24
Air-water carbon dioxide fluxes in a Mediterranean wetland Edward P. Morris 1 , S. Flecha 1 , J. Figuerola 2 , E. Costas 3 , G. Navarro 1 , J. Ruiz 1 , P. Rodriguez 4 and I. E. Huertas 1 1 Instituto de Ciencias Marinas de Andalucía (ICMAN-CSIC), 2 Estación Biológica Doñana (EBD-CSIC), 3 Universidad Complutense de Madrid, 4 Universidad de Murcia March 7, 2013 Edward P. Morris [email protected] Donana Air-water carbon dioxide fluxes 1/20 1 / 20

Morris air water-carbon-fluxes-aslo2013_handout

Embed Size (px)

DESCRIPTION

Abstract: Inland and transitional aquatic systems play an important role in global carbon (C) cycling. Wetlands and floodplains probably account for the majority of these systems, yet their C dynamics are poorly constrained in terms of in-situ data. Air-water CO2 fluxes in the Mediterranean wetlands of Donaña National Park, SW Spain were examined by measuring alkalinity and pH (along with other physiochemical parameters) in a range of water bodies during 2010-2011. Areal fluxes were calculated and, using remote sensing, an estimate of the contribution of aquatic habitats to gaseous CO2 transport was derived. Semi-permanent ponds adjacent to the large Guadalquivir estuary acted as mild sinks, whilst temporal wetlands were strong sources of CO2 (-0.8 and 36.3 mmolCO2 m-2 d-1). Fluxes in semi-permanent streams and lakes changed seasonally; acting as sources in spring-winter and mild sinks in autumn (16.7 and -1.2 mmolCO2 m-2 d-1). Overall, nearly all water bodies were net annual sources of CO2 (5.2 molCO2 m-2 y-1). Upscaling clarified the overwhelming contribution of seasonal flooding and allochthonous organic matter inputs in determining regional air-water gaseous C transport (13.1 GgC y-1). Description: Oral presentation given at the 2013 Aquatic Sciences Meeting (ASLO), New Orleans, USA. Publisher version (URL): http://www.sgmeet.com/aslo/neworleans2013/viewabstract2.asp?AbstractID=10862 URI: http://hdl.handle.net/10261/72209

Citation preview

Page 1: Morris air water-carbon-fluxes-aslo2013_handout

Air-water carbon dioxide fluxesin a Mediterranean wetland

Edward P. Morris1, S. Flecha1, J. Figuerola2, E. Costas3, G.Navarro1, J. Ruiz1, P. Rodriguez4 and I. E. Huertas1

1Instituto de Ciencias Marinas de Andalucía (ICMAN-CSIC), 2Estación BiológicaDoñana (EBD-CSIC), 3Universidad Complutense de Madrid, 4Universidad de Murcia

March 7, 2013

Edward P. Morris [email protected] Donana Air-water carbon dioxide fluxes 1/201/20

Page 2: Morris air water-carbon-fluxes-aslo2013_handout

Overview of talk

• Introducing Doñana• Aquatic carbon transport• Doñana air-water carbon fluxes• Conclusions

Edward P. Morris [email protected] Donana Air-water carbon dioxide fluxes 2/202/20

Page 3: Morris air water-carbon-fluxes-aslo2013_handout

;

Doñana Natural AreaBiosphere Reserve, RAMSAR and World Hertiage site

538 km2

Guadalquivir 2nd largest

river in Spain

Edward P. Morris [email protected] Donana Air-water carbon dioxide fluxes 3/203/20

Page 4: Morris air water-carbon-fluxes-aslo2013_handout

;

Doñana Natural AreaBiosphere Reserve, RAMSAR and World Hertiage site UNDER PRESSURE!

Rice production

Extensive

aquaculture

Intensive agriculture

Urbanisation

Gas extraction

Industrial activities

Dredging

Edward P. Morris [email protected] Donana Air-water carbon dioxide fluxes 4/204/20

Page 5: Morris air water-carbon-fluxes-aslo2013_handout

What is the VALUE of a

wetland?

Edward P. Morris [email protected] Donana Air-water carbon dioxide fluxes 5/205/20

Page 6: Morris air water-carbon-fluxes-aslo2013_handout

Doñana Natural AreaEcosystem services

• Supporting• Cultural• Provisioning• Regulating

CARBON

SEQUESTRATION

role in climate regulation?

