66
. . . . . . Section 3.5 Inverse Trigonometric Functions V63.0121.034, Calculus I October 28, 2009 Announcements I

Lesson 16: Inverse Trigonometric Functions

Embed Size (px)

DESCRIPTION

We go over the trigonometric function, their inverses, and the derivatives of the inverse functions. The surprising fact is that these derivatives are simpler functions than the functions themselves.

Citation preview

Page 1: Lesson 16: Inverse Trigonometric Functions

. . . . . .

Section3.5InverseTrigonometric

FunctionsV63.0121.034, CalculusI

October28, 2009

Announcements

I

Page 2: Lesson 16: Inverse Trigonometric Functions

. . . . . .

Whatfunctionsareinvertible?

Inorderfor f−1 tobeafunction, theremustbeonlyone a in Dcorrespondingtoeach b in E.

I Suchafunctioniscalled one-to-oneI Thegraphofsuchafunctionpassesthe horizontallinetest:anyhorizontallineintersectsthegraphinexactlyonepointifatall.

I If f iscontinuous, then f−1 iscontinuous.

Page 3: Lesson 16: Inverse Trigonometric Functions

. . . . . .

Outline

InverseTrigonometricFunctions

DerivativesofInverseTrigonometricFunctionsArcsineArccosineArctangentArcsecant

Applications

Page 4: Lesson 16: Inverse Trigonometric Functions

. . . . . .

arcsin

Arcsinistheinverseofthesinefunctionafterrestrictionto[−π/2, π/2].

. .x

.y

.sin.

.−π

2

.

.−π

2

.y = x

.

. .arcsin

I Thedomainof arcsin is [−1, 1]

I Therangeof arcsin is[−π

2,π

2

]

Page 5: Lesson 16: Inverse Trigonometric Functions

. . . . . .

arcsin

Arcsinistheinverseofthesinefunctionafterrestrictionto[−π/2, π/2].

. .x

.y

.sin.

.

.

.−π

2

.

.−π

2

.y = x

.

. .arcsin

I Thedomainof arcsin is [−1, 1]

I Therangeof arcsin is[−π

2,π

2

]

Page 6: Lesson 16: Inverse Trigonometric Functions

. . . . . .

arcsin

Arcsinistheinverseofthesinefunctionafterrestrictionto[−π/2, π/2].

. .x

.y

.sin.

.

.

.−π

2

.

.−π

2

.y = x

.

. .arcsin

I Thedomainof arcsin is [−1, 1]

I Therangeof arcsin is[−π

2,π

2

]

Page 7: Lesson 16: Inverse Trigonometric Functions

. . . . . .

arcsin

Arcsinistheinverseofthesinefunctionafterrestrictionto[−π/2, π/2].

. .x

.y

.sin.

.

.

.−π

2

.

.−π

2

.y = x

.

. .arcsin

I Thedomainof arcsin is [−1, 1]

I Therangeof arcsin is[−π

2,π

2

]

Page 8: Lesson 16: Inverse Trigonometric Functions

. . . . . .

arccos

Arccosistheinverseofthecosinefunctionafterrestrictionto[0, π]

. .x

.y

.cos..0

..π

.y = x

.

. .arccos

I Thedomainof arccos is [−1,1]

I Therangeof arccos is [0, π]

Page 9: Lesson 16: Inverse Trigonometric Functions

. . . . . .

arccos

Arccosistheinverseofthecosinefunctionafterrestrictionto[0, π]

. .x

.y

.cos.

.

..0

..π

.y = x

.

. .arccos

I Thedomainof arccos is [−1,1]

I Therangeof arccos is [0, π]

Page 10: Lesson 16: Inverse Trigonometric Functions

. . . . . .

arccos

Arccosistheinverseofthecosinefunctionafterrestrictionto[0, π]

. .x

.y

.cos.

.

..0

..π

.y = x

.

. .arccos

I Thedomainof arccos is [−1,1]

I Therangeof arccos is [0, π]

Page 11: Lesson 16: Inverse Trigonometric Functions

. . . . . .

arccos

Arccosistheinverseofthecosinefunctionafterrestrictionto[0, π]

. .x

.y

.cos.

