86
. . . . . . Section 2.6 Implicit Differentiation V63.0121.027, Calculus I October 8, 2009 Announcements I Midterm next Thursday, covering §§1.1–2.4. . . Image credit: Telstar Logistics

Lesson 11: Implicit Differentiation

Embed Size (px)

DESCRIPTION

Implicit differentiation allows us to find slopes of lines tangent to curves that are not graphs of functions. Almost all of the time (yes, that is a mathematical term!) we can assume the curve comprises the graph of a function and differentiate using the chain rule.

Citation preview

Page 1: Lesson 11: Implicit Differentiation

. . . . . .

Section2.6ImplicitDifferentiation

V63.0121.027, CalculusI

October8, 2009

Announcements

I MidtermnextThursday, covering§§1.1–2.4.

..Imagecredit: TelstarLogistics

Page 2: Lesson 11: Implicit Differentiation

. . . . . .

Outline

Thebigidea, byexample

ExamplesVerticalandHorizontalTangentsOrthogonalTrajectoriesChemistry

Thepowerruleforrationalpowers

Page 3: Lesson 11: Implicit Differentiation

. . . . . .

MotivatingExample

ProblemFindtheslopeofthelinewhichistangenttothecurve

x2 + y2 = 1

atthepoint (3/5,−4/5).

. .x

.y

.Solution(Explicit)

I Isolate: y2 = 1− x2 =⇒ y = −√1− x2. (Whythe −?)

I Differentiate:dydx

= − −2x2√1− x2

=x√

1− x2

I Evaluate:dydx

∣∣∣∣x=3/5

=3/5√

1− (3/5)2=

3/54/5

=34.

Page 4: Lesson 11: Implicit Differentiation

. . . . . .

MotivatingExample

ProblemFindtheslopeofthelinewhichistangenttothecurve

x2 + y2 = 1

atthepoint (3/5,−4/5).

. .x

.y

.Solution(Explicit)

I Isolate: y2 = 1− x2 =⇒ y = −√1− x2. (Whythe −?)

I Differentiate:dydx

= − −2x2√1− x2

=x√

1− x2

I Evaluate:dydx

∣∣∣∣x=3/5

=3/5√

1− (3/5)2=

3/54/5

=34.

Page 5: Lesson 11: Implicit Differentiation

. . . . . .

MotivatingExample

ProblemFindtheslopeofthelinewhichistangenttothecurve

x2 + y2 = 1

atthepoint (3/5,−4/5).

. .x

.y

.

Solution(Explicit)

I Isolate: y2 = 1− x2 =⇒ y = −√1− x2. (Whythe −?)

I Differentiate:dydx

= − −2x2√1− x2

=x√

1− x2

I Evaluate:dydx

∣∣∣∣x=3/5

=3/5√

1− (3/5)2=

3/54/5

=34.

Page 6: Lesson 11: Implicit Differentiation

. . . . . .

MotivatingExample

ProblemFindtheslopeofthelinewhichistangenttothecurve

x2 + y2 = 1

atthepoint (3/5,−4/5).

. .x

.y

.Solution(Explicit)

I Isolate: y2 = 1− x2 =⇒ y = −√1− x2. (Whythe −?)

I Differentiate:dydx

= − −2x2√1− x2

=x√

1− x2

I Evaluate:dydx

∣∣∣∣x=3/5

=3/5√

1− (3/5)2=

3/54/5

=34.

Page 7: Lesson 11: Implicit Differentiation

. . . . . .

MotivatingExample

ProblemFindtheslopeofthelinewhichistangenttothecurve

x2 + y2 = 1

atthepoint (3/5,−4/5).

. .x

.y

.Solution(Explicit)

I Isolate: y2 = 1− x2 =⇒ y = −√1− x2. (Whythe −?)

I Differentiate:dydx

= − −2x2√1− x2

=x√

1− x2

I Evaluate:dydx

∣∣∣∣x=3/5

=3/5√

1− (3/5)2=

3/54/5

=34.

Page 8: Lesson 11: Implicit Differentiation

. . . . . .

MotivatingExample

ProblemFindtheslopeofthelinewhichistangenttothecurve

x2 + y2 = 1

atthepoint (3/5,−4/5).

. .x

.y

.Solution(Explicit)

I Isolate: y2 = 1− x2 =⇒ y = −√1− x2. (Whythe −?)

I Differentiate:dydx

= − −2x2√1− x2

=x√

1− x2

I Evaluate:dydx

∣∣∣∣x=3/5

=3/5√

1− (3/5)2=

3/54/5

=34.

Page 9: Lesson 11: Implicit Differentiation

. . . . . .

MotivatingExample

ProblemFindtheslopeofthelinewhichistangenttothecurve

x2 + y2 = 1

atthepoint (3/5,−4/5).

. .x

.y

.Solution(Explicit)

I Isolate: y2 = 1− x2 =⇒ y = −√1− x2. (Whythe −?)