Palomo et al. 2011. Ecology and Society 16(1): 23. URL:

http://www.ecologyandsociety.org/vol16/iss1/art23/

Edward P. Morris [email protected] Donana Air-water carbon dioxide fluxes 6/206/20

Page 7: Morris air water-carbon-fluxes-aslo2013_handout

Aquatic carbon transport"Active" pipe model (Downing et al. 2008, Battin et al. 2009, Cole et al. 2007, Tranvik et al.2009, Butman and Raymond 2011)

Edward P. Morris [email protected] Donana Air-water carbon dioxide fluxes 7/207/20

Page 8: Morris air water-carbon-fluxes-aslo2013_handout

Aquatic carbon transportWhat is the role of wetlands?

Global Wetland area between 6 and 11 %

of continents (Downing 2009)

Edward P. Morris [email protected] Donana Air-water carbon dioxide fluxes 8/208/20

Page 9: Morris air water-carbon-fluxes-aslo2013_handout

;

Doñana Natural AreaPotential areal net primary production (NPP, gC m−2 yr−1)

Agriculture: 1080

Pine forest: 492

Mediterraneanscrubland: 102 Coastal wetland:

324±216 x 231 km2

= 75±50 GgC yr-1

Edward P. Morris [email protected] Donana Air-water carbon dioxide fluxes 9/209/20

Page 10: Morris air water-carbon-fluxes-aslo2013_handout

Doñana Natural AreaSeasonal flooding 2010–2011

SummerWinter Winter

August 2010

Edward P. Morris [email protected] Donana Air-water carbon dioxide fluxes 10/2010/20

Page 11: Morris air water-carbon-fluxes-aslo2013_handout

Doñana Natural AreaSeasonal flooding 2010–2011

SummerWinter Winter

Dec. 2010

Edward P. Morris [email protected] Donana Air-water carbon dioxide fluxes 10/2010/20

Page 12: Morris air water-carbon-fluxes-aslo2013_handout

Doñana Natural AreaSeasonal flooding 2010–2011

SummerWinter Winter

March 2011

Edward P. Morris [email protected] Donana Air-water carbon dioxide fluxes 10/2010/20

Page 13: Morris air water-carbon-fluxes-aslo2013_handout

Research question

How LARGE is annual

air–water CO2 transport in

Doñana?

Edward P. Morris [email protected] Donana Air-water carbon dioxide fluxes 11/2011/20

Page 14: Morris air water-carbon-fluxes-aslo2013_handout

;

Doñana Natural AreaWetland regions, ICTS meterological stations and water sampling points

Water

sampling site

Meterological

station

Water samples collectedmonthly when water level >0.1 m (n = 6 to 12).

• Temperature• Salinity• pH (NBS scale)• Total Alkalinity• Oxygen concentration• Dissolved nutrients• Total suspended matter

(TSM)• Particulate organic

matter (POM)• Chlorophyll a• Dissolved organic matter

(DOM)

Edward P. Morris [email protected] Donana Air-water carbon dioxide fluxes 12/2012/20

Page 15: Morris air water-carbon-fluxes-aslo2013_handout

Calculating dissolved carbon dioxide

Total AlkalinitypH (NBS)[Silicate][Phosphate]

SalinityTemperature

CO2SYS.xls (ver.14)Dissociation constants for Cand sulphate of Cai and Wang(1998) and Dickson (1990),respectively

Atmosphericpressure

pCO2water

Valid for salinity between 0 and 50

NBS pH scale

Edward P. Morris [email protected] Donana Air-water carbon dioxide fluxes 13/2013/20

Page 16: Morris air water-carbon-fluxes-aslo2013_handout

Doñana Natural AreaSpatio-temporal variation in aquatic physiochemical properties

Veta la

Palma

Donana

wetlands

Winter

Summer

Edward P. Morris [email protected] Donana Air-water carbon dioxide fluxes 14/2014/20

Page 17: Morris air water-carbon-fluxes-aslo2013_handout

Calculating air-water CO2 fluxes

pCO2water

pCO2air

SalinityTemperature

Air–water flux(Wanninkhof et al. 2009):kw Ko(pCO2water − pCO2air )

