116
\' ... . .. and yet another DEFINITIVE HANDBOOK OF TRANSISTOR MODELING ,. , . ., . " . ',\. \., ,j': ',.' .. i(' . ,:-i,t .. , Part 1 "Modeling can be ,:t;url'! " subtitled I. ., '. " " '. , '. 'r .',i,' " 'j'.' . " " ,I, ' ..

Definitive handbook of transistor modeling

Embed Size (px)

Citation preview

Page 1: Definitive handbook of transistor modeling

\' ... ~...

and yet another

DEFINITIVE HANDBOOK OF TRANSISTOR MODELING

,., .

., . " .',\. \.,

,j': ',.'..i('.,:-i,t.. , ~ ~\

Part 1"Modeling can be ,:t;url'! "subtitled

I..,

'.

""

,~ '. , '.'r .',i,'

"'j'.' •

."" ,I,

' ..

Page 2: Definitive handbook of transistor modeling

•\,

Introduction

In many applications, oomputer aided desiiD (CAD) is the bestapproaoh to analyzing a oirouit. It has beoome quite olear from thepresent state and complexity of eleotronio oircuit design thatcirouit simulation will be a necessary part of CAD for a lona time tooome. Since the inception of CAD, oirouit designers have tried toeffectively model the oircuits that they wish to simulate in order toproduce accurate results. However, with the limited availability ofCAD models, it is impraotioal or ineffioient to simulate oirouitsthat only have ideal devices. At this point, the circuit desiiDermay well wonder whether the diffioulties of using CAD outweigh itsadvantages as a cheap and fast alternative to breadboarding. In anyoase, the problems of devioe modeling are not insurmountable and agood first cut model can be obtained from data sheet information andoaloulations made fairly quiokly giving the desiiDer an aoouratedevice model for a wide range of applioations.

The alternative method to modeling oomponents from manufaotureer'sdata sheets oonsists of spending long hours in the laboratory takingvolumes of data and oan be of little use if the data oan not betranslated into a form suitable for use with Spioe or Spioeparameters. In either case, after the data is reduoed to a set ofparameters, the model must then be tested and verified. Normally,this may take several iterations of parameter tweaking. Under normaloircumstances, analyzing oolumns of data or the reading of plots ofastericks oan take many hours. Here's where Soft Scope can be avaluable help. The vast amount of menu-driven functions and datamanipulation capabilities drastically decrease the time needed fordata analysis and reduction. However, do not be lulled into a falsesense of security. MODELING IS NOT EASY! I!!! I It can take theaverage engineer a minimum of 2-3 weeks to just become familiar withthe procedures of modeling semiconductor devices.

Transistors

A large number of Bipolar transistors models exist for a variety ofoperational modes. However, for simulation programs suoh as Spioe, ageneral nonlinear model must be used. The integral-oharge model ofGummel and Poon which is acourate for static and dynamic simulationsand for low and high power applioations was chosen. This modifiedGummel-poon model extends the original model to inolude severaleffects at high bias levels. The model will automatioally simplifyto the simpler Ebers-Moll model when certain parameters are notspecified. Not all parameters need be speoified everytime the modelis used. The model parameters needed depend on the way the device isused. For instanoe, i~ a transistor is used only in a DCapplication, AC parameters are not needed, and incorporation of ACparameters will cause an unnecessary inorease in run time. In orderto provide the best results for oircuit simulation and modelingfollow the rule, "Use the simplest model possible".

Page 3: Definitive handbook of transistor modeling

"

The parameters necessary to define a model should be meaningfulto an engineer and their determinatiorr should be straightforward andnot time-consuming. However, for some parameters this is not alwaysthe case. Also, the analyst should not be concerned when some"nbminal characteristics" cannot be fitted exactly by the Spice modelequations. Examination of the device specifications and data sheetsusually show a large variation in device characteristics. Below is alisting of the most significant BJT Parameters and when and when notto use each one of them.

BJT Model PArameter Applicability

Parameter

IS,NF,BF

ISE,NE

RE

RB

IKF

VAF

RC

BR,NR

ISC,NC

IKR

VAR

CJE,MJE,VJECJC,MJC,VJC

TF,TR

Use Default When:

Insufficient data to determine NF.

