25
TIF 21101 APPLIED MATH 1 (MATEMATIKA TERAPAN 1) Matematika Terapan 1 2014/2015 M. Ilyas Hadikusuma, M.Eng Week 3 SET THEORY (Continued)

Matematika terapan minggu ke-3

Embed Size (px)

Citation preview

TIF 21101

APPLIED MATH 1

(MATEMATIKA TERAPAN 1)

Matematika Terapan 12014/2015 M. Ilyas Hadikusuma, M.Eng

Week 3

SET THEORY

(Continued)

SET THEORYSET THEORY

OBJECTIVES:

1. Subset and superset relation

2. Cardinality & Power of Set

3. Algebra Law of Sets

Matematika Terapan 12014/2015 M. Ilyas Hadikusuma, M.Eng

3. Algebra Law of Sets

4. Inclusion

5. Cartesian Product

SET THEORYSET THEORY

Subset & superset relationWe use the symbols of:

⊆ � is a subset of

⊇ � is a superset of

Matematika Terapan 12014/2015 M. Ilyas Hadikusuma, M.Eng

We also use these symbols⊂ � is a proper subset of

⊃ � is a proper superset of

Why they are different?

SET THEORYSET THEORY

They maen……

S⊆T means that every element of S is also an element of T.

Matematika Terapan 12014/2015 M. Ilyas Hadikusuma, M.Eng

an element of T.

S⊇T means T⊆S.

S⊂T means that S⊆T but .

SET THEORYSET THEORY

Examples:

• A = {x | x is a positive integer ≤ 8}

set A contains: 1, 2, 3, 4, 5, 6, 7, 8

• B = {x | x is a positive even integer < 10}

set B contains: 2, 4, 6, 8

Matematika Terapan 12014/2015 M. Ilyas Hadikusuma, M.Eng

set B contains: 2, 4, 6, 8

• C = {2, 6, 8, 4}

• Subset Relationships

A ⊆ A A ⊄ B A ⊄ C

B ⊂ A B ⊆ B B ⊂ C

C ⊄ A C ⊄ B C ⊆ C

Prove them !!!

SET THEORYSET THEORY

Cardinality and The Power of Sets

|S|, (read “the cardinality of S”), is a measure of

how many different elements S has.

E.g., |∅|=0, |{1,2,3}| = 3, |{a,b}| = 2,

Matematika Terapan 12014/2015 M. Ilyas Hadikusuma, M.Eng

E.g., |∅|=0, |{1,2,3}| = 3, |{a,b}| = 2,

|{{1,2,3},{4,5}}| = ……

P(S); (read “the power set of a set S”) , is the set

of all subsets that can be created from given set S.

E.g. P({a,b}) = {∅, {a}, {b}, {a,b}}.

SET THEORYSET THEORY

Example:

A = {a, b, c} where |A| = 3

P (A) = {{a, b}, {a, c}, {b, c}, {a}, {b}, {c}, A, φ}

Matematika Terapan 12014/2015 M. Ilyas Hadikusuma, M.Eng

P (A) = {{a, b}, {a, c}, {b, c}, {a}, {b}, {c}, A, φ}and |P (A)| = 8

In general, if |A| = n, then |P (A) | = 2n

How about if the set of S is not finite ? So we say S infinite.

Ex. B = {x | x is a point on a line}, can you difine them??

SET THEORYSET THEORY

Matematika Terapan 12014/2015 M. Ilyas Hadikusuma, M.Eng

SET THEORYSET THEORY

Matematika Terapan 12014/2015 M. Ilyas Hadikusuma, M.Eng

SET THEORYSET THEORY

Matematika Terapan 12014/2015 M. Ilyas Hadikusuma, M.Eng

SET THEORYSET THEORY

Matematika Terapan 12014/2015 M. Ilyas Hadikusuma, M.Eng

SET THEORYSET THEORY

Matematika Terapan 12014/2015 M. Ilyas Hadikusuma, M.Eng

SET THEORYSET THEORY

Matematika Terapan 12014/2015 M. Ilyas Hadikusuma, M.Eng

SET THEORYSET THEORY

Langkah-langkah menggambar diagram venn

1. Daftarlah setiap anggota dari masing-masing himpunan

2. Tentukan mana anggota himpunan yang dimiliki secara bersama-sama

3. Letakkan anggota himpunan yang dimiliki bersama ditengah-tengah

4. Buatlah lingkaran sebanyak himpunan yang ada yang melingkupi

Matematika Terapan 12014/2015 M. Ilyas Hadikusuma, M.Eng

4. Buatlah lingkaran sebanyak himpunan yang ada yang melingkupi anggota bersama tadi

5. Lingkaran yang dibuat tadi ditandai dengan nama-nama himpunan

6. Selanjutnya lengkapilah anggota himpunan yang tertulis didalam lingkaran sesuai dengan daftar anggota himpunan itu

7. Buatlah segiempat yang memuat lingkaran-lingkaran itu, dimana segiempat ini menyatakan himpunan semestanya dan lengkapilah anggotanya apabila belum lengkap