.

..0

..π

.y = x

.

. .arccos

I Thedomainof arccos is [−1,1]

I Therangeof arccos is [0, π]

Page 12: Lesson 16: Inverse Trigonometric Functions

. . . . . .

arctanArctanistheinverseofthetangentfunctionafterrestrictionto[−π/2, π/2].

. .x

.y

.tan

.−3π

2.−π

2.π

2 .3π

2

.y = x

.arctan

.−π

2

2

I Thedomainof arctan is (−∞,∞)

I Therangeof arctan is(−π

2,π

2

)I lim

x→∞arctan x =

π

2, limx→−∞

arctan x = −π

2

Page 13: Lesson 16: Inverse Trigonometric Functions

. . . . . .

arctanArctanistheinverseofthetangentfunctionafterrestrictionto[−π/2, π/2].

. .x

.y

.tan

.−3π

2.−π

2.π

2 .3π

2

.y = x

.arctan

.−π

2

2

I Thedomainof arctan is (−∞,∞)

I Therangeof arctan is(−π

2,π

2

)I lim

x→∞arctan x =

π

2, limx→−∞

arctan x = −π

2

Page 14: Lesson 16: Inverse Trigonometric Functions

. . . . . .

arctanArctanistheinverseofthetangentfunctionafterrestrictionto[−π/2, π/2].

. .x

.y

.tan

.−3π

2.−π

2.π

2 .3π

2

.y = x

.arctan

.−π

2

2

I Thedomainof arctan is (−∞,∞)

I Therangeof arctan is(−π

2,π

2

)I lim

x→∞arctan x =

π

2, limx→−∞

arctan x = −π

2

Page 15: Lesson 16: Inverse Trigonometric Functions

. . . . . .

arctanArctanistheinverseofthetangentfunctionafterrestrictionto[−π/2, π/2].

. .x

.y

.tan

.−3π

2.−π

2.π

2 .3π

2

.y = x

.arctan

.−π

2

2

I Thedomainof arctan is (−∞,∞)

I Therangeof arctan is(−π

2,π

2

)I lim

x→∞arctan x =

π

2, limx→−∞

arctan x = −π

2

Page 16: Lesson 16: Inverse Trigonometric Functions

. . . . . .

arcsecArcsecantistheinverseofsecantafterrestrictionto[0, π/2) ∪ (π, 3π/2].

. .x

.y

.sec

.−3π

2.−π

2.π

2 .3π

2

.y = x

.

.

2

.3π

2

I Thedomainof arcsec is (−∞,−1] ∪ [1,∞)

I Therangeof arcsec is[0,

π

2

)∪(π

2, π]

I limx→∞

arcsec x =π

2, limx→−∞

arcsec x =3π

2

Page 17: Lesson 16: Inverse Trigonometric Functions

. . . . . .

arcsecArcsecantistheinverseofsecantafterrestrictionto[0, π/2) ∪ (π, 3π/2].

. .x

.y

.sec

.−3π

2.−π

2.π

2 .3π

2

.

.

.y = x

.

.

2

.3π

2

I Thedomainof arcsec is (−∞,−1] ∪ [1,∞)

I Therangeof arcsec is[0,

π

2

)∪(π

2, π]

I limx→∞

arcsec x =π

2, limx→−∞

arcsec x =3π

2

Page 18: Lesson 16: Inverse Trigonometric Functions

. . . . . .

arcsecArcsecantistheinverseofsecantafterrestrictionto[0, π/2) ∪ (π, 3π/2].

. .x

.y

.sec

.−3π

2.−π

2.π

2 .3π

2

.

.

.y = x

.

.

2

.3π

2

I Thedomainof arcsec is (−∞,−1] ∪ [1,∞)

I Therangeof arcsec is[0,

π

2

)∪(π

2, π]

I limx→∞

arcsec x =π

2, limx→−∞

arcsec x =3π

2

Page 19: Lesson 16: Inverse Trigonometric Functions

. . . . . .

arcsecArcsecantistheinverseofsecantafterrestrictionto[0, π/2) ∪ (π, 3π/2].

