83
1 ! Fundamentals of the Stiffness Method ! Member Local Stiffness Matrix ! Displacement and Force Transformation Matrices ! Member Global Stiffness Matrix ! Application of the Stiffness Method for Truss Analysis ! Trusses Having Inclined Supports, Thermal Changes and Fabrication Errors ! Space-Truss Analysis TRUSSES ANALYSIS

Matrix truss

Embed Size (px)

DESCRIPTION

 

Citation preview

Page 1: Matrix truss

1

! Fundamentals of the Stiffness Method! Member Local Stiffness Matrix! Displacement and Force Transformation Matrices! Member Global Stiffness Matrix! Application of the Stiffness Method for Truss

Analysis! Trusses Having Inclined Supports, Thermal Changes

and Fabrication Errors! Space-Truss Analysis

TRUSSES ANALYSIS

Page 2: Matrix truss

2

2-Dimension Trusses

Page 3: Matrix truss

3

Fundamentals of the Stiffness Method

� Node and Member Identification

� Global and Member Coordinates

� Degrees of Freedom

12

3 4

2

1

3

(x1, y1)

(x3, y3)

(x2, y2)

(x4, y4)

1

23

4

56

78

34

56

78

x

y

�Known degrees of freedom D3, D4, D5, D6, D7 and D8� Unknown degrees of freedom D1 and D2

Page 4: Matrix truss

4

AE/LAE/L

x djAE/L x d´j

AE/L

x diAE/LAE/L x d´i

Member Local Stiffness Matrix

x´y´

i

j

q´i

q´j

AE/L

AE/L

jii dL

AEdL

AEq ''' −=

AE/LAE/Ld´ i = 1

d´ j = 1

x di

x dj

jij dL

AEdL

AEq ''' +−=

−=

j

i

j

i

dd

LAE

qq

''

1111

''

−=

1111

]'[L

AEk

[q´] = [k´][d´] ----------(1)

q´j

q´i

x´y´

x´y´

Page 5: Matrix truss

5

x´y´

m

i

j

(xi,yi)

(xj,yj)x

y

Displacement and Force Transformation Matrices

θy

θx

22 )()(cos

ijij

ijijxx

yyxx

xxL

xx

−+−

−=

−== θλ

22 )()(cos

ijij

ijijyy

yyxx

yyL

yy

−+−

−=

−== θλ

Page 6: Matrix truss

6

x

y

Global

m

i

jdjx

djy

dix

diy

djx

djyx´y´

m

i

j

Local

d´i

d´j

dix

diy

d´j

d´i

� Displacement Transformation Matrices

yiyxixi ddd θθ coscos' +=

=

jy

jx

iy

ix

yx

yx

j

i

dddd

dd

λλλλ00

00''

θy

θx

yjyxjxj ddd θθ coscos' +=

=

yx

yxTλλ

λλ00

00][

λx λy

[d´] = [T][d] ----------(2)

Page 7: Matrix truss

7

x

y

θy

θx

m

i

j

x

y

Global

x´y´

m

i

j

Local

q´i

q´j

� Force Transformation Matrices

θy

θx

xiix qq θcos'=

yiiy qq θcos'=

xjjx qq θcos'=

yjjy qq θcos'=

=

j

i

y

x

y

x

jy

jx

iy

ix

qq

qqqq

''

00

00

λλ

λλ

=

y

x

y

x

TT

where

λλ

λλ

00

00

][

λx

λy

[q] = [T]T[q´] ----------(3)

qjx

qjy

qix

qiy

Page 8: Matrix truss

8

Member Global Stiffness Matrix

[ q ] = [ T ]T ([k´][d´] + [q´F] ) = [ T ]T [ k´ ][T][d] + [ T ]T [q´F] = [k][d] + [qF]

[ k ] [ k ] = [ T ]T[ k´ ][T]

[qF] = [ T ]T [q´F]

[q] = [T]T[q´] ----------(3)

Substitute ( [q´] = [k´][d´] + [q´F] ) into Eq. 3, yields the result,

λyλx

λxλx

−λyλx

−λxλx

λyλy

λxλy

−λyλy

−λxλy

λyλx

λxλx

−λyλx

−λxλx

λyλy

λxλy

−λyλy

−λxλy

V U VU

[ k ] = AEL

VUV

U

00λyλx

λyλx00-11

1-1

AEL[ k ] =

00

λy

λx

λy

λx

00

Page 9: Matrix truss

9

[Qa] = [K][D] + [QF]

[Qk] = [K11][Du] + [K12][Dk] + [QF]

Reaction Boundary Condition

Unknown DisplacementJoint Load

Equilibrium Equation:

Partitioned Form:

Application of the Stiffness Method for Truss Analysis

[Du] = (([Qk] - [QF]) - [K12][Dk])[Ku] -1

Qk

Qu

Du

Dk

=K12

K22

K11

K21

+QF

k

QFu

Page 10: Matrix truss

10

+

−=

jF

iF

j

i

j

i

qq

dd

LAE

qq

''

''

1111

''

jy

jx

iy

ix

yx

yx

dddd

λλλλ00

00

+

−=

jF

iF

jy

jx

iy

ix

yx

yx

j

i

qq

DDDD

LAE

qq

''

0000

1111

''

λλλλ

Member Forces

x

y

θy

θx

x´y´

m

i

j

q´i

q´j

Page 11: Matrix truss

11

+

−−

−−=

jF

iF

jy

jx

iy

ix

yxyx

yxyx

j

i

qq

DDDD

LAE

qq

''

''

λλλλλλλλ

Dyi

Dxi

Dyj

Dxj

q´j = AEL −λx −λy λx λy qj´

F+

x

y

θy

θx

x´y´

m

i

j

Member Forces

q´i

q´j

Page 12: Matrix truss

12

Member Forces

Dyi

Dxi

Dyj

Dxj

qm = AEL −λx −λy λx λy qj´F+

x

y

θy

θx

x´y´

m

i

j

Member Forces

qm

Page 13: Matrix truss

13

3 m

3 m

4 m 4 m

80 kN

50 kN

5 m

5 m5 m

Example 1

For the truss shown, use the stiffness method to:(a) Determine the deflections of the loaded joint.(b) Determine the end forces of each member and reactions at supports.Assume EA to be the same for each member.

