8
Smart Materials 4 th year Report: Solution to HW (V) Report No: V Date: 18/4/2013 Submitted to: Dr. Mohammad Tawfik Name Mohammad Tawfik Eraky أحمد عراقي محمد توفيق2013/2014

Hw5

Embed Size (px)

Citation preview

Page 1: Hw5

Smart Materials 4thyear

Report: Solution to HW (V)

Report No: V Date: 18/4/2013

Submitted to: Dr. Mohammad Tawfik

Name

Mohammad Tawfik Eraky

محمد توفيق أحمد عراقي

2013/2014

Page 2: Hw5

Pb.1

Solution

Carbon –epoxy (AS4/3501-6) E1 (longitudinal Modulus E1) 45 Gpa E2 (Transverse Modulus) 12 Gpa 𝜈12 (Poisson’s Ratio) 0.19 F1t (longitudinal tensile strength) 1830 Mpa F2t (transverse tensile strength ) 57 Mpa

F6 ( Inplane shear strength) 71Mpa F1c(longitudinal compressive strength) 1096Mpa F1c(transverse compressive strength) 228Mpa

Using MATLAB code (appendix A) we got the following local stresses

𝜎𝑥′𝑥′ 8.4151 Mpa

𝜎𝑦′𝑦′ 6.5849 Mpa

𝜏𝑥′𝑦′ -3.4151 Mpa

Page 3: Hw5

Using the maximum stress criterion

8.4151 Mpa <1096 Mpa<1830Mpa

6.5849 Mpa <57 Mpa<228Mpa

-3.4151 Mpa<71Mpa

The safety factor (minimum’’ R’’) =57

6.5849= 8.656

2b.P

Solution

Using MATLAB code (appendix B) we got the following results

matrixotation R

𝑇 = 0.5 0.5 10.5 0.5 −1−0.5 0.5 0

Page 4: Hw5

𝑄 =

35.3179 1.0595 01.0595 3.5318 0

0 0 3.500 𝐺𝑝𝑎

�̅� =

11.9922 8.4922 15.89308.4922 11.9922 15.8930

7.9445 7.9445 18.3453 𝐺𝑝𝑎

Pb.3

Solution

Using MATLAB code (appendix c) we got the following results

(a) Strains in local axes

ϵx′x′

εy′y′τx′y′

= 0.27450.003

−0.4884 x 𝟏𝟎−𝟑

Page 5: Hw5

(b) Strains in global axes

ϵxx

εyyτxy

= 0.4334−0.1559−0.4127

x 𝟏𝟎−𝟑

(c)

As we see the results stains is non zero value due to Poisson

ratio when tensile load applied in x-direction there is a strain

too in transverse direction

Page 6: Hw5

Appendix A

clc;clear all;close all;

%calculating(local)stresses

ceta=45*pi/180;

c=ceta;

T=[cos(c)^2 sin(c)^2 2*sin(c)*cos(c);

sin(c)^2 cos(c)^2 -2*sin(c)*cos(c);

-sin(c)*cos(c) sin(c)*cos(c) cos(c)^2-sin(c)^2];

sigma_global=[10 ; 5 ; 2.5 ];

sigma_local_Mpa=T*sigma_global;

display(sigma_local_Mpa);

Page 7: Hw5

Appendix B

clc;clear all;close all;

%calculating(local)stresses

ceta=45*pi/180;

c=ceta;

e_1=35;

e_2=3.5;

new_12=0.3;

g_12=1.75;

g_23=0.35;

%outputs

t=[cos(c)^2 sin(c)^2 2*sin(c)*cos(c);

sin(c)^2 cos(c)^2 -2*sin(c)*cos(c);

-sin(c)*cos(c) sin(c)*cos(c) cos(c)^2-sin(c)^2];

new_21=new_12*e_2/e_1;

delta=1-new_12*new_21;

q=[e_1/delta new_12*e_2/delta 0;

new_12*e_2/delta e_2/delta 0;

0 0 2*g_12];

t_inv=inv(t);

q_bar=(t_inv)*q*t;

sigma_global=[10 ; 5 ; 2.5 ];

sigma_local_Mpa=t*sigma_global;

%display

display (q_bar);

Page 8: Hw5

Appendix C clc;clear all;close all;

%calculating(local)stresses

ceta=10*pi/180;

c=ceta;

e_1=35;

e_2=3.5;

new_12=0.3;

g_12=1.75;

g_23=0.35;

%Transformations Matrixes

t=[cos(c)^2 sin(c)^2 2*sin(c)*cos(c);

sin(c)^2 cos(c)^2 -2*sin(c)*cos(c);

-sin(c)*cos(c) sin(c)*cos(c) cos(c)^2-sin(c)^2];

new_21=new_12*e_2/e_1;

delta=1-new_12*new_21;

q=[e_1/delta new_12*e_2/delta 0;

new_12*e_2/delta e_2/delta 0;

0 0 2*g_12];

t_inv=inv(t);

q_bar=(t_inv)*q*t;

% stresses in global axes

sigma_global=[200/20 ; 0 ; 0];

%stresses in local axes

sigma_local=t*sigma_global;

%strains in local axes

strain_local=10^-3*(inv(q))*sigma_local;

%strains in Global Axes

strain_global=(t_inv)*strain_local;

%display ouputs

display (q_bar);

display(sigma_local);

display(strain_local);

display(strain_global);