I Differentiate:dydx

= − −2x2√1− x2

=x√

1− x2

I Evaluate:dydx

∣∣∣∣x=3/5

=3/5√

1− (3/5)2=

3/54/5

=34.

Page 10: Lesson 11: Implicit Differentiation

. . . . . .

MotivatingExample, anotherway

Weknowthat x2 + y2 = 1 doesnotdefine y asafunctionof x,butsupposeitdid.

I Supposewehad y = f(x), sothat

x2 + (f(x))2 = 1

I Wecoulddifferentiatethisequationtoget

2x + 2f(x) · f′(x) = 0

I Wecouldthensolvetoget

f′(x) = − xf(x)

Page 11: Lesson 11: Implicit Differentiation

. . . . . .

MotivatingExample, anotherway

Weknowthat x2 + y2 = 1 doesnotdefine y asafunctionof x,butsupposeitdid.

I Supposewehad y = f(x), sothat

x2 + (f(x))2 = 1

I Wecoulddifferentiatethisequationtoget

2x + 2f(x) · f′(x) = 0

I Wecouldthensolvetoget

f′(x) = − xf(x)

Page 12: Lesson 11: Implicit Differentiation

. . . . . .

MotivatingExample, anotherway

Weknowthat x2 + y2 = 1 doesnotdefine y asafunctionof x,butsupposeitdid.

I Supposewehad y = f(x), sothat

x2 + (f(x))2 = 1

I Wecoulddifferentiatethisequationtoget

2x + 2f(x) · f′(x) = 0

I Wecouldthensolvetoget

f′(x) = − xf(x)

Page 13: Lesson 11: Implicit Differentiation

. . . . . .

Yes, wecan!

Thebeautifulfact(i.e., deeptheorem)isthatthisworks!

I “Near”mostpointsonthecurve x2 + y2 = 1,thecurveresemblesthegraphofafunction.

I So f(x) is defined“locally”, almosteverywhere andisdifferentiable

I Thechainrulethenappliesforthislocalchoice.

. .x

.y

.

Page 14: Lesson 11: Implicit Differentiation

. . . . . .

Yes, wecan!

Thebeautifulfact(i.e., deeptheorem)isthatthisworks!

I “Near”mostpointsonthecurve x2 + y2 = 1,thecurveresemblesthegraphofafunction.

I So f(x) is defined“locally”, almosteverywhere andisdifferentiable

I Thechainrulethenappliesforthislocalchoice.

. .x

.y

.

Page 15: Lesson 11: Implicit Differentiation

. . . . . .

Yes, wecan!

Thebeautifulfact(i.e., deeptheorem)isthatthisworks!

I “Near”mostpointsonthecurve x2 + y2 = 1,thecurveresemblesthegraphofafunction.

I So f(x) is defined“locally”, almosteverywhere andisdifferentiable

I Thechainrulethenappliesforthislocalchoice.

. .x

.y

.

.lookslikeafunction

Page 16: Lesson 11: Implicit Differentiation

. . . . . .

Yes, wecan!

Thebeautifulfact(i.e., deeptheorem)isthatthisworks!

I “Near”mostpointsonthecurve x2 + y2 = 1,thecurveresemblesthegraphofafunction.

I So f(x) is defined“locally”, almosteverywhere andisdifferentiable

I Thechainrulethenappliesforthislocalchoice.

. .x

.y

.

.

Page 17: Lesson 11: Implicit Differentiation

. . . . . .

Yes, wecan!

Thebeautifulfact(i.e., deeptheorem)isthatthisworks!

I “Near”mostpointsonthecurve x2 + y2 = 1,thecurveresemblesthegraphofafunction.

I So f(x) is defined“locally”, almosteverywhere andisdifferentiable

I Thechainrulethenappliesforthislocalchoice.

. .x

.y

.

.

Page 18: Lesson 11: Implicit Differentiation

. . . . . .

Yes, wecan!

Thebeautifulfact(i.e., deeptheorem)isthatthisworks!

I “Near”mostpointsonthecurve x2 + y2 = 1,thecurveresemblesthegraphofafunction.

I So f(x) is defined“locally”, almosteverywhere andisdifferentiable

I Thechainrulethenappliesforthislocalchoice.

. .x

.y

.

.

.lookslikeafunction

Page 19: Lesson 11: Implicit Differentiation

. . . . . .

Yes, wecan!

Thebeautifulfact(i.e., deeptheorem)isthatthisworks!

I “Near”mostpointsonthecurve x2 + y2 = 1,thecurveresemblesthegraphofafunction.

I So f(x) is defined“locally”, almosteverywhere andisdifferentiable

I Thechainrulethenappliesforthislocalchoice.

. .x

.y

.

.

Page 20: Lesson 11: Implicit Differentiation

. . . . . .

Yes, wecan!

Thebeautifulfact(i.e., deeptheorem)isthatthisworks!

I “Near”mostpointsonthecurve x2 + y2 = 1,thecurveresemblesthegraphofafunction.

I So f(x) is defined“locally”, almosteverywhere andisdifferentiable

I Thechainrulethenappliesforthislocalchoice.