Page 14: Matrix truss

14

Ljyy

Lixx ijij

ij

�)(�)(� −+

−=λ

cosθx = λx cosθy = λy

1

2

3

434

56

78

1

2

(0,0)(-4,-3)

(-4,3)

(4,-3)

31

23 m

3 m

4 m 4 m

80 kN

50 kN

5 m

5 m5 m

Member

#1

#2

λx λy

#3

λyλx

λxλx

λyλy

λxλy

λyλx

λxλx

λyλy

λxλy

−λyλx

−λxλx

−λyλy

−λxλy

−λyλx

−λxλx

−λyλy

−λxλy

Vi Uj VjUi

[ k ]m = AEL

Vi

Uj

Vj

Ui

31

2

-4/5 = -0.8

-4/5 = -0.8

4/5 = 0.8

-3/5 = -0.6

3/5 = 0.6

-3/5 = -0.6

Page 15: Matrix truss

15

-0.48

1.08-0.48

1.92-0.48

0.64

0.36

-0.481

2

1 2

[K] = AE5

1

2

3

434

56

78

1

2

31

2

0.48

0.64

0.36

0.48-0.48

-0.64

-0.36

-0.48

-0.48

-0.64

-0.36

-0.48[ k ]1 =

2 3 41

AE5

23

4

1

[ k ]2 =

2 5 61

AE5

25

6

1

-0.48

0.64

0.36

-0.480.48

-0.64

-0.36

0.48

0.48

-0.64

-0.36

0.48

[ k ]3 =

2 7 81

AE5

27

8

1

-0.48

0.64

0.36

-0.480.48

-0.64

-0.36

0.48

0.48

-0.64

-0.36

0.48

31

2

34

56

78

Member

#1

#2

#3

λx

-0.8

- 0.8

0.8

λy

-0.6

0.6

-0.6

λx2 λx λy λy

2

0.64 0.48 0.36

0.64 -0.48 0.36

0.64 -0.48 0.36

0.48

0.64

0.36

0.48

-0.48

0.64

0.36

-0.48

Page 16: Matrix truss

16

34

56

78

1

2

31

2

Global

Q1 = -50

Q2 = -80

D1

D2

D1

D2=

-250.65/AE

-481.77/AE

3 m

3 m

4 m 4 m

80 kN

50 kN

5 m

5 m5 m

1

2

1

-0.48

2

-0.48

1.08

1.92

= AE5

80 kN

50 kN

0

0+1

2

Page 17: Matrix truss

17

1

2

3

434

56

78

1

2

31

2

Local

= -97.9 kN (C)

[q´F]1 = AE5 0.8 0.6 -0.8 -0.6 D2=

D1=

D4=D3=

-481.77/AE-250.65/AE

0.00.0

= +17.7 kN (T)

D2=D1=

D6=D5=

-481.77/AE-250.65/AE

0.00.0

= -17.7 kN (C)

80 kN

50 kN 36.87o

97.9 kN

17.7 kN

17.7 kN

#1 -0.8 -0.6#2 -0.8 0.6#3 0.8 -0.6

[q´F]2 = AE5 0.8 -0.6 -0.8 0.6

[q´F]3 = AE5 -0.8 +0.6 +0.8 -0.6 D2=

D1=

D8=D7=

-481.77/AE-250.65/AE

0.00.0

Member

#1#2#3

λx λy

[ ] [ ]F

yj

xj

yi

xi

xxyxmF q

DDDD

LAEq ']'[ +

−−= λλλλ

Page 18: Matrix truss

18

80 kN

50 kN 36.89o

97.9 kN

17.7 kN

17.7 kN

80 kN

50 kN

Member

#1#2#3

λx

-0.8-0.80.8

λy

-0.60.6-0.6

1

2

3

434

56

78

1

2

31

2

97.9(0.8)=78.32 kN

97.9(0.6)=58.74 kN

17.7(0.8)=14.16 kN

17.7(0.6)=10.62 kN

17.7(0.8)=14.16 kN

17.7(0.6)=10.62 kN

ΣFx ´ = 0:+ 17.7 + 17.7 +50cos 36.89 - 97.9cos73.78 - 80cos53.11 = 0, O.K

Check :

Page 19: Matrix truss

19

Example 2

For the truss shown, use the stiffness method to:(b) Determine the end forces of each member and reactions at supports.(a) Determine the deflections of the loaded joint.The support B settles downward 2.5 mm. Temperature in member BDincrease 20 oC. Take α = 12x10-6 /oC, AE = 8(103) kN.

A

BC

D

8 kN

4 kN

4 m

3 m+20o C

∆B = 2.5 mm

Page 20: Matrix truss

20

λyλx

λxλx

λyλy

λxλy

λyλx

λxλx

λyλy

λxλy

−λyλx

−λxλx

−λyλy

−λxλy

−λyλx

−λxλx

−λyλy

−λxλy

∆B = 2.5 mm

A

BC

D

8 kN

4 kN

4 m

3 m+20o C

Vi Uj VjUi

[ k ]m = AEL

Vi

Uj

Vj

Ui

12

3 4

(0,0)

(-4,-3)

(-4,0)

(0,-3)

2

1

3

1

23

4

56

78

Member

#1

#2

λx λy

#3

-4/4 = -1

-4/5 = -0.8

0

0

-3/5 = -0.6

-3/3 = -1

Ljyy

Lixx ijij

ij

�)(�)(� −+

−=λ

cosθx = λx cosθy = λy

Page 21: Matrix truss

21

0.096

0.128

0.072

0.096

0

0

0.333

0

0

0.25

0

0

0

0.25

0

00

-0.25

0

0

0

-0.25

0

0[k]1 = 8x103

2 3 41

234

1

[k]3 = 8x103

2 7 81

278

1

0

0

0.333

00

0

-0.333

0

0

0

-0.333

0

Member

#1

#2

#3

λx

-1

- 0.8

0

λy

0

-0.6

-1

λx2/L λx λy/L λy

2/L

0.25 0 0

0.128 0.096 0.072

0 0 0.333

0.096

0.128

0.072

0.096

-0.096

-0.128

-0.072

-0.096-0.096

-0.128

-0.072

-0.096

[k]2 = 8x103

2 5 61

256

1

12

3 4

(0,0)

(-4,-3)

(-4,0)

(0,-3)

2

1

3

1

23

4

56

78

1

23

4

56

78

[K] = 8x103

21

21

0.096

0.378

0.405

0.096

Page 22: Matrix truss

22

∆B = 2.5 mm

1.536 kN

1.152 kN

2+20oC1.536 kN

1.152 kN

2+20oC

1.92 kΝ =α(∆T1)AE = (12x10-6)(20)(8x103)

1.92 kN

1.536 kN

1.152 kN

1.536 kN

1.152 kN

12

34

(0,0)

(-4,-3)

(-4,0)

(0,-3)

2

1

3

1

23

4

56

78

∆B = 2.5 mm

+20o C

-1.536

1.536-1.152

1.152

+

1

2

6

5

q1

q2

q1

q5

q2

q6

-1.536

-1.152+1

2

0

-2.5x10-3

5

6-0.096

-0.128

-0.072

-0.096+ 8x103

5 6

= 8x103

21

21

0.096

0.128

0.072

0.096 d1

d2

d1

d5 = 0d2

d6 = -2.5x10-3

0.096

0.128

0.072

0.096

= 8x103

2 5 61

256

1

0.096

0.128

0.072

0.096

-0.096

-0.128

-0.072

-0.096-0.096

-0.128

-0.072

-0.096

[q] = [k]m[d] + [qF]Member 2:

q1

q2

-1.536

-1.152+1

2= 8x103

21

0.096

0.128

0.072

0.096 d1

d2

1.92

1.44+

Page 23: Matrix truss

23

[Q] = [K][D] + [QF]