Water–side gas transfervelocity (Johnson 2010):(kw =k600(Scw/600)−0.5

Wind enhancement ofkw(Cole and Caraco 1998):k600 = 2.07 + 0.215u101.7

Wind velocityat z = 10 m (u10, Smith1988)

Wind velocityat z m (uz )

Areal air-waterCO2 flux (FCO2

)

Typically used for

lakes

Edward P. Morris [email protected] Donana Air-water carbon dioxide fluxes 15/2015/20

Page 18: Morris air water-carbon-fluxes-aslo2013_handout

Doñana air-water CO2 fluxes (2010–2011)

CO

2 F

lux

(mm

ol m

-2 d

-1)

Date

Veta la

Palma

N. Donana

wetlands

La Rocina

stream

Peridunar

Lagoons

S. Donana

wetlands

Edward P. Morris [email protected] Donana Air-water carbon dioxide fluxes 16/2016/20

Page 19: Morris air water-carbon-fluxes-aslo2013_handout

Doñana air-water CO2 fluxes (2010–2011)

Table : Summary of annual areal air–water CO2 fluxes (FCO2) at

each of the sites, range of water coverage and annual air–water Ctransport in each region.

Region Site FCO2(molCO2

m−2 yr−1) Water extent (km2) C transport (GgC yr−1)Veta la Palma M1 1.1 14–37 -0.05

M2 -0.3M3 -1.4M4 0.5

Doñana Wetlands M5 11.9 1–224 12.95M6 1.4M9 13.4M10 8.8M11 5.1

Peridunar lagoons M8 11.1 0.1–4 0.21La Rocina M7 6.0 0–0.1 0.004

RANGE = - 1 . 4 to 13 . 4 molC m−2 yr−1

TOTAL= 13 GgC yr−1

Edward P. Morris [email protected] Donana Air-water carbon dioxide fluxes 17/2017/20

Page 20: Morris air water-carbon-fluxes-aslo2013_handout

Doñana air-water CO2 fluxesComparison with other aquatic systems

Veta la Palma Donana wetlands

Amazon

floodplain

Larg

eLake

s

Eur

.Estua

ries

Gua

dalquivir

Mississippi

basin

Edward P. Morris [email protected] Donana Air-water carbon dioxide fluxes 18/2018/20

Page 21: Morris air water-carbon-fluxes-aslo2013_handout

Conclusions

Carbon transport within Doñana Natural Area

• Annual air-water CO2 transport in 2010–2011 (13GgC yr−1) was 2 to 10 times less than potential wetlandNPP (75 ± 50 GgC yr−1).

◦ A first estimate, BUT plenty more work to be done:• More years with different hydrology, improved NPP estimate,

fluxes during dry period, link with eddy-covariancemeasurements...

• How large is export and burial?

• Methane?

Edward P. Morris [email protected] Donana Air-water carbon dioxide fluxes 19/2019/20

Page 22: Morris air water-carbon-fluxes-aslo2013_handout

Conclusions

Carbon transport within Doñana Natural Area

• Clear differences in air–water fluxes between wetlandtype/management regime.

◦ Floodwaters are a strong source, whereas aquaculture pondsweak sink of atm. CO2.

◦ Autochthonous production important when hydroperiod extendsthrough summer–autumn.

• Suggests hydrological management of Doñana will affect Ctransport

Edward P. Morris [email protected] Donana Air-water carbon dioxide fluxes 20/2020/20

Page 23: Morris air water-carbon-fluxes-aslo2013_handout

Acknowledgements• This research was supported by the projects P09–RNM–4744 and 049/2010 funded by

the Regional Government of Andalucia and the Spanish Ministry for Agriculture, Foodand Environment, respectively.

• Maria Ferrer-Marco, Manuel Arjonilla and Antonio Moreno are thanked for theirinvolvement in sample collection and analysis.

• EPM and SF are supported by a JAE DOCTORES 2010 contract and JAEPREDOCTORAL scholarship, respectively, part-funded by the European Union(European Social Fund, ESF2007-2013) and the Spanish Ministry for Economy andCompetitiveness.