. .x

.y

.

.

Page 21: Lesson 11: Implicit Differentiation

. . . . . .

Yes, wecan!

Thebeautifulfact(i.e., deeptheorem)isthatthisworks!

I “Near”mostpointsonthecurve x2 + y2 = 1,thecurveresemblesthegraphofafunction.

I So f(x) is defined“locally”, almosteverywhere andisdifferentiable

I Thechainrulethenappliesforthislocalchoice.

. .x

.y

.

.

.does not look like afunction, but that’sOK—there are onlytwo points like this

.

Page 22: Lesson 11: Implicit Differentiation

. . . . . .

Yes, wecan!

Thebeautifulfact(i.e., deeptheorem)isthatthisworks!

I “Near”mostpointsonthecurve x2 + y2 = 1,thecurveresemblesthegraphofafunction.

I So f(x) is defined“locally”, almosteverywhere andisdifferentiable

I Thechainrulethenappliesforthislocalchoice.

. .x

.y

.

.lookslikeafunction

Page 23: Lesson 11: Implicit Differentiation

. . . . . .

Yes, wecan!

Thebeautifulfact(i.e., deeptheorem)isthatthisworks!

I “Near”mostpointsonthecurve x2 + y2 = 1,thecurveresemblesthegraphofafunction.

I So f(x) is defined“locally”, almosteverywhere andisdifferentiable

I Thechainrulethenappliesforthislocalchoice.

. .x

.y

.

.lookslikeafunction

Page 24: Lesson 11: Implicit Differentiation

. . . . . .

MotivatingExample, again, withLeibniznotation

ProblemFindtheslopeofthelinewhichistangenttothecurvex2 + y2 = 1 atthepoint (3/5,−4/5).

Solution

I Differentiate: 2x + 2ydydx

= 0

Remember y isassumedtobeafunctionof x!

I Isolate:dydx

= − xy.

I Evaluate:dydx

∣∣∣∣( 35 ,− 4

5)=

3/54/5

=34.

Page 25: Lesson 11: Implicit Differentiation

. . . . . .

MotivatingExample, again, withLeibniznotation

ProblemFindtheslopeofthelinewhichistangenttothecurvex2 + y2 = 1 atthepoint (3/5,−4/5).

Solution

I Differentiate: 2x + 2ydydx

= 0

Remember y isassumedtobeafunctionof x!

I Isolate:dydx

= − xy.

I Evaluate:dydx

∣∣∣∣( 35 ,− 4

5)=

3/54/5

=34.

Page 26: Lesson 11: Implicit Differentiation

. . . . . .

MotivatingExample, again, withLeibniznotation

ProblemFindtheslopeofthelinewhichistangenttothecurvex2 + y2 = 1 atthepoint (3/5,−4/5).

Solution

I Differentiate: 2x + 2ydydx

= 0

Remember y isassumedtobeafunctionof x!

I Isolate:dydx

= − xy.

I Evaluate:dydx

∣∣∣∣( 35 ,− 4

5)=

3/54/5

=34.

Page 27: Lesson 11: Implicit Differentiation

. . . . . .

MotivatingExample, again, withLeibniznotation

ProblemFindtheslopeofthelinewhichistangenttothecurvex2 + y2 = 1 atthepoint (3/5,−4/5).

Solution

I Differentiate: 2x + 2ydydx

= 0

Remember y isassumedtobeafunctionof x!

I Isolate:dydx

= − xy.

I Evaluate:dydx

∣∣∣∣( 35 ,− 4

5)=

3/54/5

=34.

Page 28: Lesson 11: Implicit Differentiation

. . . . . .

MotivatingExample, again, withLeibniznotation

ProblemFindtheslopeofthelinewhichistangenttothecurvex2 + y2 = 1 atthepoint (3/5,−4/5).

Solution

I Differentiate: 2x + 2ydydx

= 0

Remember y isassumedtobeafunctionof x!

I Isolate:dydx

= − xy.

I Evaluate:dydx

∣∣∣∣( 35 ,− 4

5)=

3/54/5

=34.

Page 29: Lesson 11: Implicit Differentiation

. . . . . .

Summary

Ifarelationisgivenbetween x and y whichisn’tafunction:

I “Mostofthetime”, i.e., “atmostplaces” y canbeassumedtobeafunctionofx

I wemaydifferentiatetherelationasis

I Solvingfordydx

doesgivethe

slopeofthetangentlinetothecurveatapointonthecurve.

. .x

.y

.

Page 30: Lesson 11: Implicit Differentiation

. . . . . .

Mnemonic

Explicit Implicit

y = f(x) F(x, y) = k

Page 31: Lesson 11: Implicit Differentiation

. . . . . .

Outline

Thebigidea, byexample

ExamplesVerticalandHorizontalTangentsOrthogonalTrajectoriesChemistry

Thepowerruleforrationalpowers

Page 32: Lesson 11: Implicit Differentiation

. . . . . .