Transistor does not exhibit a "Non-Ideal"region. Transistor does not operate in the"Non-Ideal region.

Insufficient data to determine RE or RE islumped in with RB.

Transistor does not operate at high enoughbase current for effect of RB to besignificant.

Transistor does not show high injectioneffects, i.e. B does not decrease with highIC. Transistor does not operate in the highinjection region.

Transistor operates with low VCE where earlyvoltage effects are not significant.

Transistor does not operate at high enoughcollector current for RC to have an effect.

Insufficient data to determine the reversecharacteristics. Transistor is never reversed­biased in the particular application.

Insufficient data to determine reversecharacteristics. Transistor does not exhibita reverse "Non-Ideal" characteristic.

Insufficient reverse data. Transistor does notexhibit a reverse high injection characteristic.

Insufficient reverse data. Transistor operateswith low VEC where reverse Early effects are notsignificant.

Transistor used only in a DC circuit application.If used in switching application, delay timeis not critical.

Transistor used only in a DC circuit application.

Page 4: Definitive handbook of transistor modeling

· ,, ,

Modeling .Overview

A transistor model will only be as accurate as the parametersthat describe it. However. accuracy is not always the most importantcriteria for a device model. MAKING A MODEL BEHAVE LIKE THE REALDEVICE IS !!!!! Actual device measurements will provide accurate datafor the calculation of accurate parameters, but indicate nothingabout the distribution boundaries of the device parameters unlessnumerous devices are tested. The manufacturer's data sheets, on theother hand, yield parameter values which are often very inaccurate,yet they place a bounds on the parameter variations which may be usedfor best and worst case analysis. Data sheet information isgenerally very conservative and a number of key parameters can not beobtained from them. yet it provides a good first cut at a devicemodel.

Both procedures. parameter extraction from manufacturer's datasheets or laboratory measurements, are described in detail in thefollowing pages. In either case, curve fitting and customizing ofa model for a particular circuit application will be necessary.In addition to the standard processes for finding device models(mathematical parameter extraction techniques) an effective andexpedient technique for obtaining a device model is to use a trialand error method.

After obtaining accurate data curves from manufacturer's datasheets or laboratory measurements (Forward/Reverse Characteristics ­Collector Characteristics - Rise/Fall Time Graphs - Transient TimeCircuit Curves - Frequency Response Curves / See Spice examples atend of procedures) insert "Ball Park" parameters into models of Spicefiles which will generate the same type of curve. Then adjust or"tweak" the parameters until the SPICE generated curves are similarto the data sheet or laboratory curve.

The mastering of this technique requires a fairly good knowledgeof how parameters interact, as well as. how each parameter affects theoperation of the particular device. Throughout this manual and inthe example of the 2N2901 at the end, we have tried to provide somegood insight into this area.

** Note. it is almost impossible, if not useless, to try toexactly match the Spice generated data against the researched data.First of all, the operating point of the device will greatly affectthe data recorded and unless exact conditions can be duplicatedbetween the test circuit and the Spice circuit, the resultingparameters will be different. The difference is not do to the factthat one set of parameters is wrong, but to the fact that theoperating conditions of each circuit are different. In order touse this method, an analyst should be familiar with othertechniques of modeling, such as, parameter extraction from datasheets and laboratory measurements.

For more information and in depth studies of modelingtechniques, the Spice user is directed to obtain the list ofpublications listed in the bibliography.

Page 5: Definitive handbook of transistor modeling

\

Background Infor~ation

The default BJT (Fig. 1 & 2) is an ideal transistor with aforward current gain of 100 and a reverse current gain of 1. Itdoes not have a "non-ideal" region or a high injection region.Both the forward and reverse current gains are constant for anyvalue of collector current. Both the base, collector, and emittercapacitances and resistances are zero. As can be seen by theextensiveness of the parameter list, the transistor model and itsassociated curves can be as simple or complex as required.

