changes

during visual stimulation

Lin et al., under revision for JCBFM

Page 45: Multimodal functional MRI (多模态功能磁共振成像)

Click to edit Master title style

•  Click to edit Master text styles •  Second level

•  Third level •  Fourth level •  Fifth level

45

•  Significant decrease in Glc –  Increased glucose consumption during stimulation

•  Significant increase in Lactate –  Increased rates of glycolysis and TCA cycle

•  Suppression of second lactate response to stimulation •  Significant increase in Glutamate, decrease in Glutamine and trend

to increase in GABA - Changes in the neurotransmitter levels due to increased turnover

•  Significant Increase in Glutathione –  Possibly related to oxidative stress or a ‘buffer’ of excess

synaptic glutamate

1H MRS Changes due to Visual Stimulation

Page 46: Multimodal functional MRI (多模态功能磁共振成像)

Acknowledgements  

•  All  my  colleagues  at  the  Sir  Peter  Mansfield  Magne0c  Resonance  Centre,  and  especially  Sir  Peter  

•  Wellcome  Trust,  MRC,  EPSRC,  MS  Society  &  others  for  grant  support