ExampleFindtheequationofthelinetangenttothecurve

y2 = x2(x + 1) = x3 + x2

atthepoint (3,−6).

.

.

SolutionDifferentiatingtheexpressionimplicitlywithrespectto x gives

2ydydx

= 3x2 + 2x, sodydx

=3x2 + 2x

2y, and

dydx

∣∣∣∣(3,−6)

=3 · 32 + 2 · 3

2(−6)= −33

12= −11

4.

Thustheequationofthetangentlineis y + 6 = −114

(x− 3).

Page 33: Lesson 11: Implicit Differentiation

. . . . . .

ExampleFindtheequationofthelinetangenttothecurve

y2 = x2(x + 1) = x3 + x2

atthepoint (3,−6).

.

.SolutionDifferentiatingtheexpressionimplicitlywithrespectto x gives

2ydydx

= 3x2 + 2x, sodydx

=3x2 + 2x

2y, and

dydx

∣∣∣∣(3,−6)

=3 · 32 + 2 · 3

2(−6)= −33

12= −11

4.

Thustheequationofthetangentlineis y + 6 = −114

(x− 3).

Page 34: Lesson 11: Implicit Differentiation

. . . . . .

ExampleFindtheequationofthelinetangenttothecurve

y2 = x2(x + 1) = x3 + x2

atthepoint (3,−6).

.

.SolutionDifferentiatingtheexpressionimplicitlywithrespectto x gives

2ydydx

= 3x2 + 2x, sodydx

=3x2 + 2x

2y, and

dydx

∣∣∣∣(3,−6)

=3 · 32 + 2 · 3

2(−6)= −33

12= −11

4.

Thustheequationofthetangentlineis y + 6 = −114

(x− 3).

Page 35: Lesson 11: Implicit Differentiation

. . . . . .

Lineequationforms

I slope-interceptform

y = mx + b

wheretheslopeis m and (0,b) isontheline.I point-slopeform

y− y0 = m(x− x0)

wheretheslopeis m and (x0, y0) isontheline.

Page 36: Lesson 11: Implicit Differentiation

. . . . . .

ExampleFindthehorizontaltangentlinestothesamecurve: y2 = x3 + x2

SolutionWehavetosolvethesetwoequations:

.

.y2 = x3 + x2

[(x, y) is onthe curve]

.1.3x2 + 2x

2y= 0

[tangent lineis horizontal]

.2

Page 37: Lesson 11: Implicit Differentiation

. . . . . .

ExampleFindthehorizontaltangentlinestothesamecurve: y2 = x3 + x2

SolutionWehavetosolvethesetwoequations:

.

.y2 = x3 + x2

[(x, y) is onthe curve]

.1.3x2 + 2x

2y= 0

[tangent lineis horizontal]

.2

Page 38: Lesson 11: Implicit Differentiation

. . . . . .

Solution, continuedI Solvingthesecondequationgives

3x2 + 2x2y

= 0 =⇒ 3x2 + 2x = 0 =⇒ x(3x + 2) = 0

(aslongas y ̸= 0). So x = 0 or 3x + 2 = 0.

I Substituting x = 0 intothe first equationgives

y2 = 03 + 02 = 0 =⇒ y = 0

whichwe’vedisallowed. Sonohorizontaltangentsdownthatroad.

I Substituting x = −2/3 intothefirstequationgives

y2 = (−23)3 + (−2

3)2 =⇒ y = ± 2

3√3

,

sotherearetwohorizontaltangents.

Page 39: Lesson 11: Implicit Differentiation

. . . . . .

Solution, continuedI Solvingthesecondequationgives

3x2 + 2x2y

= 0 =⇒ 3x2 + 2x = 0 =⇒ x(3x + 2) = 0

(aslongas y ̸= 0). So x = 0 or 3x + 2 = 0.I Substituting x = 0 intothe first equationgives

y2 = 03 + 02 = 0 =⇒ y = 0

whichwe’vedisallowed. Sonohorizontaltangentsdownthatroad.

I Substituting x = −2/3 intothefirstequationgives

y2 = (−23)3 + (−2

3)2 =⇒ y = ± 2

3√3

,

sotherearetwohorizontaltangents.

Page 40: Lesson 11: Implicit Differentiation

. . . . . .

Solution, continuedI Solvingthesecondequationgives

3x2 + 2x2y

= 0 =⇒ 3x2 + 2x = 0 =⇒ x(3x + 2) = 0

(aslongas y ̸= 0). So x = 0 or 3x + 2 = 0.I Substituting x = 0 intothe first equationgives

y2 = 03 + 02 = 0 =⇒ y = 0

whichwe’vedisallowed. Sonohorizontaltangentsdownthatroad.

I Substituting x = −2/3 intothefirstequationgives

y2 = (−23)3 + (−2

3)2 =⇒ y = ± 2

3√3

,

sotherearetwohorizontaltangents.

Page 41: Lesson 11: Implicit Differentiation

. . . . . .

HorizontalTangents

..