The DC model is defined by the parameters IS, BF, NF, ISE, IKF,and NE, which determine the forward current gain characteristics, and,BR, NR, ISC, IKR, and NC, which determine the reverse current gaincharacteristics and VAF and VAR, which determine the outputconductance for the forward and reverse regions. Three ohmicresistances RB, RC, and RE are included. Base Charge storage ismodeled by forward and reverse transit times TR, and TF and nonlineardepletion layer capacitances which are determined by CJE, VJE, andMJE for the B-E junction, CJC, VJC, and MJC for the B-C junction, andCJS, VJS, and MJS for the C-S (collector-substrate) junction. Of the40 parameters used to characterize the transistor, 15 parameters (IRB,RBM, XTF, VTF, ITF, PTF, XCJC, CJS, MJS, VJS, XTB, XTI, KF, AF, andFC) are related to Flicker-Noise and higher order effects which arenot ordinarily needed nor specified in most manufacturer's datasheets.

Methods for determination of model parameters from manufacturer'sdata sheets are shown next, followed by laboratory measurementtechniques. The available data from sheets may not be ascomprehensive as that required for a complete model and many devicedata sheets do not provide sufficient information to calculate theentire range of parameters. For instance, reverse DC characteristicsmay not be shown or the data that is may only be typical, minimum,maximum or limited in range. Data sheets from various manufacturer'smay have to be pieced together in order to provide a full set ofdata. In any case, the best information is likely to be found on thedata sheets of the manufacturer who first made the part. That mightnot be of much help, especially if you don't know who first made thedevice, but it brings up an important point. Since device modelingis a task usually given to a "NEW - HIRE", it is recommended that theadvise of a Senior Engineer with experience be sort after when adifficult problem is encountered. Get used to asking questions,because your going to have a lot of them. By the way, this paper waswritten by "NEW - HIRE'S" and we assure you that our Senior Engineerruns everytime he see's us because he knows there's a barrage ofquestions coming at him.

The techniques and, formulas presented in the procedures sectionof the manual are for a NPN transistor. In order to make themapplicable to PNP transistors just put a negative sign in front ofany voltage used. Also, the example at the end of the manual uses aPNP transistor to clarify this point.

Page 6: Definitive handbook of transistor modeling

\

INTRODUCTION:SPICE contains "built-in" equations. for the Gummel-Poon model

of a PNP Bipolar Junction Transistor. The model diagram anddefinina equations are listed in the following section. Of the40 parameters used to characterize the transistor, 25 of them havehave been calculated to customize the Gummel-Poon model to simulatethe 2N2907A PNP BJT. The other 15 parameters (IRB, RBM, XTF, VTF,ITF, PTF, XCJC, CJS, MJS, VJS, XTB, XTI, KF, AF, Fe) are relatedto Flicker-Noise and higher order effects which are not ordinarily~pecified in manufacturer's data.

BACKGROUND: COLLECTOR

RC

3

Rl CC JD+

BASER8 2 .J. JF t JR

•R2 CE JA

1

RE

EMITTER

JA = non-ideal forward region base currentJB = ideal forward region base currentJC = non-ideal inverse region base currentJD = ideal inverse region base currentJF = forward region dependent currentJR = inverse region dependent currentCC = collector Junction capacitanceCE = emitter junction capacitanceRC = collector bulk resistanceRB = base bulk resistanceRE = emitter bulk resistanceR1 = collector-base junction leakage resistance*R2 = emitter-base junction leakage resistance*

* not included in SPICE model

Page 7: Definitive handbook of transistor modeling

I, I,

" I

,oetlnln& Iquetlon.:

JA • lSI

SPICI .odel plr&aeter lSI • C2xISOetlult IS! • 0

where: C2. non-I dell normlllzln, coefficientIS • ,"tur"tlon current

SPICE .odel plrometer NI • emitter junction ,rldln, con.tantDetlult NI • 1.5

VB'I' • bl.e-emltter junction voltl,e (voltl,e trom 2 to 1 onthe .odel dll,r&a)

Vt • tI • 0.026 volt. at 27"C (300"l)q

[(~B"I' J ]nJB WF(Vt 1• ~ -BF

SPICI .odd par...ter IS • .aturation currentDe t&uIt IS • lxlO-16

( SPICI .odel parometer BP' • Idell .Ixlmus torvard aDet&ult 8F • 100

SPICI .odd pareaeter NF • torvard current e.i •• lon coefficientDet&ult "F • 1

~(~JJC • ISC c WC(Vt)_l

SPICI .odel parometer ISC • ClxISDefault ISC • 0

where: C4. Don-Idell normlllzln, coefficientIS ••aturltlon current

SPICI .odel par...ter WC • bl.e-collector ,rldln, con.taatDeflult NC • 2

VB,c, • bl.e-collector junction voltl,e(voltl,e from 2 to 3 on the model dll,roa)

