Matter and Materials

Embed Size (px)

DESCRIPTION

Grade 11 Matter and Materials Based on DocScientia Atomic Bonds: Molecular structure Intermolecular forces Ideal gases and Thermal properties

Citation preview

  • 1. Matter and materials

2. Atomicbonds 3. Everything consists ofof elements (exceptgroup 8) are not foundalone. tsChemical enon p d om dec n re bobonds a s nitru .ge llyar icafl m o eDocScientia p 14ch 4. Chemicalbonds 5. with high Ep bond together,then existing bonds are broken.Octet rule: New bonds joinmolecules withChemicalbondintolower Ep. C s DocScientia p 14 6. A chemical bond occurs when bond together to form a new substance with new properties and in so doing have anoble gas electron structure and a lower Ep.DocScientia p 14 Chemical bonds 7. A model describes an ideaor thoughtBondingmodels DocScientia p 14 8. Covalent bondDocScientia p 14 9. DocScientia p 14 10. DocScientia p 14 11. DocScientia p 14 12. Between non-metals -Smallest e are sharedCovalent bondparticle isa molecule. have half-filled orbitals thatoverlap to form a filled orbital -e negativity Polar or DocScientia p 14must be the non-polarsame or the bonds formdiff. < 1,9 13. DocScientia p 15 Ionic bond 14. DocScientia p 15 Ionic bond 15. Ionic bondBetween metal and non-metal -e are transferredCations electrostaticforce/coulomb NON-METALS:force anions High electrone- negativity > 2,1 METALS:e affinity Low ionisationcl i Accept e-art energy panionst Donate e- l es al nDocScientia p 15 cation m oS i= 16. Negativity: Affinity:e- removede-accepted,Energyrequired in Paymentpayment in energy 17. DocScientia p 15 18. DocScientia p 15 Metallic bond 19. Between metalsMetallic bond Low ionisation energy formcations+ core and of delocalised e- Empty valence orbitals e- move from oneto the DocScientia p 15 next 20. DocScientia p 15 21. DocScientia p 15Valence electrons 4 n 3 + 22. Valence electrons e- T R AOutermost energy level#c nu orre mb s p er ond Nofst the o shared Sele grou F Eduring a me pnt RreactionDocScientia p 15 R E D 23. ValencyNo sign# e- involved DocScientia p 16in a reaction 24. DocScientia p 16 Lewis 25. LewisNucleus and core e : - represented by the atoms symbolValence e ( ) are - Nplaced around thesymbol placed, have all been Until they One at aDocScientia p 16 timeOr all four sides are occupied. 26. DocScientia p 16 Lewis 27. DocScientia p 16 Lewis 28. DocScientia p 16 Lewis 29. DocScientia p 16 Lewis 30. Lewis Choose the central atom12Determine total # of valence e- in the molecule or ionPlace the shared electronpairs between bonded atoms34 Remaining valence electrons drawn as lone pairs, so each atom (except H) is surrounded by 8 e-With double/triple bonds,5DocScientia p 16lone pairs will be less. Lewis structures 31. Lewis Determine the smallest electronegativity middle. Rest go around 1 Valence electrons 2 Resonance structuresBonding electrons betweenatoms3DocScientia p 16 -Spread remaining e in octet around atoms4 32. Lewis[] ?-ONONO33,03,55N O Resonance structures18 O+1This can happen to any of the oxygenneg.atoms.chargeOnly ALL 3 structures describes the actualbond.This is called resonance structures, andDocScientia p 16when drawn, all three options should bedone, with double arrows between toshow the fact that the true structure is amix of the three. 33. Atoms with an empty orbital in the valence energy level can share a lone pair with anotherH atom/molecule. HHNHHH NH +H[ ] Dative covalentDocScientia p 22 34. VSEPR HA A E LEP Predict shapes of covalentLE E and radicals EUmolecules CN LT I SL RCOR OIEL NDocScientia p 24N 35. Theelectronpairs Bonding e-around thecentral Main Repel Lone pairsatom in aamoleculedeterminetheshape of the moleculenglec a u s es se- arrange themselvesas far apart as possibleDocScientia p 24 36. # electron pairs thatsurround anDocScientia p 24 Electron pair geometry 37. #that surround a centralAlso coordination numberDocScientia p 24 Molecular geometry 38. Repulsion strengthsLone pair-Lone pair > Lone pair-Bond pair > Bond pair-Bond pair Triple bond >double bond >single bondDocScientia p 24 39. Central atom with Two Electron PairsThere are two electron pairs in the valence