19
LECTURE - CUM - PRESENTATION ON MATHEMATICS OF NYQUIST PLOT ASAFAK HUSAIN 12115026 E - 2 BATCH, EE, 3 rd year

Mathematics of nyquist plot [autosaved] [autosaved]

Embed Size (px)

Citation preview

LECTURE-CUM-PRESENTATION

ONMATHEMATICS OF

NYQUIST PLOT

ASAFAK HUSAIN

12115026

E-2 BATCH, EE, 3rd year

CONTENT

β€’ Complex Calculus

β€’ Cauchy’s Theorem

β€’ Principle of Augment

β€’ Nyquist criteria

β€’ Nyquist path

β€’ Example

COMPLEX CALCULUS

Limit :: limit of a function complex Ζ’(z) is said to exists at z =𝑧0when

𝑓 𝑧 βˆ’ 𝑧0 < 𝛿 βˆ€ 0 < |𝑧 βˆ’ 𝑧0| < νœ€

Continuity lim𝑧→𝑧0

𝑓(𝑧) = 𝑓(𝑧0)

Derivative limβ„Žβ†’0π‘˜β†’0

𝑓 π‘Ž+β„Ž,𝑏+π‘˜ βˆ’π‘“(π‘Ž,𝑏)

β„Ž2+π‘˜2should exists.

DIFFERENTIAL CALCULUS

β€’ Gradient :

β€’ Divergence

β€’ Curl

𝛻𝑓 =πœ•π‘“

πœ•π‘₯ 𝑖 +

πœ•π‘“

πœ•π‘¦ 𝑗 +

πœ•π‘“

πœ•π‘§ π‘˜

𝛻. 𝑓 =πœ•π‘“π‘₯πœ•π‘₯

+πœ•π‘“π‘¦

πœ•π‘¦+πœ•π‘“π‘§πœ•π‘§

𝛻 Γ— 𝑓 =

𝑖 𝑗 π‘˜πœ•

πœ•π‘₯

πœ•

πœ•π‘¦

πœ•

πœ•π‘§π‘“π‘₯ 𝑓𝑦 𝑓𝑧

INTEGRATION

β€’ # Line Integral = 𝑓 𝑧 𝑑𝑧 over a path C

𝑓 𝑧 = 𝑒 π‘₯, 𝑦 + 𝑖𝑣 π‘₯, 𝑦 here 𝑧 = π‘₯ + 𝑖𝑦 and both 𝑒 π‘Žπ‘›π‘‘ 𝑣 are real functions

β€’ Green’s Theorem βˆ…π‘‘π‘₯ + πœ“π‘‘π‘¦ = (πœ•πœ“

πœ•π‘₯βˆ’

πœ•βˆ…

πœ•π‘¦) 𝑑π‘₯𝑑𝑦

C-R EQUATIONS DERIVATION

β€’ Derivative of 𝑓 𝑧 = 𝑒 π‘₯, 𝑦 + 𝑖𝑣 π‘₯, 𝑦 along real axis 𝛿𝑦 = 0, 𝛿𝑧 = 𝛿π‘₯

β€’ 𝑓′ 𝑧 = lim𝛿π‘₯β†’0

𝑒 π‘₯+𝛿π‘₯,𝑦 βˆ’π‘’(π‘₯,𝑦)

𝛿π‘₯+ 𝑖

𝑣 π‘₯+𝛿π‘₯,𝑦 βˆ’π‘£(π‘₯,𝑦)

𝛿π‘₯

β‡’ 𝑓′ 𝑧 =πœ•π‘’

πœ•π‘₯+ 𝑖

πœ•π‘£

πœ•π‘₯……………(1)

And along imaginary axis 𝛿π‘₯ = 0, 𝛿𝑧 = 𝑖𝛿𝑦

𝑓′ 𝑧 = lim𝛿𝑦→0

𝑒 π‘₯, 𝑦 + 𝛿𝑦 βˆ’ 𝑒(π‘₯, 𝑦)