. .x

.y

.sec

.−3π

2.−π

2.π

2 .3π

2

.

.

.y = x

.

.

2

.3π

2

I Thedomainof arcsec is (−∞,−1] ∪ [1,∞)

I Therangeof arcsec is[0,

π

2

)∪(π

2, π]

I limx→∞

arcsec x =π

2, limx→−∞

arcsec x =3π

2

Page 20: Lesson 16: Inverse Trigonometric Functions

. . . . . .

ValuesofTrigonometricFunctions

x 0π

2

sin x 012

√22

√32

1

cos x 1

√32

√22

12

0

tan x 01√3

1√3 undef

cot x undef√3 1

1√3

0

sec x 12√3

2√2

2 undef

csc x undef 22√2

2√3

1

Page 21: Lesson 16: Inverse Trigonometric Functions

. . . . . .

Check: Valuesofinversetrigonometricfunctions

ExampleFind

I arcsin(1/2)

I arctan(−1)

I arccos

(−√22

)

Solution

I π

6I −π

4

I 3π

4

Page 22: Lesson 16: Inverse Trigonometric Functions

. . . . . .

Check: Valuesofinversetrigonometricfunctions

ExampleFind

I arcsin(1/2)

I arctan(−1)

I arccos

(−√22

)

Solution

I π

6

I −π

4

I 3π

4

Page 23: Lesson 16: Inverse Trigonometric Functions

. . . . . .

Check: Valuesofinversetrigonometricfunctions

ExampleFind

I arcsin(1/2)

I arctan(−1)

I arccos

(−√22

)

Solution

I π

6I −π

4

I 3π

4

Page 24: Lesson 16: Inverse Trigonometric Functions

. . . . . .

Check: Valuesofinversetrigonometricfunctions

ExampleFind

I arcsin(1/2)

I arctan(−1)

I arccos

(−√22

)

Solution

I π

6I −π

4

I 3π

4

Page 25: Lesson 16: Inverse Trigonometric Functions

. . . . . .

Caution: Notationalambiguity

..sin2 x = (sin x)2 .sin−1 x = (sin x)−1

I sinn x meansthe nthpowerof sin x, exceptwhen n = −1!I Thebookuses sin−1 x fortheinverseof sin x.

I I use csc x for1

sin xand arcsin x fortheinverseof sin x.

Page 26: Lesson 16: Inverse Trigonometric Functions

. . . . . .

Outline

InverseTrigonometricFunctions

DerivativesofInverseTrigonometricFunctionsArcsineArccosineArctangentArcsecant

Applications

Page 27: Lesson 16: Inverse Trigonometric Functions

. . . . . .

Theorem(TheInverseFunctionTheorem)Let f bedifferentiableat a, and f′(a) ̸= 0. Then f−1 isdefinedinanopenintervalcontaining b = f(a), and

(f−1)′(b) =1

f′(f−1(b))

“Proof”.If y = f−1(x), then

f(y) = x,

Sobyimplicitdifferentiation

f′(y)dydx

= 1 =⇒ dydx

=1

f′(y)=

1

f′(f−1(x))

Page 28: Lesson 16: Inverse Trigonometric Functions

. . . . . .

Theorem(TheInverseFunctionTheorem)Let f bedifferentiableat a, and f′(a) ̸= 0. Then f−1 isdefinedinanopenintervalcontaining b = f(a), and

(f−1)′(b) =1

f′(f−1(b))

“Proof”.If y = f−1(x), then

f(y) = x,

Sobyimplicitdifferentiation

f′(y)dydx

= 1 =⇒ dydx

=1

f′(y)=

1

f′(f−1(x))

Page 29: Lesson 16: Inverse Trigonometric Functions

. . . . . .

Thederivativeofarcsin

Let y = arcsin x, so x = sin y. Then

cos ydydx

= 1 =⇒ dydx

=1

cos y=

1cos(arcsin x)

Tosimplify, lookatarighttriangle:

cos(arcsin x) =√1− x2

So

ddx

arcsin(x) =1√

1− x2 .