shell ofBeryllium. [1s2 2s2 ]Molecular geometry-Linear arrangement180 H BeHDocScientia p 24 40. Central atom with Three Electron Pairs Three electron pairs in the valence shell of Boron. [1s2 2s2 2p1 ] Molecular geometry- Trigonal Planar arrangement F 120 BFFDocScientia p 24 41. Central atom with Four Electron PairsFour electron pairs in the valence shell ofCarbon. [1s2 2s2 2p2 ]Molecular geometry- TetrahedralBond angle -109.5DocScientia p 24 42. Central atom with Five Electron Pairs Five electrons in the valence shell of Phosphorus. [1s2 2s2 2p6 3s2 3p3 ] Molecular geometry- Trigonal bipyramid Bond angle -120 &90DocScientia p 24 43. Central atom with Six Electron PairsSix electrons in the valence shell ofSulfur. [1s2 2s2 2p6 3s2 3p4 ]Molecular geometry- OctahedralBond angle-90DocScientia p 24 44. Electronegativity The pull of an on a sharedpair of electrons. Indication ofInfluenced by:bonding ability. Size of charge of# is on yournucleus periodic Size oftableNo unitsdecreases increasesPeriodic tableDocScientia p 29 45. Difference predicts whattype of bond will formbetweenBondDifference inelectronegativityNon-polar covalent=0Covalent and weak polar 1 2,1DocScientia p 29 46. Difference in electronegativityBWhat determinesopolarity? nShape dof the moleculeDocScientia p 30s 47. Repulsive forces Attractive forces F O R C E SDocScientia p 36 48. Chemical bondshappenwhen two ormore nucleiattract an e-Wbr hen poea b en konch tia /fo dtstoresan l en rm spotential g erg , es y energy.DocScientia p 37 49. OB bond lengthdissociation BM bond energyPotential energy (kJ) BDistance between nuclei0 NP MbondingMolecule most stable positionDocScientia p 37 50. Bond strength =measured by seeinghow much energy is necessaryto break the bond between two atoms.DocScientia p 38 51. Bond energy = the energy needed to break a bond.DocScientia p 38 52. Bond energy size weakBond lengthstrongOrder: 123DocScientia p 38 53. Bond length=Distance between thetwo nuclei ofthe atoms bondingDocScientia p 38 54. Bond lengthIndividual radiiBond order:The higher theorder, the shorterthe bond length.DocScientia p 38 55. Poly-atomicDiatomicmolecules vibratemolecules Cannot absorbin different ways.move bystretchinginfraredUnequalstretch orandcontractingMolecules that bend =equally.can dipole absorb/reflect moments infrared =No dipolegreenhouseInfrared =moments gases.absorbedDocScientia p 39 56. Intermolecularforces 57. forcesDocScientia p 46Intermolecular forces 58. Ionic and metallic bonds are strong -1(400 4 000 kJ.mol ) usually found as solids.IM forces are mainlyfound between smallcovalent molecules.DocScientia p 46 59. Ion-dipole force 1Ion-induced dipole 2Types force Van der Waals force DocScientia p 46 3 60. Types of vanDipole-dipole 1der waals forceDipole-induced dipole force 2 Induced dipole DocScientia p 46 forces (London) 3 61. ParticlesType of bondIons Coulomb forcesIon and polar molecule Ion-dipoleTwo polar moleculesDipole-dipoleIon and non-polar molecule Ion-induced dipolePolar and non-polarDipole-induced dipolemoleculeNon-polar moleculesLondon (dispersion) forcesDocScientia p 47 62. Ion-dipole forces Dipole approaches a positive or a negativeion. 240 pm 84 kJDocScientia p 47 63. Ion-induced An ion approaching an atom ordipole forcesmolecule, it affects the electroncloud around the atom, causing atemporary dipole.+ -+ DocScientia p 47 64. Dipole-dipoleIf two dipoles forcesapproacheach other,they will turn so that their- oppositely charged ends 5 25 kJ.mol-1 will be closer.+An attractive force will exist between these DocScientia p 47 dipoles. 65. Dipole-induced Polar molecules can induce a dipole forces temporary dipole in a non-polar molecule/atom. Usually a very weak force. - + -+DocScientia p 47 66. Induced dipole When 2 non-forces (London)The greater thepolar atoms/ molecule, the greatermolecules the attraction. Onlyapproach, seen in the absence ofthere is aother forces.slight changein theelectroncloud of bothNeNemolecules oratoms.Temporary.DocScientia p 47 67. Hydrogen bonds H F F+H- - H H++ FF -Hydrogen to a small atom withextremely high electronegativity. (N, O, F) Electrostatic force between -atom in the molecule and the H inthe other. Very strong, but weaker DocScientia p 47than covalent and ionic bonds. 