JO • n [.BR

(VB

•C

• ) J\ NR(Vt) _

SPICE andel plrometer 8R • Idell .Ixlmus rever.e aOetlult DR • 1

SPICI .odel plrometer Ni • rever.e current eml •• lon coefflcl.atOeflult Ni • 1

Page 8: Definitive handbook of transistor modeling

"

II ['Jr • QB C

QB (S.. belov.)

JR.!!QB

[(

VB'C' \ ]C NR(Vt»)_l

Ql •

1 -

1

(

SPICI _d.l p.r.... t.r VAl • torw.rd ••rly yolt·S·o.t.ult VAl · -SPICI 8IOd.l p.ramet.r VAR • rever •• ••rly yolt·S·o.t.ult VAR ·-

(VB'I'j ] [ tVB'C

' ~ JQ2 .ILL Nr(Vt -1 + IL NIl(Vt -1

10' IU

SPICI 8IOd.l p.r...t.r 10' • corD.r tor torw.rd a hlsh curr.Dt roll-offo.t.ult 10' ••

SPICI 8IOd.l p.r.... t.r IKR • corD.r tor r.v.r •• a hlsh curr.nt roll-offO.f.ult IKII • -

CI • __~Cc>!.J2..I__ILl'I

VB' E' '\

VJI Ivh.r.:

IS [+ Trr It Vt C

SPICI DOdel p.r~ter CJI • ~ero-bia. ba.o-emltterc.paci tance

DofauH CJE - 0SPICI DOdel parLmeter VJI • baae-emitter junctioo contact

potontialDefault VJI •. 75

SPICI,DOdel parLSOter KJI • b•••-emltter junctionexponential t.ctor

Default KJE • ,33

Page 9: Definitive handbook of transistor modeling

,•

trF

2[ (VB'C' )~IF 1.44 VTF• tF 11+ITFI (IF+It;) •

SPICI IIIOdel par .... t.r tF • Id.al to~ard tran.lt tl••Default tF • 0

SPICE IIlOdel par .... t.r ITF • co.fflcl.nt for bl •• d.pend.nc. ot TFO.tault ITF • 0

SPICI ""d.l par....t.r VIF • voltaS' d••crlblns ba••-coll.ctor voltas.d.p.nd.nc. ot rF

O.tault VIF • 0SPICI .adel p.r....t.r ITF • bl,b-curr.nt p.rllDlt.r tor .tt.ct on TF

Default ITF • 0

CC • CJC

wb.r.:

ll[KJC + ti x Vt •

SPICE mod.l p.r.... t.r.:CJC • bu.-collector z.ro-bl •• d.pl.tion cap.cltanc.

( O.fault CJC • 0VJC • bu.-coll.ctor junction cont.ct pot.ntl.l

O.fault VJC • . 15KJC • bu.-collector junction .xpon.ntl.l t.ctor

Default IIJC ... .33tit • Id.al rev.r.e tr.n.lt ti••

O.tault TI • 0

Page 10: Definitive handbook of transistor modeling

'.

Modeling Transistors From Manufacturers' Data Sheets

1. NF Forward Current Emission Coefficient

NF's normal value is between 1 and 2.'it is proper to assume a value of 1.saturation current IS.

If data cannot be obtainedIts value will effect the

Use a plot of IC vs. VBE (Data sheet "ON" plot)

NF = VBE1 - VBE2/(VT*(ln(IC1/IC2»)

2. IS Transport Saturation Current

Eq. 111

The saturation current is determined by the doping profile andemitter-base junction cross-sectional area. A typical value is10E-16 Amps, however, a variation of several orders of magnitudeis not uncommon. The saturation currents (IS, ISE, ISC ) willaffect among other things the slope of the forward DC curves (ICand IB vs. VBE). (Fig. 3)

A data sheet "ON" voltage plot yields a point where VBE=VCE, findIC and insert in the equation below. ***SEE NOTE AT BR***

Measure VBE to at least three decimal places.