.(−2

3 ,2

3√3

).

.(−2

3 ,−2

3√3

)

.

.node

..(−1, 0)

Page 42: Lesson 11: Implicit Differentiation

. . . . . .

HorizontalTangents

..

.(−2

3 ,2

3√3

).

.(−2

3 ,−2

3√3

) .

.node

..(−1, 0)

Page 43: Lesson 11: Implicit Differentiation

. . . . . .

ExampleFindthe vertical tangentlinestothesamecurve: y2 = x3 + x2

Solution

I Tangentlinesareverticalwhendxdy

= 0.

I Differentiating x implicitlyasafunctionof y gives

2y = 3x2dxdy

+ 2xdxdy

, sodxdy

=2y

3x2 + 2x(noticethisisthe

reciprocalof dy/dx).I Wemustsolve

.

.y2 = x3 + x2

[(x, y) is onthe curve]

.1.

2y3x2 + 2x

= 0

[tangent lineis vertical]

.2

Page 44: Lesson 11: Implicit Differentiation

. . . . . .

ExampleFindthe vertical tangentlinestothesamecurve: y2 = x3 + x2

Solution

I Tangentlinesareverticalwhendxdy

= 0.

I Differentiating x implicitlyasafunctionof y gives

2y = 3x2dxdy

+ 2xdxdy

, sodxdy

=2y

3x2 + 2x(noticethisisthe

reciprocalof dy/dx).I Wemustsolve

.

.y2 = x3 + x2

[(x, y) is onthe curve]

.1.

2y3x2 + 2x

= 0

[tangent lineis vertical]

.2

Page 45: Lesson 11: Implicit Differentiation

. . . . . .

ExampleFindthe vertical tangentlinestothesamecurve: y2 = x3 + x2

Solution

I Tangentlinesareverticalwhendxdy

= 0.

I Differentiating x implicitlyasafunctionof y gives

2y = 3x2dxdy

+ 2xdxdy

, sodxdy

=2y

3x2 + 2x(noticethisisthe

reciprocalof dy/dx).

I Wemustsolve

.

.y2 = x3 + x2

[(x, y) is onthe curve]

.1.

2y3x2 + 2x

= 0

[tangent lineis vertical]

.2

Page 46: Lesson 11: Implicit Differentiation

. . . . . .

ExampleFindthe vertical tangentlinestothesamecurve: y2 = x3 + x2

Solution

I Tangentlinesareverticalwhendxdy

= 0.

I Differentiating x implicitlyasafunctionof y gives

2y = 3x2dxdy

+ 2xdxdy

, sodxdy

=2y

3x2 + 2x(noticethisisthe

reciprocalof dy/dx).I Wemustsolve

.

.y2 = x3 + x2

[(x, y) is onthe curve]

.1.

2y3x2 + 2x

= 0

[tangent lineis vertical]

.2

Page 47: Lesson 11: Implicit Differentiation

. . . . . .

Solution, continued

I Solvingthesecondequationgives

2y3x2 + 2x

= 0 =⇒ 2y = 0 =⇒ y = 0

(aslongas 3x2 + 2x ̸= 0).

I Substituting y = 0 intothe first equationgives

0 = x3 + x2 = x2(x + 1)

So x = 0 or x = −1.I x = 0 isnotallowedbythefirstequation, but

dxdy

∣∣∣∣(−1,0)

= 0,

sohereisaverticaltangent.

Page 48: Lesson 11: Implicit Differentiation

. . . . . .

Solution, continued

I Solvingthesecondequationgives

2y3x2 + 2x

= 0 =⇒ 2y = 0 =⇒ y = 0

(aslongas 3x2 + 2x ̸= 0).I Substituting y = 0 intothe first equationgives

0 = x3 + x2 = x2(x + 1)

So x = 0 or x = −1.

I x = 0 isnotallowedbythefirstequation, but

dxdy

∣∣∣∣(−1,0)

= 0,

sohereisaverticaltangent.

Page 49: Lesson 11: Implicit Differentiation

. . . . . .

Solution, continued

I Solvingthesecondequationgives

2y3x2 + 2x

= 0 =⇒ 2y = 0 =⇒ y = 0

(aslongas 3x2 + 2x ̸= 0).I Substituting y = 0 intothe first equationgives

0 = x3 + x2 = x2(x + 1)

So x = 0 or x = −1.I x = 0 isnotallowedbythefirstequation, but

dxdy

∣∣∣∣(−1,0)

= 0,

sohereisaverticaltangent.

Page 50: Lesson 11: Implicit Differentiation

. . . . . .

VerticalTangents

.

..(−2

3 ,2

3√3

).

.(−2

3 ,−2

3√3

)

.

.node

..(−1, 0)

Page 51: Lesson 11: Implicit Differentiation

. . . . . .

ExampleFind y′ if y5 + x2y3 = 1 + y sin(x2).