68. nfluence of intermolecular forces onDocScientia p 55In c re Phase asDe ecr ea se Inc reas eDecr ea se 69. Molecule size only affectsnfluence of intermolecularforces on van der Waals forces DECREASEF ClBrI INCREASE Molecule size DocScientia p 55 70. nfluence of intermolecular forces onDocScientia p 55 Density Decreasse 71. nfluence of intermolecularforces onB.P. increase when molecular size increase.H2S is smaller than H2Se and so on. All these molecules have weak100H2O van der Waals forces.B.P. Of H2O is higher than expected. H2O have strong hydrogen bonds.H2TeH2Se-50 H2S B.P. DocScientia p 55 72. nfluence of intermolecularM.P. increase when molecular size increase.forces onHCl is smaller than HBr and so on.All these molecules have weak van der-25 HI Waals forces. M.P. Of HF is HFhigher than expected.HBrHF have stronghydrogen bonds.-75 HCl M.P. DocScientia p 55 73. because IM forces weaken. Temp. increases, viscocity decreasesnfluence of intermolecularforces onLong, polar molecules: forces =greater, and viscosity is higher. Polarity = stronger attractive forces, and long chains become tangled. ViscosityIndication ofresistance to flow. DocScientia p 55 74. nfluence of intermolecularforces on Degree of The more The expansionenergy aparticles depends particle has,separate, on material the IM force causing an type.weaken. increase involume.Material expandson heating. Thermal expansion DocScientia p 55 75. nfluence of intermolecularforces on Covalent structures have no free e- and therefore are bad conductors. Exceptions: diamond and graphite.Thermal conductors DocScientia p 55 76. Microscopic properties ofwater. Covalent bondDocScientia p 70 77. Microscopic properties ofwater. Angular shapeDocScientia p 70 78. Microscopic properties ofwater. Hydrogen bondsDocScientia p 70 79. Microscopic properties ofwater. GreenhousegasDocScientia p 70 80. How many water moleculesin 1 of water? 1 = 1000 g-1M = 18,02 g.mol(H2O) n = m/M= 1000/18,02= 55,5 mol DocScientia p 71 81. Cause of moderate climate on Pro# of energy needed to pechange the temperaturert of 1 kg of a substance i Help organisms to by 1 Ce effectively regulate s body temp.of Specific heat capacity definition DocScientia p 71water 82. PWater = highr latent heatopeHeat absorbed/releasedr during phase changes.tie Water releases heat slowly s when it cools down.ofLatent heatDocScientia p 71 water 83. M.P.B.P.P rLarge amounts of energy required oto break HB.Essential for life pPoints are on otherwise ethereforerH2O would be in t higher than the gaseous state. iexpected.e sStrong hydrogen bonds ofDocScientia p 72 water 84. D Pre opn es rti iet sy of waterDocScientia p 72 85. Adhesion and cohesion Pr Forces between two different otypes of moleculesperti Forces between the same type of molecule. es ofDocScientia p 73 water 86. Surface action P r o Due to the p cohesive forces e of molecules r on the surface of t a volume i e of water. sofDocScientia p 73 water 87. Capillary action P r Tendency to rise in a tubeo as a result of surfacep tension i.e. adhesive e properties of water.r t i e sofDocScientia p 73 water 88. Idealgasesand thermalpropertiesDocScientia p 85 89. v and EK Small = different particlesKMT for individual Continuous motion particles. Avg. EK =Empty spaces constantbetween particlesif temp =forces constantlastic collisions Motion DocScientia p 85Of particles 90. Condensation ofgases Gases fill the KMT whole containerBR MO OW TN II OAN NDi f f u s i o nDocScientia p 85 Explains 91. DocScientia p 85 92. Receive energyTemperature andavg. EK Individual T EKEKAvg. EKDocScientia p 86and temperature 93. 