SET THEORYSET THEORY

Diketahui : S = { x | 10 < x ≤ 20, x ∈ B }

M = { x | x > 15, x ∈ S }

N = { x | x > 12, x ∈ S }

Matematika Terapan 12014/2015 M. Ilyas Hadikusuma, M.Eng

N = { x | x > 12, x ∈ S }Gambarlah diagram vennya

SET THEORYSET THEORY

Jawab : S = { x | 10 < x ≤ 20, x ∈ B } = { 11,12,13,14,15,16,17,18,19,20 }

M = { x | x > 15, x ∈ S } = { 16,17,18,19,20}

N = { x | x > 12, x ∈ S } = { 13,14,15,16,17,18,19,20}

M ∩∩∩∩ N = { 16,17,18,19,20 }

Diagram Vennya adalah sbb:

Matematika Terapan 12014/2015 M. Ilyas Hadikusuma, M.Eng

16

17

18

1920

MN

13

14 15

S

11

12

Diagram Vennya adalah sbb:

SET THEORYSET THEORYAlgebra Law of Sets

Matematika Terapan 12014/2015 M. Ilyas Hadikusuma, M.Eng

SET THEORYSET THEORY

Matematika Terapan 12014/2015 M. Ilyas Hadikusuma, M.Eng

SET THEORYSET THEORY

Set’s Inclusion and Exclusion

For A and B, Let A and B be any finite sets. Then :

A ∪ B = A + B – A ∩ B

Matematika Terapan 12014/2015 M. Ilyas Hadikusuma, M.Eng

In other words, to find the number n(A ∪ B) of elements in the union A ∪ B, we add n(A) and n(B) and then we subtract n(A ∩ B); that is, we “include” n(A) and n(B), and we “exclude” n(A ∩ B). This follows from the fact that, when we add n(A) and n(B), we have counted the elements of A ∩ B twice. This principle holds for any number of sets.

Inclusion Exclusion

SET THEORYSET THEORY

Set’s Inclusion and Exclusion

For A and B, Let A and B be any finite sets. Then :

A ∪ B = A + B – A ∩ B

Matematika Terapan 12014/2015 M. Ilyas Hadikusuma, M.Eng

In other words, to find the number n(A ∪ B) of elements in the union A ∪ B, we add n(A) and n(B) and then we subtract n(A ∩ B); that is, we “include” n(A) and n(B), and we “exclude” n(A ∩ B). This follows from the fact that, when we add n(A) and n(B), we have counted the elements of A ∩ B twice. This principle holds for any number of sets.

Inclusion Exclusion

SET THEORYSET THEORY

Inclusion and Exclusion of Sets

For A and B, Let A and B be any finite sets. Then :

A ∪ B = A + B – A ∩ B

Matematika Terapan 12014/2015 M. Ilyas Hadikusuma, M.Eng

In other words, to find the number n(A ∪ B) of elements in the union A ∪ B, we add n(A) and n(B) and then we subtract n(A ∩ B); that is, we “include” n(A) and n(B), and we “exclude” n(A ∩ B). This follows from the fact that, when we add n(A) and n(B), we have counted the elements of A ∩ B twice. This principle holds for any number of sets.

Inclusion Exclusion

Inclusion-Exclusion Principle

• How many elements are in A∪B?|A∪B| = |A| + |B| − |A∩B|

Matematika Terapan 12014/2015 M. Ilyas Hadikusuma, M.Eng

• Example:

{2,3,5}∪{3,5,7} = {2,3,5,3,5,7} ={2,3,5,7}

Contoh:

Dari 60 siswa terdapat 20 orang suka bakso, 46 orang suka siomay dan 5 orang tidak suka keduanya.a. Ada berapa orang siswa yang suka bakso dan siomay?

b. Ada berapa orang siswa yang hanya suka bakso?

c. Ada berapa orang siswa yang hanya suka siomay?

Jawab: N(S) = 60

Misalnya : A = {siswa suka bakso} n(A) = 20

B = {siswa suka siomay} n(B) = 46

(A ∩∩∩∩B)c = {tidak suka keduanya} n((A ∩∩∩∩B)c) = 5

Matematika Terapan 12014/2015 M. Ilyas Hadikusuma, M.Eng

Maka A ∩∩∩∩B = {suka keduanya}

(A ∩∩∩∩B)c = {tidak suka keduanya} n((A ∩∩∩∩B)c) = 5

n(A ∩∩∩∩B) = x

{siswa suka bakso saja} = 20 - x

{siswa suka siomay saja} = 46 - x

Perhatikan Diagram Venn berikut

xA B20 - x 46 - x

S

5

n(S) = (20 – x)+x+(46-x)+5

60 = 71 - x

X = 71 – 60 = 11a. Yang suka keduanya adalah x

= 11 orangb. Yang suka bakso saja adalah

20-x = 20-11= 9 orang

c. Yang suka siomay saja adalah

46-x = 46-11= 35 orang

SET THEORYSET THEORY

Berapa banyaknya bilangan bulat antara 1

dan 100 yang habis dibagi 3 atau 5?

Matematika Terapan 12014/2015 M. Ilyas Hadikusuma, M.Eng

Cartesian Products of Sets

• For sets A, B, their Cartesian product

A×B :≡ {(a, b) | a∈A ∧ b∈B }.

• E.g. {a,b}×{1,2} = {(a,1),(a,2),(b,1),(b,2)}

• Note that for finite A, B, |A×B|=|A||B|.

Matematika Terapan 12014/2015 M. Ilyas Hadikusuma, M.Eng

• Note that for finite A, B, |A×B|=|A||B|.

• Note that the Cartesian product is not

commutative: A×B ≠ B×A.