SolutionDifferentiatingimplicitly:

5y4y′ + (2x)y3 + x2(3y2y′) = y′ sin(x2) + y cos(x2)(2x)

Collectalltermswith y′ ononesideandalltermswithout y′ ontheother:

5y4y′ + 3x2y2y′ − sin(x2)y′ = −2xy3 + 2xy cos(x2)

Nowfactoranddivide:

y′ =2xy(cos x2 − y2)

5y4 + 3x2y2 − sin x2

Page 52: Lesson 11: Implicit Differentiation

. . . . . .

ExampleFind y′ if y5 + x2y3 = 1 + y sin(x2).

SolutionDifferentiatingimplicitly:

5y4y′ + (2x)y3 + x2(3y2y′) = y′ sin(x2) + y cos(x2)(2x)

Collectalltermswith y′ ononesideandalltermswithout y′ ontheother:

5y4y′ + 3x2y2y′ − sin(x2)y′ = −2xy3 + 2xy cos(x2)

Nowfactoranddivide:

y′ =2xy(cos x2 − y2)

5y4 + 3x2y2 − sin x2

Page 53: Lesson 11: Implicit Differentiation

. . . . . .

ExamplesExampleShowthatthefamiliesofcurves

xy = c x2 − y2 = k

areorthogonal, thatis, theyintersectatrightangles.

SolutionInthefirstcurve,

y + xy′ = 0 =⇒ y′ = −yx

Inthesecondcurve,

2x− 2yy′ = 0 = =⇒ y′ =xy

Theproductis −1, sothetangentlinesareperpendicularwherevertheyintersect.

Page 54: Lesson 11: Implicit Differentiation

. . . . . .

OrthogonalFamiliesofCurves

. .x

.y

.xy=1

.xy=2

.xy=3

.xy=−1

.xy=−2

.xy=−3

.x2−

y2=1

.x2−

y2=2

.x2−

y2=3

Page 55: Lesson 11: Implicit Differentiation

. . . . . .

OrthogonalFamiliesofCurves

. .x

.y

.xy=1

.xy=2

.xy=3

.xy=−1

.xy=−2

.xy=−3

.x2−

y2=1

.x2−

y2=2

.x2−

y2=3

Page 56: Lesson 11: Implicit Differentiation

. . . . . .

OrthogonalFamiliesofCurves

. .x

.y

.xy=1

.xy=2

.xy=3

.xy=−1

.xy=−2

.xy=−3

.x2−

y2=1

.x2−

y2=2

.x2−

y2=3

Page 57: Lesson 11: Implicit Differentiation

. . . . . .

OrthogonalFamiliesofCurves

. .x

.y

.xy=1

.xy=2

.xy=3

.xy=−1

.xy=−2

.xy=−3

.x2−

y2=1

.x2−

y2=2

.x2−

y2=3

Page 58: Lesson 11: Implicit Differentiation

. . . . . .

OrthogonalFamiliesofCurves

. .x

.y

.xy=1

.xy=2

.xy=3

.xy=−1

.xy=−2

.xy=−3

.x2−

y2=1

.x2−

y2=2

.x2−

y2=3

Page 59: Lesson 11: Implicit Differentiation

. . . . . .

OrthogonalFamiliesofCurves

. .x

.y

.xy=1

.xy=2

.xy=3

.xy=−1

.xy=−2

.xy=−3

.x2−

y2=1

.x2−

y2=2

.x2−

y2=3

Page 60: Lesson 11: Implicit Differentiation

. . . . . .

OrthogonalFamiliesofCurves

. .x

.y

.xy=1

.xy=2

.xy=3

.xy=−1

.xy=−2

.xy=−3

.x2−

y2=1

.x2−

y2=2

.x2−

y2=3

Page 61: Lesson 11: Implicit Differentiation

. . . . . .

OrthogonalFamiliesofCurves

. .x

.y

.xy=1

.xy=2

.xy=3

.xy=−1

.xy=−2

.xy=−3

.x2−

y2=1

.x2−

y2=2

.x2−

y2=3

Page 62: Lesson 11: Implicit Differentiation

. . . . . .

OrthogonalFamiliesofCurves

. .x

.y

.xy=1

.xy=2

.xy=3

.xy=−1

.xy=−2

.xy=−3

.x2−

y2=1

.x2−

y2=2

.x2−

y2=3

Page 63: Lesson 11: Implicit Differentiation

. . . . . .

OrthogonalFamiliesofCurves

. .x

.y

.xy=1

.xy=2

.xy=3

.xy=−1

.xy=−2

.xy=−3

.x2−

y2=1

.x2−

y2=2

.x2−

y2=3

Page 64: Lesson 11: Implicit Differentiation

. . . . . .

ExamplesExampleShowthatthefamiliesofcurves

xy = c x2 − y2 = k

areorthogonal, thatis, theyintersectatrightangles.

SolutionInthefirstcurve,

y + xy′ = 0 =⇒ y′ = −yx

Inthesecondcurve,

2x− 2yy′ = 0 = =⇒ y′ =xy

Theproductis −1, sothetangentlinesareperpendicularwherevertheyintersect.

