29
1 Drug Design and pH Jan H. Jensen Department of Chemistry University of Copenhagen http://propka.ki.ku.dk/~jhjensen

Drug Design and pH

Embed Size (px)

DESCRIPTION

http://proteinsandwavefunctions.blogspot.com/2011/02/drug-design-and-ph.html

Citation preview

Page 1: Drug Design and pH

1

Drug Design and pH!Jan H. Jensen!

Department of Chemistry!University of Copenhagen!

http://propka.ki.ku.dk/~jhjensen!

Page 2: Drug Design and pH

2

Drug Design and pH!Getting the protonation state right

on the ligand

and the protein!

The protonation state determines!

Charge and hydrogen bonding properties!

Page 3: Drug Design and pH

3

Page 4: Drug Design and pH

4

pKa value => charge as a function of pH!

q(pH ) = 11+10 pH − pKa

Page 5: Drug Design and pH

5 1ACJ.pdb!

The protonation state determines charge and hydrogen bonding properties!

Page 6: Drug Design and pH

6

Determining pKa values for ligands!

Experimental:!Spectroscopic feature vs pH!

pH!N

MR

Shi

ft!

Computational:!

Hammet-Taft rules !

PH+ P + H+ !

pKa = pKmodel + ρ σ ii

substituents

pKa = ΔGrxn / RT ln(10)

Page 7: Drug Design and pH

7

Ligand pKa prediction software using Hammet-Taft rules !

Epik!http://www.schrodinger.com/products/14/4/!

Marvin!http://www.chemaxon.com/marvin/sketch/index.jsp!

MoKa!http://www.moldiscovery.com/soft_moka.php!

ACD/pKa DB!http://www.acdlabs.com/products/phys_chem_lab/pka/!

Page 8: Drug Design and pH

8

Drug Design and pH!Getting the protonation state right

on the ligand

and the protein !

The protonation state determines!

Charge and hydrogen bonding properties!

Page 9: Drug Design and pH

9

Standard pKa values for residues !

Page 10: Drug Design and pH

10

Picture of non-standard!Protonation state in active site!

Non standard pKa values for residues in proteins !

Page 11: Drug Design and pH

11

Simple rules for pKa Predictions?!

pKa = 4.8!

pKa = 4.5!

pKa = 5.0!

pKa = 4.8 - 0.3!

pKa = 4.8 + 0.2!

pKa = 4.8 - 0.5 + 0.2!

AH A- + H+!pKa = ΔGrxn/1.36!

Page 12: Drug Design and pH

12

pKa = pKamodel + ΔpKa

Desolv + ΔpKaHB + ΔpKa

Chg-Chg

Model pKa values:

C-End=3.20, Asp=3.80, Glu=4.50, His=6.50, Cys=9.00, Tyr=10.00,

N-End=8.0, Lys=10.50, Arg=12.50.

PROPKA1: Li, Robertson & Jensen Proteins 2005!(PROPKA3: Olsson, Rostkowski, Søndergaard, Jensen JCTC 2011)!

PropKa!

Page 13: Drug Design and pH

13

DpKa: Hydrogen Bonding!! !∆pKa= -0.8 , if D < d1!

∆pKa= -0.8 (D-d2) / (d1-d2), if D < d2!! !!! !∆pKa= 0.0, if D > d2!∆pKa

D (Å)d1 d2

F0

0.00.0

O

O

D

HO

Li, Robertson & Jensen Proteins 2005!

Page 14: Drug Design and pH

14

4.5 Å15.5 Å

N15.5Å=443∆pKa= +0.43

aNLocal=13∆pKa= +0.91

Asp102

Arg46

Leu103

b

-1.20

-1.20

-0.48-0.46

Asp148

Asp102

Arg46+0.73

-2.40

c

Example: Asp102 in RNase H1!

pKa = 3.8 + 1.3 - 3.3 - 1.7 = +0.1!

Exp = < 2.0

Li, Robertson & Jensen Proteins 2005!

Page 15: Drug Design and pH

15

Ca 20,000 hits last 12 months! Included in PDB2PQR and Vega-ZZ (*)!

Page 16: Drug Design and pH

16

Page 17: Drug Design and pH

17

PROPKA-VMD interface!

Rostkowski, Olsson, Søndergaard, Jensen BMC Struct. Biol. 2011!