IS = IC/(exp (VBE/NF*VT)-l)= IE/(exp (VBE/NF*VT)-l)

3. BF Ideal Maximum Forward Beta

orwhere VBE=VCE andcurrents are small(linear region)

BF is the value of B in the ideal region of the transistor.Although this parameter looks easy to find, it must be determinedby trail and error because many transistors do not have a clearideal region. Beta variations produced by changes in collectorcurrent occur in three regions. (low injection region, idealregion, and high injection region Fig. 4)

Data sheets normally give forward current gain information ornormalized current gain information. Using this data, the analystcan determine the desired value of BF which will yield either aminimum, typical, or maximum current gain model.

To find BF plot B = IC/IB vs. In IC

Page 11: Definitive handbook of transistor modeling

" "

4. BR Ideal Maximum Reverse Beta

Determine BR and NR in a manner similar to that used for BF and NFin the forward region. Data must be usually measured becausemanufacturer's data sheets normally do not include reversecharacteristics.

Obtain data of IE and IB vs. VBC over a large range of basecurrents. BR can be determined from a point in the ideal region.(Cir. 1)

***NOTE*** IS is a fundamental parameter that is related directly tothe zero-bias majority-carrier profile in the base. IS is theextrapolated intercept current of the graph of 10g(IC) vs. VBE inthe forward region, as well as, log(IE) vs. VBC in the reverseregion. Compare the IS values determined from the forward andreverse characteristics. (Substitute IE for IC, VBC for VBE and NRfor NF in equation #1) If these values are not reasonably close and agood fit of both forward and reverse characteristics cannot beobtained with a single value of IS chosen, then some part of themeasured of calculated data is in error. Re-check all data beforeproceeding.

5. NR Reverse Current Emission Coefficient

*See Lab Techniques

6. NE B-E Leakage Emmision Coefficient

May be found from previous data acquisition. Looking at the slopeof the non-ideal region of the log(B) vs. 10g(IC) curve, NE maybe determined from the slope of the line in the non-ideal region.(Fig. 5)

NE = l/(slope - 1) where

Slope = 10g(B1)-10g(B2)/(log(IC1)-10g(IC2»

*See Lab Techniques

7. ISE B-E Leakage Saturation Current

ISE may be found from a point on the IB vs. VBE curve.

A. ISE = IB1/(exp(VBE1/NE(VT»-1) *See Lab Techniques

or B. ISE = C2(IS) where

C2 = «IL/IS)(l-(l/NE»/BF andIL = to the collector current where B = BF/2 in the

non-ideal region.

or C. ISE = IS/@f where

@f = B/(l+B) where B is in the normal active region

Page 12: Definitive handbook of transistor modeling

" I,

8. NC B-C Leakage Emission Coefficient*See Lab Techniques

9. ISC B-C Leakage Saturation Current

*See Lab Techniques

10. RB Zero Bias Base Resistance

RB models the resistance between the base region and the baseterminal. There are several ways to calculate RB. each of whichmay provide a different answer. RB is a difficult parameter tomeasure because it is modeled as a constant resistance althoughit is actually a distributed variable resistance. RB's value isdependent on the operating point of the transistor. The besttest method and value to chose is dependent on your application,therefore the application should determine the test measurementtechnique. Its value can range from 10 ohms (microwave devices)to several kilohms.

An alternative method which can be derived from a data sheet"ON" data plot provides an RB value where RE is ignored and theeffects of RE are lumped together with the effects of RB.

Using RB = VBE2-VBE1/IBl

When using aof collectorIC/IB = 10.

data sheet use VBEsat and IB at the highest valuecurrent shown. This curve is usually shown forUse the formula;

RB = (VBEsat - .6)/IB where .6 represents a diode

voltage drop and IB is the highest available base current onthe data sheet.

11. RE Emitter Resistance

RE is a constant valued resistor which models the resistancebetween the emitter region and the emitter terminal. A typicalvalue of RE is 1 ohm. RE may also be accounted for by properlycalculating RB.