.1 .x

..y = arcsin x

.√1− x2

Page 30: Lesson 16: Inverse Trigonometric Functions

. . . . . .

Thederivativeofarcsin

Let y = arcsin x, so x = sin y. Then

cos ydydx

= 1 =⇒ dydx

=1

cos y=

1cos(arcsin x)

Tosimplify, lookatarighttriangle:

cos(arcsin x) =√1− x2

So

ddx

arcsin(x) =1√

1− x2

.

.1 .x

..y = arcsin x

.√1− x2

Page 31: Lesson 16: Inverse Trigonometric Functions

. . . . . .

Thederivativeofarcsin

Let y = arcsin x, so x = sin y. Then

cos ydydx

= 1 =⇒ dydx

=1

cos y=

1cos(arcsin x)

Tosimplify, lookatarighttriangle:

cos(arcsin x) =√1− x2

So

ddx

arcsin(x) =1√

1− x2

.

.1 .x

..y = arcsin x

.√1− x2

Page 32: Lesson 16: Inverse Trigonometric Functions

. . . . . .

Thederivativeofarcsin

Let y = arcsin x, so x = sin y. Then

cos ydydx

= 1 =⇒ dydx

=1

cos y=

1cos(arcsin x)

Tosimplify, lookatarighttriangle:

cos(arcsin x) =√1− x2

So

ddx

arcsin(x) =1√

1− x2

.

.1 .x

..y = arcsin x

.√1− x2

Page 33: Lesson 16: Inverse Trigonometric Functions

. . . . . .

Thederivativeofarcsin

Let y = arcsin x, so x = sin y. Then

cos ydydx

= 1 =⇒ dydx

=1

cos y=

1cos(arcsin x)

Tosimplify, lookatarighttriangle:

cos(arcsin x) =√1− x2

So

ddx

arcsin(x) =1√

1− x2

.

.1 .x

..y = arcsin x

.√1− x2

Page 34: Lesson 16: Inverse Trigonometric Functions

. . . . . .

Thederivativeofarcsin

Let y = arcsin x, so x = sin y. Then

cos ydydx

= 1 =⇒ dydx

=1

cos y=

1cos(arcsin x)

Tosimplify, lookatarighttriangle:

cos(arcsin x) =√1− x2

So

ddx

arcsin(x) =1√

1− x2

.

.1 .x

..y = arcsin x

.√1− x2

Page 35: Lesson 16: Inverse Trigonometric Functions

. . . . . .

Thederivativeofarcsin

Let y = arcsin x, so x = sin y. Then

cos ydydx

= 1 =⇒ dydx

=1

cos y=

1cos(arcsin x)

Tosimplify, lookatarighttriangle:

cos(arcsin x) =√1− x2

So

ddx

arcsin(x) =1√

1− x2 .

.1 .x

..y = arcsin x

.√1− x2

Page 36: Lesson 16: Inverse Trigonometric Functions

. . . . . .

Graphingarcsinanditsderivative

..|.−1

.|.1

.

. .arcsin

.1√

1− x2

Page 37: Lesson 16: Inverse Trigonometric Functions

. . . . . .

Thederivativeofarccos

Let y = arccos x, so x = cos y. Then

− sin ydydx

= 1 =⇒ dydx

=1

− sin y=

1− sin(arccos x)

Tosimplify, lookatarighttriangle:

sin(arccos x) =√1− x2

So

ddx

arccos(x) = − 1√1− x2 .

.1.√1− x2

.x..y = arccos x

Page 38: Lesson 16: Inverse Trigonometric Functions

. . . . . .

Thederivativeofarccos

Let y = arccos x, so x = cos y. Then

− sin ydydx

= 1 =⇒ dydx

=1

− sin y=

1− sin(arccos x)

Tosimplify, lookatarighttriangle:

sin(arccos x) =√1− x2

So

ddx

arccos(x) = − 1√1− x2 .

.1.√1− x2

.x..y = arccos x

Page 39: Lesson 16: Inverse Trigonometric Functions

. . . . . .