𝑖𝛿𝑦+ 𝑖

𝑣 π‘₯, 𝑦 + 𝛿𝑦 βˆ’ 𝑣(π‘₯, 𝑦)

𝑖𝛿𝑦)

β‡’ 𝑓′ 𝑧 = βˆ’π‘–πœ•π‘’

πœ•π‘¦+

πœ•π‘£

πœ•π‘¦β€¦β€¦β€¦β€¦.(2)

C-R EQUATIONS

β€’ Since limit should be same from each and every path

so from (1) and (2)

πœ•π‘’

πœ•π‘₯=

πœ•π‘£

πœ•π‘¦and

πœ•π‘£

πœ•π‘₯= βˆ’

πœ•π‘’

πœ•π‘¦

these are known as Cauchy- Riemann equations.

ANALYTIC FUNCTION AND CAUCHY'S THEOREM

Analytic function

β€’ Single valued

β€’ Unique derivative at all the point of the domain

β€’ πΆπ‘Žπ‘’π‘β„Žπ‘¦β€²π‘  π‘‘β„Žπ‘’π‘œπ‘Ÿπ‘’π‘š 𝑓(𝑧) 𝑑𝑧 = 0

for analytic function over the entire closed path C.

CAUCHY’S THEOREM

β€’ Let 𝑓 𝑧 = 𝑒 + 𝑖𝑣 π‘“π‘œπ‘Ÿ 𝑧 = π‘₯ + 𝑖𝑦

then 𝑓 𝑧 𝑑𝑧 = 𝑒 + 𝑖𝑣 𝑑π‘₯ + 𝑖𝑑𝑦 = 𝑒𝑑π‘₯ βˆ’ 𝑣𝑑𝑦 + 𝑖 (𝑒𝑑𝑦 + 𝑣𝑑π‘₯)

= βˆ’ πœ•π‘£

πœ•π‘₯+

πœ•π‘’

πœ•π‘¦π‘‘π‘₯𝑑𝑦 + 𝑗

πœ•π‘£

πœ•π‘₯βˆ’

πœ•π‘’

πœ•π‘¦π‘‘π‘₯𝑑𝑦 (Green’ s thm.)

= 0 (𝐢 βˆ’ 𝑅 π‘’π‘žπ‘’π‘Žπ‘‘π‘–π‘œπ‘›π‘ )

CAUCHY’S INTEGRAL FORMULA

𝑓 𝑧 𝑑𝑧 = βˆ’ 𝐢

𝑓 𝑧 𝑑𝑧 + 𝐴𝐡

𝑓 𝑧 𝑑𝑧 + 𝐢0

𝑓 𝑧 𝑑𝑧 + 𝐡𝐴

𝑓 𝑧 𝑑𝑧

β‡’ 𝐢 𝑓 𝑧 𝑑𝑧 = 𝐢1𝑓 𝑧 𝑑𝑧 (Cauchy’s theorem)

Similarly, for 𝐢𝑓(𝑧)

π‘§βˆ’π‘§0𝑑𝑧 = 𝐢0

𝑓(𝑧)

π‘§βˆ’π‘§0𝑑𝑧 , put 𝑧 = 𝑧0 + π‘Ÿπ‘’π‘–πœƒ

⟹

𝐢0

𝑓 𝑧0 + π‘Ÿπ‘’π‘–πœƒ

π‘Ÿπ‘’π‘–πœƒπ‘–π‘Ÿπ‘’π‘–πœƒπ‘‘πœƒ = 2πœ‹π‘–π‘“(𝑧0)

β‡’

𝐢

𝑓 𝑧

𝑧 βˆ’ 𝑧0𝑑𝑧 =2πœ‹π‘–π‘“(𝑧0)

RESIDUE’S THEOREM

β€’ 𝐢 𝑓 𝑧 𝑑𝑧 = 𝐢1𝑓 𝑧 𝑑𝑧 + 𝐢2

𝑓 𝑧 𝑑𝑧 +β‹―+ 𝐢𝑛𝑓 𝑧 𝑑𝑧

β€’ 𝐢 𝑓 𝑧 𝑑𝑧 = 2πœ‹π‘–[𝑓(𝑧1) + 𝑓 𝑧2 +β‹―+ 𝑓(𝑧𝑛)

Here 𝑓 𝑧𝑖 are called Residues of function f(z).