Global:

A

BC

D

8 kN

4 kN

4 m

3 m+20o C

∆B = 2.5 mm

12

3 4

(0,0)

(-4,-3)

(-4,0)

(0,-3)

2

1

3

1

23

4

56

78

Q1 = -4

Q2 = -8= 8x103

21

21

0.096

0.378

0.405

0.096 D1

D2

-1.536

-1.152+1.92

1.44+

D1

D2

-0.8514x10-3 m

-2.356x10-3 m=

Page 24: Matrix truss

24

Member

#1

#2

#3

λx λy

Local12

3 4

2

1

3

1

23

4

56

78

[q´F]1 = 8x103 1.0 0.0 -1.0 0.04

= -1.70 kN (C)

D2=D1=

D4=D3=

0.00.0

-0.8514x10-3

-2.356x10-3

-1.92+[q´F]2 = 8x103 0.8 0.6 -0.8 -0.65

= -2.87 kN (C)

D2=D1=

D6=D5=

-0.00250.0

-0.8514x10-3

-2.356x10-3

= -6.28 kN (C)

D2=D1=

D8=D7=

0.00.0

-0.8514x10-3

-2.356x10-3[q´F]3 = 8x103 0.0 1.0 0.0 -1.0

3

2+20oC

1.92 kN

1.92 kN

-1 0

- 0.8 -0.6

0 -1

[ ] [ ]F

yj

xj

yi

xi

xxyxmF q

DDDD

LAEq ']'[ +

−−= λλλλ

Page 25: Matrix truss

25

4 kN

8 kN

6.28 kN

1.70 kN

2.87 kN

12

3 4

2

1

3

1

23

4

56

78

Member

#1

#2

#3

cosθx

-1

- 0.8

0

cosθy

0

-0.6

-1

[q´]m

-1.70

-2.87

-6.28

4 kN

8 kN

2

1

3

1.70 kN

6.28 kN

2.87(0.8) = 2.30 kN

2.87(0.6) = 1.72 kN

Page 26: Matrix truss

26

∆ AD = + 3 mm

AB

C

3 m

D

8 kN

4 kN

4 m 4 m∆ = - 4 m

m

Example 3

For the truss shown, use the stiffness method to:(a) Determine the end forces of each member and reactions at supports.(b) Determine the displacement of the loaded joint.Take AE = 8(103) kN.

Page 27: Matrix truss

27

∆ AD = + 3 mm

AB

C

D

8 kN

4 kN

3 m

4 m 4 m

∆ = - 4 mm

21

4

3

5

1

2

34

56

78

1

2 3 4

(0,0)

(-4,-3) (4,-3)(0,-3)

λyλx

λxλx

λyλy

λxλy

λyλx

λxλx

λyλy

λxλy

−λyλx

−λxλx

−λyλy

−λxλy

−λyλx

−λxλx

−λyλy

−λxλy

Vi Uj VjUi

[ k ]m = AEL

Vi

Uj

Vj

Ui

Member

#1

#2

λx λy

#3

#4

#5

-4/5 =-0.8

0

4/5 = 0.8

4/4 = 1

4/4 = 1

-3/5 = -0.6

-3/3 = -1

-3/5 = -0.6

0

0

Ljyy

Lixx ijij

ij

�)(�)(� −+

−=λ

cosθx = λx cosθy = λy

Page 28: Matrix truss

28

[k]1 = 8x103

2 3 41

234

1

0.096

0.128

0.072

0.096

-0.096

-0.128

-0.072

-0.096-0.096

-0.128

-0.072

-0.096

0.096

0.128

0.072

0.096

[k]2 = 8x103

2 5 61

256

1

0

0

0.333

00

0

-0.333

0

0

0

0.333

0

0

0

-0.333

0

[k]3 = 8x103

2 7 81

278

1

-0.096

0.128

0.072

-0.0960.096

-0.128

-0.072

0.096

0.096

-0.128

-0.072

0.096-0.096

0.128

0.072

-0.096

Member

#1

#2

λy

#3

λx

-0.8

0

0.8

-0.6

-1

-0.6

λx2/L λy

2/Lλxλy/L

0.128 0.0720.096

0 0.3330

0.128 0.072-0.096

21

4

3

5

1

2

34

56

78

1

2 3 4

(0,0)

(-4,-3) (4,-3)(0,-3)

5 m

3 m 5 m

4 m 4 m

Page 29: Matrix truss

29

21

4

3

5

1

2

34

56

78

1

2 3 4

(0,0)

(-4,-3) (4,-3)(0,-3)

5 m

3 m 5 m

4 m 4 m

Member

#4

#5

λyλx

1

1

0

0

λx2/L λy

2/Lλxλy/L

0

0.25

0

00

-0.25

0

0

0

0.25

0

0

0

-0.25

0

0

0

0.25

0

00

-0.25

0

0

0

0.25

0

0

0

-0.25

0

0[k]5= 8x103

6 7 85

678

5

0.25 00

0.25 00

Global Stiffness Matrix

[K] = 8x103

2 5 71

257

1

34 6

8

[k]4= 8x103

4 5 63

456

3

Page 30: Matrix truss

30

Global Stiffness Matrix

0.2560.0 0.477

0.0 0.00.0

0.0 0.0-0.128 0.096

-0.1280.096

0.50-0.25

-0.250.378

[K] = 8x103

2 5 71

257

1

[k]1 = 8x103

2 3 41

234

1

0.096

0.128

0.072

0.096

-0.096

-0.128

-0.072

-0.096-0.096

-0.128

-0.072

-0.096

0.096

0.128

0.072

0.096

[k]2 = 8x103

2 5 61

256

1

0

0

0.333

00

0

-0.333

0

0

0

0.333

0

0

0

-0.333

0

[k]3 = 8x103

2 7 81

278

1

-0.096

0.128

0.072

-0.0960.096

-0.128

-0.072

0.096

0.096

-0.128

-0.072

0.096-0.096

0.128

0.072

-0.096

0

0.250

-0.25

0

00

0

0

0.25

0

-0.250

0

0

0[k]4= 8x103

4 5 63

456

3

0

0.250

-0.25

0

00

0

0

0.25

0

-0.250

0

0

0[k]5= 8x103

6 7 85

678

5

Page 31: Matrix truss

31

∆AE/L = 10.67 kN

∆ AD = + 3 mm1

3.84 kN

2.88 kN

3.84 kN

2.88 kN

∆ AD = + 3 mm

AB

C

D

8 kN

4 kN

3 m

4 m 4 m

∆ = - 4 mm

1

2

21

4

3

534

56

78

Global Fixed end forces

0.00.0

257

1∆AE/L = 4.8 kN

4.8 kN

∆AE/L = 10.67 kN

10.67 kN∆ = -4 m

m

2 Fixed End3.84 kN

2.88 kN-3.84-2.88 + 10.67 = 7.79

Page 32: Matrix truss

32

∆ AD = + 3 mm

AB

C

D

8 kN

4 kN

3 m

4 m 4 m

∆ = -4 mm

Global:

1

2

21

4

3

534

56

78

[Q] = [K][D] + [QF]

Q1 = 4

Q5 = 0Q2 = -8

Q7 = 0

= 8x103

2 5 71

257

1

-0.250.500.00.0

0.378-0.250.096

-0.128

-0.1280.00.0

0.256

0.0960.0

0.4770.0 D1

D5

D2

D7

-3.84

0.07.79

0.0

+

D1

D5

D2

D7

6.4426x10-3 m

2.6144x10-3 m-5.1902x10-3 m

5.2288x10-3 m

=

8 kN

4 kN

Page 33: Matrix truss

33

D1

D5

D2

D7

6.4426x10-3 m

2.6144x10-3 m-5.1902x10-3 m

5.2288x10-3 m

=

-4.8+D2

D1

00

= -1.54 kN (C)

1

2

21

4

3

534

56

78

Member forces

= -3.17 kN (C)

10.67+

[q´F]1 = 8x103 0.8 0.6 -0.8 -0.65

[q´F]2 = 8x103 0.0 1.0 0.0 -1.03

D2

D1

0D5

Member

#1

#2

λiyλix

-0.8 -0.6

0 -1

1

4.8 kN

4.8 kN∆ AD

= + 3 mm

10.67 kN

10.67 kN

2

[ ] [ ]F

yj

xj

yi

xi

xxyxmF q

DDDD

LAEq ']'[ +

−−= λλλλ

Page 34: Matrix truss

34

D1

D5

D2

D7

6.4426x10-3 m

2.6144x10-3 m-5.1902x10-3 m

5.2288x10-3 m

=

1

2

21

4

3

534

56

78

00

0D5

[q´F]4 = 8x103 -1.0 0.0 1.0 0.04

= 5.23 kN (T)

0D5

0D7

[q´F]5 = 8x103 -1.0 0.0 1.0 0.04

= 5.23 kN (T)

D2

D1

0D7

[q´F]3 = 8x103 -0.8 0.6 0.8 -0.65

= -6.54 kN (C)

Member λx λy

#3#4

#5

0.8 -0.61 0

1 0

[ ] [ ]F

yj

xj

yi

xi

xxyxmF q

DDDD

LAEq ']'[ +

−−= λλλλ

Page 35: Matrix truss

35

1

2

21

4

3

534

56

78

-0.8

0

0.81

1

-0.6

-1

-0.60

0

Member

#1

#2

λx

#3#4

#5

λy [q´]

4 kN8 kN

3.17 kN

3.17 kN

6.54 kN

6.54 kN

1.54 kN

1.54 kN

5.23 kN5.23 kN

4 kN8 kN

0.92 kN

4 kN

3.17 kN 3.92 kN

-1.54

-3.17

-6.545.23

5.23

Page 36: Matrix truss

36

Special Trusses (Inclined roller supports)

Page 37: Matrix truss

37

λix = cos θi

λiy = sin θi

λjx = cos θj

λjy = sin θj

[ q* ] = [ T ]T[ q´ ] 1

2

3*

4*

56

78

3

2

4

5

1

x *

y *

θi

x

y

θj

1

i

j

q´i

q´j

q*3

q1

q*4

q2

q´iq´j

[T]T

00λiyλix

λjyλjx00 [ T ] = [[ T ]T]T =

=00

λiy

λix

λjy

λjx

00

1

i

j1

2

3*

4*

Transformation Matrices

Page 38: Matrix truss

38

[ k ] = [ T ]T[ k´ ][T]

λjyλjx

λjxλjx

−λiyλjx

−λixλjx

λjyλjy

λjxλjy

−λiyλjy

−λixλjy

λiyλix

λixλix

−λjyλix

−λjxλix

λiyλiy

λixλiy

−λjyλiy

−λjxλiy

Vi Uj VjUi

[ k ]m = AEL

Vi

Uj

Vj

Ui

00λiyλix

λjyλjx00-11

1-1

AEL[ k ]m =

00

λiy

λix

λjy

λjx

00

Page 39: Matrix truss

39

Example 5

For the truss shown, use the stiffness method to:(b) Determine the end forces of each member and reactions at supports.(a) Determine the displacement of the loaded joint. AE is constant.

3 m

4 m

45o

30 kN

Page 40: Matrix truss

40

3 m

4 m45o

2

1

3

1

2

5

63*

4*

Member 1:

15

63*

4*

[q*]θi = 0,λix = cos 0 = 1,λiy = sin 0 = 0

θij = -45o = 135o,λix = cos (-45o) = 0.707,λiy = sin(- 45o) = -0.707

45o

[q*] = [T*]T[q´] + [T*]T[q´F]

q5

q3*

q6

q4*

q´iq´j

[T*]T

=0001

-0.7070.707

00

q´i q´j

i j1

Page 41: Matrix truss

41

15

63*

4*

[q*]θi = 0 ;λix = cos 0 = 1,λiy = sin 0 = 0

θij = -45o = 135o,λix = cos (-45o) = 0.707,λiy = sin(- 45o) = -0.707

45o

0-0.707

00.707

00

10

AE4

1-1

-11[k*]1 =

0001

-0.7070.707

00

Member 1:

[k*]1 = AE 63*4*

53*

-0.1250.125

0-0.1768

4*

0.125-0.125

00.1768

5

0.1768-0.1768

00.25

6

0000

q´i q´j

i j1

3 m

4 m45o

2

1

3

1

2

5

63*

4*

[ ]TL

AETk T

−=

1111

][*][

Page 42: Matrix truss

42

Member 2:q´i

q´j

i

j

22

1

2

3*4*

θi = -90o = 270o,λix = cos(-90o) = 0,λiy = sin(-90o) = -1

90o+45o

=135o

90o

θj = -135o = 215o ,λix = cos (-135o) = -0.707,λiy = sin(- 135o) = -0.707

0-0.707

0-0.707

-10

00

AE3

1-1

-11[k*]2 =

00-10

-0.707-0.707

00

[k*]2 = AE

2 4*1

23*4*

1

0.16670.1667-0.2357

0

0.16670.1667-0.2357

0

0000

-0.2357-0.23570.3333

03*

3 m

4 m45o

2

1

3

1

2

5

63*

4*

[ ]TL

AETk T

−=

1111

][*][

Page 43: Matrix truss

43

[ ]TL

AETk T

−=

1111

][][

36.87o

Member 3:

θi = θj = 36.87o ;λix = λjx = cos (36.87o) = 0.8,λiy = λjy = sin(36.87o) = 0.6

00.6

00.8

0.60

0.80

AE5

1-1

-11[k]3 =

00

0.60.8

0.60.800

3

1

2

5

63

q´i

q´j

i

j36.87o

[k]3 = AE

6 25

612

5

0.0960.128-0.096-0.128

0.0720.096-0.072-0.096

-0.096-0.1280.0960.128

-0.072-0.0960.0720.096

1

3 m

4 m45o

2

1

3

1

2

5

63*

4*

Page 44: Matrix truss

44

3 m

4 m45o

2

1

3

1

2

5

63*

4*

[k*]1 = AE 63*4*

53*

-0.1250.125

0-0.1768

4*

0.125-0.125

00.1768

5

0.1768-0.1768

00.25

6

0000

5

6 4*

Global Stiffness:

[k*]2 = AE

2 4*1

23*4*

1

0.16670.1667-0.2357

0

0.16670.1667-0.2357

0

0000

-0.2357-0.23570.3333

03*

[k]3 = AE

6 25

612

5

0.0960.128-0.096-0.128

0.0720.096-0.072-0.096

-0.096-0.1280.0960.128

-0.072-0.0960.0720.096

1[K] = AE 2

3*

11

00.0960.128

2

-0.23570.40530.096

0.2917-0.2357

03*

Page 45: Matrix truss

45

Global :

[Q] = [K][D] + [QF]

Q1 = 30

Q3*= 0

Q2 = 0D1

D3*

D2 = AE 23*

11

00.0960.128

2

-0.23570.40530.096

0.2917-0.2357

03*

D1

D3*

D2 =352.5

-127.3-157.5AE

1

3 m

4 m45o

30 kN

3 m

4 m45o

2

1

3

1

2

5

63*

4*

5

6 4*

Page 46: Matrix truss

46

[q´F]1 = AE 00

0D3*

-1 0 0.707 -0.7074

= -22.50 kN, (C)

D2

D1

0D3*

[q´F]2 = AE 0 1 -0.707 -0.7073

= -22.50 kN, (C)

00

D2

D1

[q´F]3 = AE -0.8 -0.6 0.8 0.65

= 37.50 kN, (T)

D1

D3*

D2 =352.5

-127.3-157.5AE

1

Member Forces :

Member

#1

λiyλix λjx λjy

#2

#3

1 0 0.707 -0.707

0 -1 -0.707 -0.707

0.8 0.6 0.8 0.6

3 m

4 m45o

2

1

3

1

2

5

63*

4*

5

6 4*

[ ] [ ]F

yj

xj

yi

xi

xxyxmF q

DDDD

LAEq ']'[ +

−−= λλλλ

Page 47: Matrix truss

47

36.87o 45o45o

3 m

4 m45o

2

1

3

1

2

5

63*

4*

Member

Member Force (kN)

[q´]2[q´]1 [q´]3

-22.50 -22.50 37.50

22.50 kN

22.50 kN

37.50 kN

22.50 kN

7.50 kN31.82 kN

Reactions :

3 m

4 m45o

30 kN

Page 48: Matrix truss

48

Example 6

For the truss shown, use the stiffness method to:(b) Determine the end forces of each member and reactions at supports.(a) Determine the displacement of the loaded joint. AE is constant.

3 m

4 m

45o

30 kN

4 m

Page 49: Matrix truss

49

15

63*

4*

[q*]θi = 0o,λix = cos 0o = 1,λiy = sin 0o = 0

θij = -45o

λix = cos (-45o) = 0.707,λiy = sin(- 45o) = -0.707

45o

[q*] = [T*]T[q´] + [T*]T[q´F]

q5

q3*

q6

q4*

q´iq´j

[T*]T

=0001

-0.7070.707

00

q´i q´j

i j1

3 m

4 m 4 m

2

1

3

4

5

12

5

6 3*4*

78Member 1:

Page 50: Matrix truss

50

3 m

4 m 4 m

15

63*

4*

[q*]θi = 0o,λix = cos 0o = 1,λiy = sin 0o = 0

θij = -45o = 315o,λix = cos (-45o) = 0.707,λiy = sin(- 45o) = -0.707

45o

0-0.707

00.707

00

10

AE4

1-1

-11[k*]1 =

0001

-0.7070.707

00

[k*]1 = AE 63*4*

53*

-0.1250.125

0-0.1768

4*

0.125-0.125

00.1768

5

0.1768-0.1768

00.25

6

0000

q´i q´j

i j1

2

1

3

4

5

12

5

6 3*4*

78Member 1:

[ ]TL

AETk T

−=

1111

][*][

Page 51: Matrix truss

51

q´i

q´j

i

j

22

1

2

3*4*

θi = -90o,λix = cos(-90o) = 0,λiy = sin(-90o) = -1

90o

θj = -135o = 215o,λix = cos (-135o) = -0.707,λiy = sin(- 135o) = -0.707

0-0.707

0-0.707

-10

00

AE3

1-1

-11[k*]2 =

00-10

-0.707-0.707

00

[k*]2 = AE

2 4*1

23*4*

1

0.16670.1667-0.2357

0

0.16670.1667-0.2357

0

0000

-0.2357-0.23570.3333

03*

3 m

4 m 4 m

2

1

3

4

5

12

5

6 3*4*

78Member 2:

[ ]TL

AETk T

−=

1111

][*][

90o+45o

=135o

Page 52: Matrix truss

52

36.87o

Member 3:

θi = θj = 36.87o ;λix = λjx = cos (36.87o) = 0.8,λiy = λjy = sin(36.87o) = 0.6

00.6

00.8

0.60

0.80

AE5

1-1

-11[k]3 =

00

0.60.8

0.60.800

3

1

2

5

63

q´i

q´j

i

j36.87o

[k]3 = AE

6 25

612

5

0.0960.128-0.096-0.128

0.0720.096-0.072-0.096

-0.096-0.1280.0960.128

-0.072-0.0960.0720.096

1

3 m

4 m 4 m

2

1

3

4

5

12

5

6 3*4*

78

[ ]TL

AETk T

−=

1111

][*][

Page 53: Matrix truss

53

3 m

4 m 4 m

θi = θij = 0o; λix = λjx = cos 0o = 1, λiy = λjy = sin 0o = 0

00

01

00

10

AE4

1-1

-11[k]1 =

0001

0100

q´i q´j

i j1

2

1

3

4

5

12

5

6 3*4*

78Member 4:

47

8

[q]1

2

[k]4 = AE 278

17

00.25

0-0.25

8

0000

1

0-0.25

00.25

2

0000

[ ]TL

AETk T

−=

1111

][*][

Page 54: Matrix truss

54

Member 5:

θi = - 8.13o;λix = cos (- 8.13o) = 0.9899,λiy = sin(- 8.13o) = -0.1414

00.6

00.8

-0.14140

0.98990

AE5

1-1

-11

5

q´i

q´j

i

j36.87o

3 m

4 m 4 m

2

1

3

4

5

12

5

6 3*4*

78

53*4*

7

8

[k*]5 =00

-0.14140.9899

0.60.800

[k*]5 = AE

4* 83*

4*78

3*

0.0960.128

0.02263-0.1584

0.0720.096

0.01697-0.1188

-0.1188-0.1584-0.0280.196

0.016970.022630.004-0.028

7

θ j = 36.87o ;

λ jx = cos (36.87o ) = 0.8,

λ jy = sin

(36.87o ) = 0.6

[ ]TL

AETk T

−=

1111

][*][

8.13o

Page 55: Matrix truss

550 -0.2357-0.2357

0

[k*]1 = AE 63*4*

53*

-0.1250.125

0-0.1768

4*

0.125-0.125

00.1768

5

0.1768-0.1768

00.25

6

0000

[k*]3 = AE

6 25

612

5

0.0960.128-0.096-0.128

0.0720.096-0.072-0.096

-0.096-0.1280.0960.128

-0.072-0.0960.0720.096

1

3 m

4 m 4 m

2

1

3

4

5

Global Stiffness:1

2

5

6 3*4*

78

5

6 4*

78

[k*]2 = AE

2 4*1

23*4*

1

0.16670.1667-0.2357

0

0.16670.1667-0.2357

0

0000

-0.2357-0.23570.3333

03*

[k]4 = AE 278

17

00.25

0-0.25

8

0000

1

0-0.25

00.25

2

0000

[k*]5 = AE

4* 83*

4*78

3*

0.0960.128

0.02263-0.1584

0.0720.096

0.01697-0.1188

-0.1188-0.1584-0.0280.196

0.016970.022630.004-0.028

7

[K] = AE 23*

11 2

0.0960.378

0.40530.096

3*

0.4877

Page 56: Matrix truss

56

Global :30 kN

4 m 4 m

3 m2

1

3

4

5

12

5

6 3*4*

78

5

6 4*

78

[Q] = [K][D] + [QF]

Q1 = 30

Q3*= 0

Q2 = 0D1

D3*

D2

D1

D3*

D2 =86.612

-13.791-28.535AE

1

= AE 23*

11

00.0960.378

2

-0.23570.40530.096

0.4877-0.2357

03*

Page 57: Matrix truss

57

3 m

4 m 4 m

2

1

3

4

5

12

5

6 3*4*

78

5

6 4*

78

D1

D3*

D2 =86.612

-13.791-28.535AE

1

[q´F]1 = AE 00

0D3*

-1 0 0.707 -0.7074

= -2.44 kN, (C)

D2

D1

0D3*

[q´F]2 = AE 0 1 -0.707 -0.7073

= -6.26 kN, (C)

00

D2

D1

[q´F]3 = AE -0.8 -0.6 0.8 0.65

= 10.43 kN, (T)

Member Forces :

Member

#1

λiyλix λjx λjy

#2

#3

1 0 0.707 -0.707

0 -1 -0.707 -0.707

0.8 0.6 0.8 0.6

[ ] [ ]F

yj

xj

yi

xi

xxyxmF q

DDDD

LAEq ']'[ +

−−= λλλλ

Page 58: Matrix truss

58

Member

#4

λiyλix λjx λjy

#5

3 m

4 m 4 m

2

1

3

4

5

12

5

6 3*4*

78

5

6 4*

78

D1

D3*

D2 =86.612

-13.791-28.535AE

1

D2

D1

00

[q´F]4 = AE -1 0 1 04

= -21.65 kN, (C)

0D3*

00

[q´F]5 = AE -0.9899 0.141 0.8 0.65

= 2.73 kN, (T)1 0 1 0

0.9899 -0.141 0.8 0.6

Member Forces :

[ ] [ ]F

yj

xj

yi

xi

xxyxmF q

DDDD

LAEq ']'[ +

−−= λλλλ

Page 59: Matrix truss

59

36.87o 45o45o

81.87o

36.87o

Member

Member Force (kN)

[q´]1 [q´]2 [q´]3 [q´]4 [q´]5

-2.44 -6.26 10.43 -21.65 2.73

Reactions :30 kN

4 m 4 m

3 m2

1

3

4

5

12

5

6 3*4*

78

5

6 4*

78

6.26 kN10.43 kN

21.65 kN

2.73 kN

2.44 kN 2.44 kN5.90 kN

6.26 kN

19.47 kN

1.64 kN

6.54 kN

Page 60: Matrix truss

60

AB

C

3 m

D

8 kN

4 kN

4 m36.87o

4 m

λjyλjx

λjxλjx

−λiyλjx

−λixλjx

λjyλjy

λjxλjy

−λiyλjy

−λixλjy

λiyλix

λixλix

−λjyλix

−λjxλix

λiyλiy

λixλiy

−λjyλiy

−λjxλiy

Vi Uj VjUi

[ k *]m = AEL

Vi

Uj

Vj

Ui

Example 7

For the truss shown, use the stiffness method to:(b) Determine the end forces of each member and reactions at supports.(a) Determine the displacement of the loaded joint.Take AE = 8(103) kN.

Page 61: Matrix truss

61

Member 1:

λix = cos 73.74o = 0.28,λiy = sin 73.74o = 0.96

[q*] = [T*]T[q´] + [T*]T[q´F]

λjx = cos 36.87o = 0.8,λjy = sin 36.87o = 0.6

AB

C

3 m

D

8 kN

4 kN

4 m

36.87o

4 m

x *

y *

73.74o

x

y

36.87o

1

i

j1

2

3*

4*1

i

j

q´i

q´j

q3*

q1

q4*

q2

q´iq´j

=00

0.960.28

0.60.8

00

[T*]T

3

2

4

5

1

1

2

56

78

3*

4*

Page 62: Matrix truss

62

[k]1 = 8x103

4* 1 23*

4*

12

3*

0.0960.128

-0.1536-0.0448

0.0720.096

-0.1152-0.0336

-0.0336-0.04480.053760.01568

-0.1152-0.15360.184320.05376

000.960.280.60.800

[k]1 =00

0.960.28

0.60.8

00

8x103

51

-1-11

AB

C

3 m

D

8 kN

4 kN

4 m

36.87o

4 m

3

2

4

5

1

1

2

56

78

3*

4*

[ ]TL

AETk T

−=

1111

][][

Page 63: Matrix truss

63

x *

y*

36.87x

yMember 2:

λix = cos 36.87o = 0.8,λiy = sin 36.87o = 0.6

[q*] = [T*]T[q´] + [T*]T[q´F]