2 EK = mv T EK2 T mvAvg. E KDocScientia p 86and temperature 94. DocScientia p 86 95. DocScientia p 86 96. Properties:Particles = identical in Real gas:every way Approach idealOnly occupies volumegas behaviour due to motion ofwhen:particles; Low particles themselves temperatures= no volume High pressure No forces Collisions areperfectly elasticIdeal gas DocScientia p 86 model 97. Low temperature:EK decrease High pressure: Collisions Particles own volume decreasecontributes to totalvolume of the gas, = larger.Pressure = lower Larger particles =Move closer stronger intermolecular forces Liquefaction occurs gastogetherexperiences high pressureAttractive forces under critical temp.increase could causecondensation Ideal gas DocScientia p 86model 98. pV Ideal gasDocScientia p 86p model 99. VDocScientia p 86 P 100. V 1/pDocScientia p 86 101. pDocScientia p 86 1/V 102. VDocScientia p 86 T 103. For comparisons, temp. and pressurehave to be identical STP V&p0C/273K, and101,3 kPaDocScientia p 91 104. Pressure = # collisions against a Fcontainer per unit time.p= A -2 1 Pa = 1 N.mDocScientia p 91 105. DocScientia p 91 106. Temperature =constant.Avg. EK = same Volume (cm3) V o l um ecollisions pVPressure1/p (kPa-1)Pressure (kPa)DocScientia p 94 107. Thevolume of anenclosed mass of gas isinversely proportionaltothe pressure of the gas,provided the temperatureDocScientia p 94 Boyles Law 108. V 1/pMore than one set: pV=k p1V1 = p2V2DocScientia p 94 109. Volume (cm3)High temp.Diff. temperatures Med. temp.Low temp.1/p (kPa-1) DocScientia p 94 110. Just clickDocScientia p 94 111. Volume and temp. 3V (cm ) -273 C DocScientia p101 T (C) 112. Volume and temp. VT V = kTV1 = V 2 K T =T 12 DocScientia p 101 113. The volume of a fixed mass of gas is directly proportional to the temperature of the gas,Charles Law provided to pressure remains constant. DocScientia p 101 114. Charles Law DocScientia p 101 115. Temp. and pressureDocScientia p102 116. Pressure of a constant volumeTemp. and pressure of gas with a fixed mass is directly proportionalto the absolute temperature. DocScientia p 102 117. p (kPa)Temp. and pressureAbsolutezeroExtrapolation -273 C DocScientia p102 T (C) 118. Absolute zero The absolute zero is the lowestpossible temperature that any substance can ever reach. DocScientia p 102 119. Because absolute zero is -273C, a scale was created whereTemp. and pressure absolute zero is actually zero. Kelvin scale (K) Pressure (kPa) Temperature (K) DocScientia p102 120. Guy-Lussacs Law Temperature in K is directly proportional to the pressure of an enclosed mass of gas, provided the volume remains constant. DocScientia p103 121. Represented by a tKelvin temp scale-2730 100 C0273373 KT = t + 273Representedt = T - 273 by a T DocScientia p103 122. Factors that determine the pressure of a gas: # of collisions Intensity of collisions Pressure, Volume and temperatureDocScientia p106 123. Boyles Law: p 1V 1 = p 2V 2 Pressure, Volume and temperatureDocScientia p106 124. Charles Law: V1 = V 2 T1T2 Pressure, Volume and temperatureDocScientia p106 125. Guy-Lussacs Law: p1 = p 2 T1T2 Pressure, Volume and temperatureDocScientia p106 126. p 1V 1 = p 2V 2T1 T2 Pressure, Volume and temperatureDocScientia p106 127. pV T pV = kTIdeal gas LawDocScientia p106 128. k depends on the # of molecules k can therefore be substitutedwith n (the # of moles) and R, which is the general gas constant. pV = nRTIdeal gas LawDocScientia p106 129. molK pV = nRTPa 3 m 8,31 Ideal gas LawDocScientia p106 130. Textbook: DocScientia, Grade 11 workbook, 2013Images: attempt has been made to acknowledge allsources, if an images source could not be found, it wasacknowledged as such.Slide 1 llnl.govSlide 2 flickr.comSlide 4 CAIROO software Slide 7 reference.comSlide 8 source unknownSlide 9 to 11 CAIROO softwareSlide 12 a 123rf.comSlide 12 b source unknownSlide 12 c equipmentexplained.comSlide 13 tumblr 131. Slide 14 tumblrSlide 17 CAIROO software Slide 18 launch.tased.edu.auSlide 20 CAIROO sorftwareSlide 23 eklavya.orgSlide 24 chemistryland.comSlide 26 - 29 Lily KotzeSlide 41 - 43 worldofteaching.com Slide 56 swarooproy.deviantartSlide 57 reference.com Slide 62 source unknownSlide 64 - 65 source unknownSlide 68 a - b source unknownSlide 70 source unknown Slide 73 soundcloudSlide 74 - 75 scienceclarifiedSlide 76 CAIROO software 132. Slide 77 CAIROO software Slide 79 google imagesSlide 85 milkywayscientists Slide 86 google imagesSlide 87 CAIROO softwareSlide 88 CAIROO softwareSlide 91 TutorVista.comSlide 94 - 95 CAIROO softwareSlide 105 hip2b2Slide 110 mindsetlearnSlide 114 CAIROO softwareSlide 115 CAIROO software