Note: residue are also define as the coefficients of

(𝑧 βˆ’ 𝑧0)βˆ’1 in the expansion of Laurent series

That is 𝑛=βˆ’βˆžβˆž π‘Žπ‘›(𝑧 βˆ’ 𝑧0)

𝑛

PRINCIPLE OF ARGUMENT

β€’ Let 𝑓 𝑧 =π‘§βˆ’π‘§1

∝1……. π‘§βˆ’π‘§π‘›βˆπ‘›

π‘§βˆ’π‘1𝛽1…..

π‘§βˆ’π‘π‘šπ›½π‘š

𝐹(𝑧)

β€’ Now 𝑓(𝑧)

𝑓(𝑧)= 𝑖=1

𝑛 𝛼1

π‘§βˆ’π‘§π‘–βˆ’ 𝑖=1

π‘š 𝛽𝑖

(π‘§βˆ’π‘π‘–)+

𝐹 (𝑧)

𝐹(𝑧)

β€’ β‡’ 𝐢 𝑓 𝑧

𝑓 𝑧𝑑𝑧 =2πœ‹π‘–π‘ βˆ’ 2πœ‹π‘–π‘ƒ + 𝐢

𝐹(𝑧)

𝐹(𝑧)𝑑𝑧 …………..(1)

β€’ 𝐢 𝐹(𝑧)

𝐹(𝑧)𝑑𝑧 = 0 (πΆπ‘Žπ‘’π‘β„Žπ‘¦β€²π‘  π‘‘β„Žπ‘’π‘œπ‘Ÿπ‘’π‘š)

PRINCIPLE OF ARGUMENT

β€’ Let’s consider 𝐢 𝑓(𝑧)

𝑓(𝑧)𝑑𝑧 = 𝐢

𝑑

𝑑𝑧(log(𝑓(𝑧)))

β€’ = πΏπ‘œπ‘” 𝑓(𝑧) |𝐢 + π‘–π‘Žπ‘Ÿπ‘”π‘“(𝑧)|𝐢

β€’ = 𝑖 arg 𝑓 𝑧 |𝐢

β€’ Thus we can see, value of integral only depends on the net change in the argument

of f(z) as z traverse the contour.

β€’ If N is number of encirclement about Origin in F(s)-plane then

2π𝑖N = 𝑖 arg 𝑓 𝑧 |𝐢 = 2πœ‹π‘–π‘ βˆ’ 2πœ‹π‘–π‘ƒ

N=Z-P

NYQUIST CRITERIA

β€’ If open loop transfer function of a system is

𝐺 𝑠 𝐻 𝑠 =𝐾 𝑖=1

𝑛 (𝑠+𝑧𝑖)

𝑖=1𝑝

(𝑠+𝑝𝑖)=

𝑁(𝑠)

𝐷(𝑠)

Then close loop transfer function

𝑇. 𝐹. =𝐺(𝑠)

1+𝐺 𝑠 𝐻(𝑠)and let 𝐹 𝑠 = 1 + 𝐺 𝑠 𝐻 𝑠 = 1 +

𝑁(𝑠)

𝐷(𝑠)

We consider right half open loop poles only .

We observes that π‘œπ‘π‘’π‘› π‘™π‘œπ‘œπ‘ π‘π‘œπ‘™π‘’π‘  = π‘π‘œπ‘™π‘’π‘  π‘œπ‘“ 𝐹 𝑠 && π‘π‘™π‘œπ‘ π‘’ π‘™π‘œπ‘œπ‘ π‘π‘œπ‘™π‘’π‘  = π‘π‘’π‘Ÿπ‘œπ‘  π‘œπ‘“ 𝐹(𝑠)

Since here 𝐹(𝑠) is replaced by 1 + 𝐹(𝑠), so in this we will consider encirclement about

βˆ’ 1 + 𝑗0.