*See Lab Techniques

Page 13: Definitive handbook of transistor modeling

12. RC Collector

RC models the resistance between the collector region and thecollector terminal. RC is actually a resistance dependent oncollector current and base-collector voltage, but is usuallymodeled as a constant valued resistor. Therefore, the biggestproblem in obtaining a value for RC is not how to mea~ure it butwhich value to use. RC decreases the slope of the curves in thesaturation region for low collector-emitter voltages. A typicalvalue is 10 ohms or less.

RC may also be estimated from the "ON Voltage" figure of the datasheet. Use VCEsat and IC at the highest collector current shown.

RC = (VCEsat - .2)/IC where

.2V is a typical value of ideal saturation voltage allowing theohmic voltage drop to be estimated.

See Lab Techniques

13. IKF Corner for Forward Beta High Current Roll-off

IKF is the value of IC at the transition between the ideal regionand the high injection region. IKF can be determined from a plotof InBF vs. InIC. and is equal to the value of the collectorcurrent at the point where B is 1/2 its maximum value (BF/2).Some trial and error is required in selecting BF and IKF to fitthe 10g(IB) and 10g(IC) vs. VBE characteristic. (Fig. 6)

14. IKR Corner For Reverse Beta High Current Roll-off

IKR is the value of IE at the transition region between the idealand the high injection reverse regions. It is also the value ofIE at the point where B is equal to BR/2 near the high injectionregion. It effects the shape of the BR curve and the reversecurrent gain.

15. VAF Forward Early Voltage

VA is a parameter used to model base width modulation effects(the early effects). A typical value is 100 volts. Where datasheets do not give a set of collector characteristics thefollowing may be used to estimate VAF. Using the normalized DCcurrent gain charaoteristics which yield data at two VCEvoltages, VAF can be found by a plot of IC vs. VCE for differentcurrents. (Fig. 7) If a set of collector characteristics isavailable, extrapolate all of the active region portions of thecurve to the left. The VCE x-axis intercept is then the VAFparameter ~.. l all. Since the extrapolations will usually beover a wide range of voltages, an average must be taken.

Page 14: Definitive handbook of transistor modeling

16. VAR Reverse Early Voltage

Measure the set of emitter characteristics IE vs. VBC at severalconstant values of IB in the reverse region.

VAR is the negative of the extrapolated intercept, VBC, of IE vs.VBC on the VBC axis.

17. CJE B-E Zero-Bias Depletion CapacitanceVJE B-E Built-in PotentialMJE B-E Junction Exponential Factor

These next six parameters describe the transition capacitanceassociated with the collector-base junction or the base-emitterjunction. The two capacitances, CJE and CJC, are nonlinear andvoltage dependent. They are also necessary if any AC models areto be affective. The base-emitter junction depletion capacitanceparameters can be obtained from measurements of junctioncapacitance vs. reverse base-emitter voltage. (CE vs. VBE).It may be necessary to subtract out a constant capacitance fromthe measured value. This extra capacitance term is usuallyaround .5PF and is the stray capacitance associated with thetransistor package. Manufacturer's data sheets usually showcapacitance vs. reverse voltage (CE vs. VBE reverse) as the Cibcurve. The VJ parameters are normally .7 for silicon devices andthe MJ parameters are equal to .5 for an abrupt junction and .333for a linearly graded junction. Since most junctions fit betweenthese two, MJE or MJC is from .333 to .5. A typical value of CJEor CJC iB about 20PF.

*See Lab Techniques

1. CJE is the capacitance value at VBE=O or it can be calculatedfrom one point on the CE VB. VBE curve.

CJE = CE1*«1-(VBE1/VJE)**MJE)

Page 15: Definitive handbook of transistor modeling

· \

2. Find the values CE (Junction capacitance) at various reversebias voltages. Measurements are made between the baseterminal and the emitter terminal with the collector open.

3. Using the formula:

CE = CJE/«(l-(VBE/VJE))**MJE)

assume a value for VJE in the range of .6 to 1 volt.4. Plot CE vs. (VJE-VBE) on log-log paper5. If the line is straight, then the assumed value of VJE is

correct.6. If the line is not straight, then assume another value for VJE

and repeat steps 4 and 5.7. When a straight line is obtained determine the MJE from two

points by the following equation:

-MJE = (In(CE1)-ln(CE2))/(ln(VJE-VBE1)-ln(VJE-VBE2))

NOTE: Remember that the VBE values are negative since the datapoints are from the reverse bias region.