Page 65: Lesson 11: Implicit Differentiation

. . . . . .

ExamplesExampleShowthatthefamiliesofcurves

xy = c x2 − y2 = k

areorthogonal, thatis, theyintersectatrightangles.

SolutionInthefirstcurve,

y + xy′ = 0 =⇒ y′ = −yx

Inthesecondcurve,

2x− 2yy′ = 0 = =⇒ y′ =xy

Theproductis −1, sothetangentlinesareperpendicularwherevertheyintersect.

Page 66: Lesson 11: Implicit Differentiation

. . . . . .

MusicSelection

“TheCurseofCurves”byCuteisWhatWeAimFor

Page 67: Lesson 11: Implicit Differentiation

. . . . . .

Idealgases

The idealgaslaw relatestemperature, pressure, andvolumeofagas:

PV = nRT

(R isaconstant, n istheamountofgasinmoles)

.

.Imagecredit: ScottBeale/LaughingSquid

Page 68: Lesson 11: Implicit Differentiation

. . . . . .

Compressibility

DefinitionThe isothermiccompressibility ofafluidisdefinedby

β = −dVdP

1V

withtemperatureheldconstant.

Approximatelywehave

∆V∆P

≈ dVdP

= −βV =⇒ ∆VV

≈ −β∆P

Thesmallerthe β, the“harder”thefluid.

Page 69: Lesson 11: Implicit Differentiation

. . . . . .

Compressibility

DefinitionThe isothermiccompressibility ofafluidisdefinedby

β = −dVdP

1V

withtemperatureheldconstant.

Approximatelywehave

∆V∆P

≈ dVdP

= −βV =⇒ ∆VV

≈ −β∆P

Thesmallerthe β, the“harder”thefluid.

Page 70: Lesson 11: Implicit Differentiation

. . . . . .

ExampleFindtheisothermiccompressibilityofanidealgas.

SolutionIf PV = k (n isconstantforourpurposes, T isconstantbecauseoftheword isothermic, and R reallyisconstant), then

dPdP

· V + PdVdP

= 0 =⇒ dVdP

= −VP

So

β = −1V· dVdP

=1P

Compressibilityandpressureareinverselyrelated.

Page 71: Lesson 11: Implicit Differentiation

. . . . . .

ExampleFindtheisothermiccompressibilityofanidealgas.

SolutionIf PV = k (n isconstantforourpurposes, T isconstantbecauseoftheword isothermic, and R reallyisconstant), then

dPdP

· V + PdVdP

= 0 =⇒ dVdP

= −VP

So

β = −1V· dVdP

=1P

Compressibilityandpressureareinverselyrelated.

Page 72: Lesson 11: Implicit Differentiation

. . . . . .

NonidealgassesNotthatthere’sanythingwrongwiththat

ExampleThe vanderWaalsequationmakesfewersimplifications:(P + a

n2

V2

)(V− nb) = nRT,

where P isthepressure, V thevolume, T thetemperature, nthenumberofmolesofthegas, R aconstant, a isameasureofattractionbetweenparticlesofthegas,and b ameasureofparticlesize.

...Oxygen

..H

..H

..Oxygen

..H

..H

..Oxygen ..H

..H

.

.

.Hydrogenbonds

..Imagecredit: WikimediaCommons

Page 73: Lesson 11: Implicit Differentiation

. . . . . .

NonidealgassesNotthatthere’sanythingwrongwiththat

ExampleThe vanderWaalsequationmakesfewersimplifications:(P + a

n2

V2

)(V− nb) = nRT,

where P isthepressure, V thevolume, T thetemperature, nthenumberofmolesofthegas, R aconstant, a isameasureofattractionbetweenparticlesofthegas,and b ameasureofparticlesize. .

.Imagecredit: WikimediaCommons

Page 74: Lesson 11: Implicit Differentiation

. . . . . .

Let’sfindthecompressibilityofavanderWaalsgas.DifferentiatingthevanderWaalsequationbytreating V asafunctionof P gives(

P +an2

V2

)dVdP

+ (V− bn)

(1− 2an2

V3dVdP

)= 0,

so

β = −1VdVdP

=V2(V− nb)

2abn3 − an2V + PV3

I Whatif a = b = 0?

I Withouttakingthederivative, whatisthesignofdβ

db?

I Withouttakingthederivative, whatisthesignofdβ

da?

Page 75: Lesson 11: Implicit Differentiation

. . . . . .

Let’sfindthecompressibilityofavanderWaalsgas.DifferentiatingthevanderWaalsequationbytreating V asafunctionof P gives(

P +an2

V2

)dVdP

+ (V− bn)

(1− 2an2

V3dVdP

)= 0,

so

β = −1VdVdP

=V2(V− nb)

2abn3 − an2V + PV3

I Whatif a = b = 0?

I Withouttakingthederivative, whatisthesignofdβ

db?

I Withouttakingthederivative, whatisthesignofdβ

da?

Page 76: Lesson 11: Implicit Differentiation

. . . . . .