NYQUIST CRITERION

𝑁 = 𝑍 βˆ’ 𝑃 β‡’ 𝑍 = 𝑁 + 𝑃

Here Z =number of close loop poles S-plane

P=number of open loop poles S-plane

N=number of encirclement about -1+ j0 F(s)-plane

Now close loop system to be stable Z must be zero.

P=0β‡’ 𝑍 = 𝑁 β‡’ 𝑁 = 0; π‘‘β„Žπ‘’π‘Ÿπ‘’ π‘ β„Žπ‘œπ‘’π‘™π‘‘ π‘›π‘œπ‘‘ 𝑏𝑒 π‘Žπ‘›π‘¦ π‘’π‘›π‘π‘–π‘Ÿπ‘π‘™π‘’π‘šπ‘’π‘›π‘‘π‘ .

𝑃 β‰  0 β‡’ 𝑁 = βˆ’π‘ƒ; π‘‘β„Žπ‘’π‘Ÿπ‘’ π‘ β„Žπ‘œπ‘’π‘™π‘‘ 𝑏𝑒 𝑝 π‘’π‘›π‘π‘–π‘Ÿπ‘π‘™π‘’π‘šπ‘’π‘›π‘‘π‘  𝑖𝑛 π‘Žπ‘›π‘‘π‘–π‘π‘™π‘œπ‘π‘˜π‘€π‘–π‘ π‘’ π‘‘π‘–π‘Ÿπ‘’π‘π‘‘π‘–π‘œπ‘›.

NYQUIST PATH

β€’ Section I 𝐢1: 𝑠 = π‘—πœ” βˆ€ πœ” ∈ (0+ , +∞)

β€’ Section II 𝐢2βˆΆπ‘  = βˆ’π‘—πœ” βˆ€ πœ” ∈ (βˆ’βˆž , 0βˆ’ )

β€’ Section III 𝐢3: s = Rπ‘’π‘–πœƒ 𝑅 β†’ ∞ βˆ€ πœƒ ∈ (βˆ’πœ‹

2,πœ‹

2)

β€’ As Detour (singularities)

𝐢4: s = νœ€π‘’π‘–πœƒ νœ€ β†’ 0 βˆ€ πœƒ ∈ (βˆ’πœ‹

2,πœ‹

2)

EXAMPLE

β€’ Section 𝐢3:

β€’ 𝐺 π‘…π‘’π‘—πœƒ 𝐻 π‘…π‘’π‘—πœƒ = 0

β€’ At detour

β€’ 𝐺 νœ€π‘’π‘—πœƒ 𝐻 νœ€π‘’π‘—πœƒ β†’ ∞

β€’ 𝐺 𝑠 𝐻 𝑠 =𝐾(𝜏1𝑠+1)

𝑠2(𝜏2𝑠+1), find close loop

stability of the system.

β€’ (1) Section 𝐢1& 𝐢2

β€’ 𝐺 π‘—πœ” 𝐻 π‘—πœ” =𝐾

πœ”2

𝜏1πœ”2+1

𝜏2πœ”2+1

πœ‘πΊπ» = βˆ’πœ‹ + tanβˆ’1 𝜏1πœ” βˆ’ tanβˆ’1 𝜏2πœ”

NYQUIST PLOT

𝜏1 = 𝜏2

Here plot passes through (-1+j0) that

indicates that roots lie on imaginary

axis.

𝜏1 < 𝜏2

N=-1

Z=-1, Unstable

𝜏1 > 𝜏2

Real axis is not covered by the

encirclement loop

N=0 so Z=0 Stable

THANKS A LOT !!!!!!!!!!!!!!!

Any queries ??????