Graphingarcsinandarccos

..|.−1

.|.1

.arcsin

.arccos

Note

cos θ = sin(π

2− θ)

=⇒ arccos x =π

2− arcsin x

Soit’snotasurprisethattheirderivativesareopposites.

Page 40: Lesson 16: Inverse Trigonometric Functions

. . . . . .

Graphingarcsinandarccos

..|.−1

.|.1

.arcsin

.arccosNote

cos θ = sin(π

2− θ)

=⇒ arccos x =π

2− arcsin x

Soit’snotasurprisethattheirderivativesareopposites.

Page 41: Lesson 16: Inverse Trigonometric Functions

. . . . . .

Thederivativeofarctan

Let y = arctan x, so x = tan y. Then

sec2 ydydx

= 1 =⇒ dydx

=1

sec2 y= cos2(arctan x)

Tosimplify, lookatarighttriangle:

cos(arctan x) =1√

1 + x2

So

ddx

arctan(x) =1

1 + x2 .

.x

.1..y = arctan x

.√1 + x2

Page 42: Lesson 16: Inverse Trigonometric Functions

. . . . . .

Thederivativeofarctan

Let y = arctan x, so x = tan y. Then

sec2 ydydx

= 1 =⇒ dydx

=1

sec2 y= cos2(arctan x)

Tosimplify, lookatarighttriangle:

cos(arctan x) =1√

1 + x2

So

ddx

arctan(x) =1

1 + x2

.

.x

.1..y = arctan x

.√1 + x2

Page 43: Lesson 16: Inverse Trigonometric Functions

. . . . . .

Thederivativeofarctan

Let y = arctan x, so x = tan y. Then

sec2 ydydx

= 1 =⇒ dydx

=1

sec2 y= cos2(arctan x)

Tosimplify, lookatarighttriangle:

cos(arctan x) =1√

1 + x2

So

ddx

arctan(x) =1

1 + x2

.

.x

.1

..y = arctan x

.√1 + x2

Page 44: Lesson 16: Inverse Trigonometric Functions

. . . . . .

Thederivativeofarctan

Let y = arctan x, so x = tan y. Then

sec2 ydydx

= 1 =⇒ dydx

=1

sec2 y= cos2(arctan x)

Tosimplify, lookatarighttriangle:

cos(arctan x) =1√

1 + x2

So

ddx

arctan(x) =1

1 + x2

.

.x

.1..y = arctan x

.√1 + x2

Page 45: Lesson 16: Inverse Trigonometric Functions

. . . . . .

Thederivativeofarctan

Let y = arctan x, so x = tan y. Then

sec2 ydydx

= 1 =⇒ dydx

=1

sec2 y= cos2(arctan x)

Tosimplify, lookatarighttriangle:

cos(arctan x) =1√

1 + x2

So

ddx

arctan(x) =1

1 + x2

.

.x

.1..y = arctan x

.√1 + x2

Page 46: Lesson 16: Inverse Trigonometric Functions

. . . . . .

Thederivativeofarctan

Let y = arctan x, so x = tan y. Then

sec2 ydydx

= 1 =⇒ dydx

=1

sec2 y= cos2(arctan x)

Tosimplify, lookatarighttriangle:

cos(arctan x) =1√

1 + x2

So

ddx

arctan(x) =1

1 + x2

.

.x

.1..y = arctan x

.√1 + x2

Page 47: Lesson 16: Inverse Trigonometric Functions

. . . . . .

Thederivativeofarctan

Let y = arctan x, so x = tan y. Then

sec2 ydydx

= 1 =⇒ dydx

=1

sec2 y= cos2(arctan x)

Tosimplify, lookatarighttriangle:

cos(arctan x) =1√

1 + x2

So

ddx

arctan(x) =1

1 + x2 .

.x

.1..y = arctan x

.√1 + x2

Page 48: Lesson 16: Inverse Trigonometric Functions

. . . . . .

Graphingarctananditsderivative

. .x

.y

.arctan

.1

1 + x2

.π/2

.−π/2

Page 49: Lesson 16: Inverse Trigonometric Functions

. . . . . .

ExampleLet f(x) = arctan

√x. Find f′(x).