AB

C

3 m

D

8 kN

4 kN

4 m

36.87o

4 m

λjx = cos 0o = 1,λjy = sin 0o = 0

q3*

q5

q4*

q6

q´iq´j

[T*]T

[k] = [TT] AEL

[T]1-1

-11

q´i q´j

i j2

=00

0.60.8

0100

i j2 5

6

3*

4*

[k]2 = 8x103

4* 5 63*

4*

56

3*

00.25

-0.15-0.2

0000

0-0.20.120.16

0-0.150.090.12

3

2

4

5

1

1

2

56

78

3*

4*

Page 64: Matrix truss

64

x

y

270o 1

2

784

Member 3:

AB

C

3 m

D

8 kN

4 kN

4 m

36.87o

4 m

λx = cos 323.13o = 0.8,λy = sin 323.13o = -0.6

Member 4:

[k]4 = 8x103

2 7 81

278

1

-0.0960.1280.096

-0.128

0.072-0.096-0.0720.096

0.096-0.128-0.0960.128

-0.0720.0960.072

-0.096

λx = cos 270o = 0, λy = sin 270o = -1

[k]3 = 8x103

0000

0.3330

-0.3330

00

00

2 5 61

256

10.333

0

-0.3330

x

y

323.13o3

1

2

56

3

2

4

5

1

1

2

56

78

3*

4*

Page 65: Matrix truss

65

x

yMember 5:

AB

C

3 m

D

8 kN

4 kN

4 m

36.87o

4 m

λx = cos 0o = 1,λy = sin 0o = 0

00.25

0-0.25

0000

00.25

0-0.25

00

00

[k]5 = 8x103

6 7 85

678

5

5 78

56

3

2

4

5

1

1

2

56

78

3*

4*

Page 66: Matrix truss

660.17568

-0.2-0.20.5

00

0 0

-0.0336-0.0448

-0.0448 -0.03360.0

0.2560.4740.0

[k]1 = 8x103

4* 1 23*

4*

12

3*

0.0960.128

-0.1536-0.0448

0.0720.096

-0.1152-0.0336

-0.0336-0.04480.053760.01568

-0.1152-0.15360.184320.05376

[k]4 = 8x103

2 7 81

278

1

-0.0960.1280.096

-0.128

0.072-0.096-0.0720.096

0.096-0.128-0.0960.128

-0.0720.0960.072

-0.096

00.25

0-0.25

0000

00.25

0-0.25

00

00

[k]5 = 8x103

6 7 85

678

5

[k]2 = 8x103

4* 5 63*

4*

56

3*

00.25

-0.15-0.2

0000

0-0.20.120.16

0-0.150.090.12

[k]3 = 8x103

0000

0.3330

-0.3330

00

00

2 5 61

256

10.333

0

-0.3330

[K] = 8x103

2 3* 51

23*

5

1

3

2

4

5

1

12

56

78

3*

4* 6

784*

Page 67: Matrix truss

67

3

2

4

5

1

2

3*

4*

56

78A

BC

3 m

D

8 kN

4 kN

4 m

36.87o

4 m

1

Global: [Q] = [K][D] + [QF]

D1

D3*

D2

D5

1.988x10-3 m

1.996x10-4 m-2.0824x10-3 m

7.984x10-5 m

=

Q1 = 4

Q3*= 0

Q2 = -8

Q5 = 0

D1

D3*

D2

D5

0.17568-0.2

-0.20.5

00

0 0

-0.0336-0.0448

-0.0448 -0.03360.0

0.2560.4740.0

= 8x103

2 3* 51

23*

5

1

8 kN

4 kN

Page 68: Matrix truss

68

AB

C

3 m

D

8 kN

4 kN

4 m

36.87o

4 m

3

2

4

5

1

2

3*

4*

56

78

1

Member forces

D1

D3*

D2

D5

1.988x10-3 m

1.996x10-4 m-2.0824x10-3 m

7.984x10-5 m

=

0D3*

D2

D1

[q´F]1 = 8x103 -0.28 -0.96 0.8 0.65

= 0.46 kN, (T)

0D3*

0D5

[q´F]2 = 8x103 -0.8 -0.6 1 04

= -0.16 kN, (C)

Member

#1

#2

λiyλix λjx λjy

0.28 0.96 0.8 0.6

0.8 0.6 1 0

[ ] [ ]F

yj

xj

yi

xi

xxyxmF q

DDDD

LAEq ']'[ +

−−= λλλλ

Page 69: Matrix truss

69

D1

D*3

D2

D5

1.988x10-3 m

1.996x10-4 m-2.0824x10-3 m

7.984x10-5 m

=

3

2

4

5

1

2

3*

4*

56

78

1

[q´F]3 = 8x103 D2

D1

0D5

0 1 0 -13

= -5.55 kN

D2

D1

00

[q´F]4 = 8x103 -0.8 0.6 0.8 - 0.65

= -4.54 kN

0D5

00

[q´F]5 = 8x103 -1 0 1 04

= -0.16 kN

Member

#3

λiyλix λjx λjy

#4

#5

0 -1 0 -1

0.8 -0.6 0.8 -0.6

1 0 1 0

[ ] [ ]F

yj

xj

yi

xi

xxyxmF q

DDDD

LAEq ']'[ +

−−= λλλλ

Page 70: Matrix truss

70

y*

x *

36.87o

36.87o 36.87o

AB

C

3 m

D

8 kN

4 kN

4 m

36.87o

4 m

3

2

4

5

1

2

3*

4*

56

78

1

0.46 -0.16 -5.55 -4.54 -0.16

0.46 kN

5.55 kN0.36 kN

4.54 kN

3.79 kN

2.72 kN

Member

Member Force (kN)

[q]2[q]1 [q]3 [q]4 [q]5

0.16 kN 0.16 kN

5.55 kN

Page 71: Matrix truss

71

Space-Truss Analysis

Page 72: Matrix truss

72

+

−=

Fj

Fi

j

i

j

i

qq

dd

LEA

qq

''

''

1111

''

[ ] [ ]F

jz

jy

jx

iz

iy

ix

q

dddddd

TL

EA '1111

+

−=

[ ]

=

zyx

zyxT

where

λλλλλλ000

000,

[q´] = [k´][d´] + [q´F]

= [k´][T][d] + [q´F]

Member Local Stiffness [k´]:

Page 73: Matrix truss

73

Member Global Stiffness [km]:

[km]= [T]T[k´] [T]

[ ]

=zyx

zyx

z

y

x

z

y

x

m LEAk

λλλλλλ

λλλ

λλλ

000000

1111

000

000

Page 74: Matrix truss

74

Global equilibrium matrix:

[Q] = [K][D] + [QF]