Let’sfindthecompressibilityofavanderWaalsgas.DifferentiatingthevanderWaalsequationbytreating V asafunctionof P gives(

P +an2

V2

)dVdP

+ (V− bn)

(1− 2an2

V3dVdP

)= 0,

so

β = −1VdVdP

=V2(V− nb)

2abn3 − an2V + PV3

I Whatif a = b = 0?

I Withouttakingthederivative, whatisthesignofdβ

db?

I Withouttakingthederivative, whatisthesignofdβ

da?

Page 77: Lesson 11: Implicit Differentiation

. . . . . .

Let’sfindthecompressibilityofavanderWaalsgas.DifferentiatingthevanderWaalsequationbytreating V asafunctionof P gives(

P +an2

V2

)dVdP

+ (V− bn)

(1− 2an2

V3dVdP

)= 0,

so

β = −1VdVdP

=V2(V− nb)

2abn3 − an2V + PV3

I Whatif a = b = 0?

I Withouttakingthederivative, whatisthesignofdβ

db?

I Withouttakingthederivative, whatisthesignofdβ

da?

Page 78: Lesson 11: Implicit Differentiation

. . . . . .

Let’sfindthecompressibilityofavanderWaalsgas.DifferentiatingthevanderWaalsequationbytreating V asafunctionof P gives(

P +an2

V2

)dVdP

+ (V− bn)

(1− 2an2

V3dVdP

)= 0,

so

β = −1VdVdP

=V2(V− nb)

2abn3 − an2V + PV3

I Whatif a = b = 0?

I Withouttakingthederivative, whatisthesignofdβ

db?

I Withouttakingthederivative, whatisthesignofdβ

da?

Page 79: Lesson 11: Implicit Differentiation

. . . . . .

Nastyderivatives

I

db= −(2abn3 − an2V + PV3)(nV2) − (nbV2 − V3)(2an3)

(2abn3 − an2V + PV3)2

= −nV3

(an2 + PV2

)(PV3 + an2(2bn− V)

)2 < 0

Idβ

da=

n2(bn− V)(2bn− V)V2(PV3 + an2(2bn− V)

)2 > 0

(aslongas V > 2nb, andit’sprobablytruethat V ≫ 2nb).

Page 80: Lesson 11: Implicit Differentiation

. . . . . .

Outline

Thebigidea, byexample

ExamplesVerticalandHorizontalTangentsOrthogonalTrajectoriesChemistry

Thepowerruleforrationalpowers

Page 81: Lesson 11: Implicit Differentiation

. . . . . .

Usingimplicitdifferentiationtofindderivatives

Example

Finddydx

if y =√x.

SolutionIf y =

√x, then

y2 = x,

so

2ydydx

= 1 =⇒ dydx

=12y

=1

2√x.

Page 82: Lesson 11: Implicit Differentiation

. . . . . .

Usingimplicitdifferentiationtofindderivatives

Example

Finddydx

if y =√x.

SolutionIf y =

√x, then

y2 = x,

so

2ydydx

= 1 =⇒ dydx

=12y

=1

2√x.

Page 83: Lesson 11: Implicit Differentiation

. . . . . .

Thepowerruleforrationalpowers

TheoremIf y = xp/q, where p and q areintegers, then y′ =

pqxp/q−1.

Proof.Wehave

yq = xp =⇒ qyq−1dydx

= pxp−1 =⇒ dydx

=pq· x

p−1

yq−1

Now yq−1 = x(p/q)(q−1) = xp−p/q so

xp−1

yq−1 = xp−1−(p−p/q) = xp/q−1

Page 84: Lesson 11: Implicit Differentiation

. . . . . .

Thepowerruleforrationalpowers

TheoremIf y = xp/q, where p and q areintegers, then y′ =

pqxp/q−1.

Proof.Wehave

yq = xp =⇒ qyq−1dydx

= pxp−1 =⇒ dydx

=pq· x

p−1

yq−1

Now yq−1 = x(p/q)(q−1) = xp−p/q so

xp−1

yq−1 = xp−1−(p−p/q) = xp/q−1

Page 85: Lesson 11: Implicit Differentiation

. . . . . .

Thepowerruleforrationalpowers

TheoremIf y = xp/q, where p and q areintegers, then y′ =

pqxp/q−1.

Proof.Wehave

yq = xp =⇒ qyq−1dydx

= pxp−1 =⇒ dydx

=pq· x

p−1

yq−1

Now yq−1 = x(p/q)(q−1) = xp−p/q so

xp−1

yq−1 = xp−1−(p−p/q) = xp/q−1

Page 86: Lesson 11: Implicit Differentiation

. . . . . .

Summary

Ifarelationisgivenbetween x and y whichisn’tafunction:

I “Mostofthetime”, i.e., “atmostplaces” y canbeassumedtobeafunctionofx

I wemaydifferentiatetherelationasis

I Solvingfordydx

doesgivethe

slopeofthetangentlinetothecurveatapointonthecurve.

. .x

.y

.