• We thank the staff of Doñana Natural Area for logistical assistance. We are gratefulto Miguel Medialdea, the staff and owners of Veta la Palma for giving us informationabout and access to their aquaculture ponds. Meterological data supplied by the"Singular Scientific and Technological Infrastructure (ICTS) to the Doñana ScientificReserve".

• Landsat data available from the U.S. Geological Survey. DEIMOS1 data provided byDEIMOS-Imaging. Land use Doñana Natural Area available from "Mapa de usos ycoberturas vegetales del suelo de Andalucia 2007, escala 1:25.000, REDIAMConsejeria de Medio Ambiente, Junta de Andalucia"

• Data analysis was carried out using R 2.15 (http://cran.r-project.org) and QGIS(www.qgis.org). This presentation was created using LATEX and the beamer style ofFlip Tanedo.

THANK-YOUEdward P. Morris [email protected] Donana Air-water carbon dioxide fluxes 20/20

20/20

Page 24: Morris air water-carbon-fluxes-aslo2013_handout

ReferencesT. J. Battin, S. Luyssaert, L. A. Kaplan, A. K. Aufdenkampe, A. Richter, and L. J. Tranvik.The boundless carbon cycle.Nature Geosci., 2(9):598–600, 2009.

David Butman and Peter A. Raymond.Significant efflux of carbon dioxide from streams and rivers in the united states.Nature Geoscience, 4(12):839–842, 2011.

W. J. Cai and Y. Wang.The chemistry, fluxes, and sources of carbon dioxide in the estuarine waters of the Satilla and Altamaha Rivers,Georgia.Limnol. Oceanogr., 43(4):657–668, 1998.

J. J. Cole and N. F. Caraco.Atmospheric exchange of carbon dioxide in a low-wind oligotrophic lake measured by the addition of SF6.Limnol. Oceanogr., pages 647–656, 1998.

J. J. Cole, Y. T. Prairie, N. F. Caraco, W. H. McDowell, L. J. Tranvik, R. G. Striegl, C. M. Duarte,P. Kortelainen, J. A. Downing, J. J. Middelburg, et al.Plumbing the global carbon cycle: Integrating inland waters into the terrestrial carbon budget.Ecosystems, 10(1):172–185, 2007.

A. G. Dickson.Standard potential of the reaction: AgCl(s) + 1/2 H2(g) = Ag(s) + HCl(aq), and and the standard acidityconstant of the ion HSO−

4 in synthetic sea water from 273.15 to 318.15 K.J. Chem. Thermodyn., 22(2):113–127, 1990.

J. A. Downing.Plenary lecture global limnology: Up–scaling aquatic services and processes to planet Earth.Verh. Internat. Verein. Limnol., 30(8):1149–1166, 2009.

J. A. Downing, J. J. Cole, J. J. Middelburg, R. G. Striegl, C. M. Duarte, P. Kortelainen, Y. T. Prairie, and K. A.Laube.Sediment organic carbon burial in agriculturally eutrophic impoundments over the last century.Global Biogeochem. Cycles, 22:10 PP., February 2008.

M. T. Johnson.A numerical scheme to calculate temperature and salinity dependent air-water transfer velocities for any gas.Ocean Sci., 7(1):251–290, February 2010.

I. Palomo, B. MartL, C. L-Santiago, and C. Montes.Participatory scenario planning for protected areas management under the ecosystem services framework: the dosocial-ecological system in southwestern spain.Ecology and Society, 16(1):23, 2011.

S. D. Smith.Coefficients for sea surface wind stress, heat flux, and wind profiles as a function of wind speed and temperature.J. Geophys. Res., 93(15):467–15, 1988.

L. J. Tranvik, J. A. Downing, J. B. Cotner, S. A. Loiselle, R. G. Striegl, T. J. Ballatore, P. Dillon, L. B. Knoll,T. Kutser, S. Larsen, et al.Lakes and reservoirs as regulators of carbon cycling and climate.Limnol. Oceanogr., 54:2298–2314, 2009.

R. Wanninkhof, W. E. Asher, D. T. Ho, C. Sweeney, and W. R. McGillis.Advances in quantifying air-sea gas exchange and environmental forcing.Annu. Rev. Mar. Sci., 1:213–44, 2009.

Edward P. Morris [email protected] Donana Air-water carbon dioxide fluxes 20/2020/20