Solution

ddx

arctan√x =

1

1 +(√

x)2 d

dx√x =

11 + x

· 12√x

=1

2√x + 2x

√x

Page 50: Lesson 16: Inverse Trigonometric Functions

. . . . . .

ExampleLet f(x) = arctan

√x. Find f′(x).

Solution

ddx

arctan√x =

1

1 +(√

x)2 d

dx√x =

11 + x

· 12√x

=1

2√x + 2x

√x

Page 51: Lesson 16: Inverse Trigonometric Functions

. . . . . .

Thederivativeofarcsec

Let y = arcsec x, so x = sec y. Then

sec y tan ydydx

= 1 =⇒ dydx

=1

sec y tan y=

1x tan(arcsec(x))

Tosimplify, lookatarighttriangle:

tan(arcsec x) =

√x2 − 11

So

ddx

arcsec(x) =1

x√x2 − 1 .

.x

.1..y = arcsec x

.√

x2 − 1

Page 52: Lesson 16: Inverse Trigonometric Functions

. . . . . .

Thederivativeofarcsec

Let y = arcsec x, so x = sec y. Then

sec y tan ydydx

= 1 =⇒ dydx

=1

sec y tan y=

1x tan(arcsec(x))

Tosimplify, lookatarighttriangle:

tan(arcsec x) =

√x2 − 11

So

ddx

arcsec(x) =1

x√x2 − 1

.

.x

.1..y = arcsec x

.√

x2 − 1

Page 53: Lesson 16: Inverse Trigonometric Functions

. . . . . .

Thederivativeofarcsec

Let y = arcsec x, so x = sec y. Then

sec y tan ydydx

= 1 =⇒ dydx

=1

sec y tan y=

1x tan(arcsec(x))

Tosimplify, lookatarighttriangle:

tan(arcsec x) =

√x2 − 11

So

ddx

arcsec(x) =1

x√x2 − 1

.

.x

.1..y = arcsec x

.√

x2 − 1

Page 54: Lesson 16: Inverse Trigonometric Functions

. . . . . .

Thederivativeofarcsec

Let y = arcsec x, so x = sec y. Then

sec y tan ydydx

= 1 =⇒ dydx

=1

sec y tan y=

1x tan(arcsec(x))

Tosimplify, lookatarighttriangle:

tan(arcsec x) =

√x2 − 11

So

ddx

arcsec(x) =1

x√x2 − 1

.

.x

.1

..y = arcsec x

.√

x2 − 1

Page 55: Lesson 16: Inverse Trigonometric Functions

. . . . . .

Thederivativeofarcsec

Let y = arcsec x, so x = sec y. Then

sec y tan ydydx

= 1 =⇒ dydx

=1

sec y tan y=

1x tan(arcsec(x))

Tosimplify, lookatarighttriangle:

tan(arcsec x) =

√x2 − 11

So

ddx

arcsec(x) =1

x√x2 − 1

.

.x

.1..y = arcsec x

.√

x2 − 1

Page 56: Lesson 16: Inverse Trigonometric Functions

. . . . . .

Thederivativeofarcsec

Let y = arcsec x, so x = sec y. Then

sec y tan ydydx

= 1 =⇒ dydx

=1

sec y tan y=

1x tan(arcsec(x))

Tosimplify, lookatarighttriangle:

tan(arcsec x) =

√x2 − 11

So

ddx

arcsec(x) =1

x√x2 − 1

.

.x

.1..y = arcsec x

.√

x2 − 1

Page 57: Lesson 16: Inverse Trigonometric Functions

. . . . . .

Thederivativeofarcsec

Let y = arcsec x, so x = sec y. Then

sec y tan ydydx

= 1 =⇒ dydx

=1

sec y tan y=

1x tan(arcsec(x))

Tosimplify, lookatarighttriangle:

tan(arcsec x) =

√x2 − 11

So

ddx

arcsec(x) =1

x√x2 − 1 .

.x

.1..y = arcsec x

.√

x2 − 1

Page 58: Lesson 16: Inverse Trigonometric Functions

. . . . . .