QI

QII

Du

Dk

KI,II

KII,II

KI,I

KII,I

Reaction Support Boundary Condition

Unknown DisplacementJoint Load

QFI

QFII

= +

Fixed End Forces

Page 75: Matrix truss

75

q´j

q´i

i

j

m

i

j

m

=EAL

λxλx

λzλx

λyλx

λxλy

λyλy

λzλy

λxλz

λyλz

λzλz

λxλx

λzλx

λyλx

λxλy

λyλy

λzλy

λxλz

λyλz

λzλz

−λxλx

−λzλx

−λyλx

−λxλy

−λyλy

−λzλy

−λxλz

−λyλz

−λzλz

−λxλx

−λzλx

−λyλx

−λxλy

−λyλy

−λzλy

−λxλz

−λyλz

−λzλz

diy

dix

djx

diz

djy

djz

qiy

qix

qjx

qiz

qjy

qjz

qjy

qjx

qjzqiy

qix

qiz

+

−=

Fj

Fi

j

i

j

i

qq

dd

LEA

qq

''

''

1111

''

[ ] [ ] [ ]F

jz

jy

jx

iz

iy

ix

zyxzyxmj q

dddddd

LEAq '' +

−−−= λλλλλλ

Page 76: Matrix truss

76

x

z

y

4 m4 m

3 m3 m

10 m

80 kN60 kN

O

Example 6

For the truss shown, use the stiffness method to:(b) Determine the end forces of each member.(a) Determine the deflections of the loaded joint.Take E = 200 GPa, A = 1000 mm2.

Page 77: Matrix truss

77

λ1 = (-4/11.18)i + (3/11.18)j + (-10/11.18)k

= -0.3578 i + 0.2683 j - 0.8944 k

λ2 = (+4/11.18)i + (3/11.18)j + (-10/11.18)k= +0.3578 i + 0.2683 j - 0.8944 k

λ3 = (+4/11.18)i + (-3/11.18)j + (-10/11.18)k

= +0.3578 i - 0.2683 j - 0.8944 k

= -0.3578 i - 0.2683 j - 0.8944 k

λ4 = (-4/11.18)i + (-3/11.18)j + (-10/11.18)k

Member

#1

#2

#3

λx λy λz

#4

-0.3578 +0.2683 -0.8944

+0.3578 +0.2683 -0.8944

+0.3578 -0.2683 -0.8944

-0.3578 -0.2683 -0.8944

λm = λxi + λyj + λzk

12

34

12

3

(0, 0, 10)

(-4, 3, 0)

(4, 3, 0)

(4, -3, 0)

(-4, -3, 0)4

1

2

53

x

z

y

4 m4 m

3 m3 m

10 m

80 kN60 kN

O

Page 78: Matrix truss

78

Member

#1#2

#3

λx λy λz

#4

-0.3578 +0.2683 -0.8944+0.3578 +0.2683 -0.8944

+0.3578 -0.2683 -0.8944-0.3578 -0.2683 -0.8944

Member Stiffness Matrix [k]6x6

[k]m =[k12]3x3

[k22]3x3

[k11]3x3

[k21]3x3

2 31

23

1

+0.80-0.240

+0.320

+0.320-0.096

+0.128

-0.240+0.072

-0.096

[k11]1 =AEL

2 31

23

1

+0.80-0.240

-0.320

-0.320+0.096

+0.128

-0.240+0.072

+0.096

[k11]2 =AEL

2 31

23

1

+0.80+0.240

-0.320

-0.320-0.096

+0.128

+0.240+0.072

-0.096

[k11]3 =AEL

2 31

23

1

+0.80+0.240

+0.320

+0.320+0.096

+0.128

+0.240+0.072

+0.096

[k11]4 =AEL

2 31

23

1

3.20.0

0.0

0.00.0

0.512

0.00.288

0.0

[KI,I] =AEL

Page 79: Matrix truss

79

12

34

12

3

(0, 0, 10)

(-4, 3, 0)

(4, 3, 0)

(4, -3, 0)

(-4, -3, 0)4

1

2

53

x

z

y

4 m4 m

3 m3 m

10 m

80 kN60 kN

O

0.0-80

60

D3

D2

D1

0.00.0

0.0+

2 31

23

1

3.20.0

0.0

0.00.0

0.512

0.00.288

0.0

=AEL

[Q] = [K][D] + [QF]

Page 80: Matrix truss

80

Global equilibrium matrix:

[Q] = [K][D] + [QF]

QI

QII

Du

Dk

KI,II

KII,II

KI,I

KII,I

Reaction Support Boundary Condition

Unknown DisplacementJoint Load

QFI

QFII

= +

Fixed End Forces

(AE/L) = (1x10-3)(200x106)/(11.18) = 17.89x103 kN

0.0-80

60

D3

D2

D1

0.00.0

0.0+

2 31

23

1

3.20.0

0.0

0.00.0

0.512

0.00.288

0.0

=AEL

0.0 mm-15.53 mm

6.551 mm=

D3

D2

D1

= LAE

0.0-277.8

+117.2

Page 81: Matrix truss

81

Member forces:

q´F+

Member

#1#2

#3

λx λy λz

#4

-0.3578 +0.2683 -0.8944+0.3578 +0.2683 -0.8944

+0.3578 -0.2683 -0.8944-0.3578 -0.2683 -0.8944

dyi

dxi

dxj

dzi

dyj

dzj

[q´j]m = AEL −λx −λy −λz λx λy λz

D3

D2

D1

[ 0 ]

= +116.5 kN (T)

+0.3578 -0.2683 +0.8944[q´j]1 =AEL

0.0

117.2

-277.8L

AE

x

z

y

4 m4 m

3 m3 m

10 m

80 kN60 kN

O

Page 82: Matrix truss

82

Member

#1#2

#3

λx λy λz

#4

-0.3578 +0.2683 -0.8944+0.3578 +0.2683 -0.8944

+0.3578 -0.2683 -0.8944-0.3578 -0.2683 -0.8944

= +32.61 kN (T)-0.3578 -0.2683 +0.8944[q´j]2 =AEL

0.0

117.2

-277.8L

AE

= -116.5 kN (T)-0.3578 +0.2683 +0.8944[q´j]3 =AEL

0.0

117.2

-277.8L

AE

= -32.61 kN (T)+0.3578 +0.2683 +0.8944[q´j]4 =AEL

0.0

117.2

-277.8L

AE

x

z

y

4 m4 m

3 m3 m

10 m

80 kN60 kN

O

Page 83: Matrix truss

83

5

32.6 kN116.5 kN

116.5 kN

32.6 kN

Member

#1#2

#3

λx λy λz

#4

-0.3578 +0.2683 -0.8944+0.3578 +0.2683 -0.8944

+0.3578 -0.2683 -0.8944-0.3578 -0.2683 -0.8944

[q´j]m

116.5 32.6

-32.6-116.5

12

34

80 kN60 kN

R5x = (-32.6)(-0.3578) = 11.66 kN

R5y = (-32.6)(-0.2683) = 8.75 kN

R5z = (-32.6)(-0.8944) = 29.16 kN