Page 18: Drug Design and pH

18

(a) Asp /Glu

-2

0

2

4

6

8

10

12

-2 0 2 4 6 8 10 12Experimental pKa values

PR

OP

KA

Pre

dic

tio

n

(b) Cys

2

4

6

8

10

12

14

2 4 6 8 10 12 14Experimental pKa values

PR

OP

KA

Pre

dic

tio

n

(c) His

0

2

4

6

8

10

0 2 4 6 8 10Experimental pKa values

PR

OP

KA

Pre

dic

tio

n

(d) Lys

2

4

6

8

10

12

14

2 4 6 8 10 12 14Experimental pKa values

PR

OP

KA

Pre

dic

tio

n

RMSD = 0.7!N = 210!

RMSD = 1.2!N = 41!

RMSD = 1.0!N = 11!

RMSD = 0.7!N = 24!

Page 19: Drug Design and pH

19

P + L P·L

PH+ + L PH+·L

H+ H+Ka

f Kac

Kb+

Kb0

Kobs = Kb0 1+10 pKa

c − pH

1+10 pKaf − pH

pKa values can change upon ligand binding!

Kobs =[PiL]+ [PH + iL][P][L]+ [PH + ][L]

=[PiL][P][L]

1+ [PH+ iL]

[PiL]⎛⎝⎜

⎞⎠⎟

1+ [PH+ ]

[P]⎛⎝⎜

⎞⎠⎟

= Kb0

1+ [H+ ]

Kac

⎛⎝⎜

⎞⎠⎟

1+ [H+ ]

Kaf

⎛⎝⎜

⎞⎠⎟

Page 20: Drug Design and pH

20 20

pKa values can change upon ligand binding!

Implication number 1:!

Inhibition constant is pH dependent!

Kobs = Kb0 1+10 pKa

c − pH

1+10 pKaf − pH

Page 21: Drug Design and pH

21 21 21

pKa values can change upon ligand binding!

Implication number 2:!

Change in Ki wrt pH means !

change in protonation stateupon binding!

−∂ log(Kobs )

∂pH= qc − qf

Kobs = Kb0 qfqc

q = 11+10 pH − pKa

Page 22: Drug Design and pH

22 22 22 22

pKa values can change upon ligand binding!

Implication number 3:!

Docking score using static

protonation state must be corrected!

ΔGb = −RT ln(Kb0) − RT ln 1+10pKa

c − pH

1+10pKaf − pH

⎝ ⎜

⎠ ⎟ = ΔGb

0 + ΔGb,pH0

Page 23: Drug Design and pH

23 23 23 23

pKa values can change upon ligand binding!

Implication number 4:!

ΔH measured by calorimetry will be

buffer dependent and must be corrected!

ΔHcorrected = ΔHobs − (qc − qf )ΔHion

ΔHion is ionization enthalpy of buffer!

Page 24: Drug Design and pH

24

Effect of Ligands: PROPKA 2.0!

pKa = pKamodel + ΔpKa

Desolv + ΔpKaHB + ΔpKa

Chg-Chg

PROPKA 2: Bas, Rogers & Jensen Proteins 2008!PROPKA3.1: Søndergaard & Jensen, in progress!

Atom typing!H-bond donor/acceptor!

Charged groups!Ligand ionizable groups/pKmodel!

Page 25: Drug Design and pH

25

xxx.pdb!

pKmodel!

xxx.pka new_xxx.pdb!

PROPKA!

new_xxx.pdb!edit!

PROPKA!

new_xxx.pka!

Edit = !new pKmodel or!

new atom types!

Page 26: Drug Design and pH

26

N29!

pKmodel!pKa!

C25!C91!

10.3!12.0!

3.2!

Experiment!

1K1L.pdb -> 1K1L.pka!

new_1K1L.pdb!

new_1K1L.pka!

Page 27: Drug Design and pH

27 Bas, Rogers & Jensen Proteins 2008!

Page 28: Drug Design and pH

28

Summary!Implications for docking!

Protonation state of ligand can be estimated computationally!

Protonation states of active site residues are not!always “standard”!

Protonation states can change upon binding!

In which case docking score must be corrected!

Page 29: Drug Design and pH

29

Questions Now?!

Questions Later?!

Leave a comment on!http://proteinsandwavefunctions.blogspot.com/2011/02/drug-design-and-ph.html!