AnotherExample

ExampleLet f(x) = earcsec x. Find f′(x).

Solution

f′(x) = earcsec x · 1

x√x2 − 1

Page 59: Lesson 16: Inverse Trigonometric Functions

. . . . . .

AnotherExample

ExampleLet f(x) = earcsec x. Find f′(x).

Solution

f′(x) = earcsec x · 1

x√x2 − 1

Page 60: Lesson 16: Inverse Trigonometric Functions

. . . . . .

Outline

InverseTrigonometricFunctions

DerivativesofInverseTrigonometricFunctionsArcsineArccosineArctangentArcsecant

Applications

Page 61: Lesson 16: Inverse Trigonometric Functions

. . . . . .

Application

ExampleOneoftheguidingprinciplesofmostsportsisto“keepyoureyeontheball.” Inbaseball, abatterstands 2 ftawayfromhomeplateasapitchisthrownwithavelocityof 130 ft/sec (about90mph). Atwhatratedoesthebatter’sangleofgazeneedtochangetofollowtheballasitcrosseshomeplate?

Page 62: Lesson 16: Inverse Trigonometric Functions

. . . . . .

Let y(t) bethedistancefromtheballtohomeplate, and θ theanglethebatter’seyesmakewithhomeplatewhilefollowingtheball. Weknow y′ = −130 andwewant θ′ atthemomentthaty = 0.

Wehave θ = arctan(y/2).Thus

dt=

11 + (y/2)2

· 12dydt

When y = 0 and y′ = −130,then

dt

∣∣∣∣y=0

=1

1 + 0·12(−130) = −65 rad/sec

Thehumaneyecanonlytrackat 3 rad/sec!

..2 ft

.y

.130 ft/sec

.

Page 63: Lesson 16: Inverse Trigonometric Functions

. . . . . .

Let y(t) bethedistancefromtheballtohomeplate, and θ theanglethebatter’seyesmakewithhomeplatewhilefollowingtheball. Weknow y′ = −130 andwewant θ′ atthemomentthaty = 0.

Wehave θ = arctan(y/2).Thus

dt=

11 + (y/2)2

· 12dydt

When y = 0 and y′ = −130,then

dt

∣∣∣∣y=0

=1

1 + 0·12(−130) = −65 rad/sec

Thehumaneyecanonlytrackat 3 rad/sec!

..2 ft

.y

.130 ft/sec

.

Page 64: Lesson 16: Inverse Trigonometric Functions

. . . . . .

Let y(t) bethedistancefromtheballtohomeplate, and θ theanglethebatter’seyesmakewithhomeplatewhilefollowingtheball. Weknow y′ = −130 andwewant θ′ atthemomentthaty = 0.

Wehave θ = arctan(y/2).Thus

dt=

11 + (y/2)2

· 12dydt

When y = 0 and y′ = −130,then

dt

∣∣∣∣y=0

=1

1 + 0·12(−130) = −65 rad/sec

Thehumaneyecanonlytrackat 3 rad/sec!

..2 ft

.y

.130 ft/sec

.

Page 65: Lesson 16: Inverse Trigonometric Functions

. . . . . .

Let y(t) bethedistancefromtheballtohomeplate, and θ theanglethebatter’seyesmakewithhomeplatewhilefollowingtheball. Weknow y′ = −130 andwewant θ′ atthemomentthaty = 0.

Wehave θ = arctan(y/2).Thus

dt=

11 + (y/2)2

· 12dydt

When y = 0 and y′ = −130,then

dt

∣∣∣∣y=0

=1

1 + 0·12(−130) = −65 rad/sec

Thehumaneyecanonlytrackat 3 rad/sec!

..2 ft

.y

.130 ft/sec

.

Page 66: Lesson 16: Inverse Trigonometric Functions

. . . . . .

Recap

y y′

arcsin x1√

1− x2

arccos x − 1√1− x2

arctan x1

1 + x2

arccot x − 11 + x2

arcsec x1

x√x2 − 1

arccsc x − 1

x√x2 − 1

I Remarkablethatthederivativesofthesetranscendental functionsarealgebraic(orevenrational!)