18. CJC B-C Zero-Bias Depletion CapacitanceVJE B-C Built-in PotentialMJE B-C Junction Exponential Factor

The procedures for finding these parameters are exactly the sameas for CJE, VJE, and MJE except the measurements should be ofJunction capacitance vs. reverse base-collector voltage (CE vs.VBC). The measurements should be made between the base terminaland the collector terminal with the emitter open. Data sheetsusually show the CC vs. VBC reverse curve as the Cob vs.Reverse voltage plot or you can use CE vs. VBC data and theequations:

CC = CJC/«l-(VBC/VJC))**MJC)

-MJC =(In(CC1)-ln(CC2))/(ln(VJC-VBC1)-ln(VJC-VBC2))

CJC i8 again the capacitance value at VBC=O or

CJC = CC1*«(1-(VBC1/VJC))**MJC)

Page 16: Definitive handbook of transistor modeling

19. TF Forward Transit Tima

The forward transit time can be determined from the data sheetTURN-ON TIME figure which shows the 10% to 90% rise time, tr vs.IC. Use two points ICo which is IC near zero, and ICl which isIC at some value greater than zero. TF is greatly dependent on

A. IC1, the collector currentB. IB1, the base current at ICl andC. BF1, the forward current gain at ICl

Data sheets usually show tr vs. ICl with IC1/IBl = 10 However,the analyst may wish to take a measurement for ICl at theanticipated value of collector current for his particularapplication. Manufacturer's usually show a test circuit for risetime measurements.

Use the formula: TF = (tr/2.2)(1/(BF+l»

20. TR Reverse Transit Time

The reverse transit time can be determined from the data sheetTURN-OFF TIME figure which shows the storage time, ts vs.collector current, IC. ts is the time for the collector current tofall from some value, ICo, to 90% of that value when the basecurrent is suddenly reversed from its initial value, lBo, to IB1,where IBl = -lBo. Like TF, TR is dependent on the selected valuesof lCo, lBo, IB1, and the reverse current gain, BR, at the chosenICo. Manufacturer's data sheets usually show ts vs. ICo atICo/ICl = 10. Again the analyst may prefer to take a measurementfor ICo at the anticipated value for the particular application.Manufacturer's usually show a circuit for storage timemeasurements.

Use the formula:

TR = (1/(BR+l»[ts/(ln«IBo-IB1)/(ICo/(BF-IB1»»]

Inclusion of Breakdown Characteristics

Breakdown can be simulated by including two current generators,which are EXTERNAL to the device model.

Needed at the parametersBVcbo - Collector-to-Base breakdown voltageBVebo - Emitter-to-Base breakdown voltageNc - Collector-Base Multiplication region constantNe - Emitter-Base Multiplication region constant

Typical values for BVcbo and BVebo are from less than 5 volts togreater than 2000 volts. Nc and Ne are typically between 2 and 4for silicon devices. Manufacturer's data sheets normally list theminimum breakdown voltages.

Use the formulas: Nc = 10gBF/(log(BVcbo/BVebo»Ne = logBI/(log(BVcbo/BVebo»

Page 17: Definitive handbook of transistor modeling

whereand

yielding

Me = l/[l-«Vbe/BVebo)**Ne)]Me = l/[l-«Vbe/BVebo)**Ne)]

IBC = IC(Me - 1)IBE = IE(Me - 1)

Page 18: Definitive handbook of transistor modeling

••

Ie Vlt

'IG.1 Ideal log(IC) & log(IB) vs. Vbe Ideal .. J3t VS. IC

••

~OQ-td..lrec loa

"'--- Ie

,,,IIII

ldul I M1i!l Injllttt.onfilii ton I f.,&lon

VH

Non-ld ... lre, lon

HIa" Inject tonrllllion

Ie

t-IG.2 Actual log(l) VS. Vbe FIG.4 Actual J3t V8. IC

~Slope.'1

\

----------vI ..-

Slopt·' onr.- / IN. V I

I

I

Non-Ille:.! Kellion Ideal Reeion IIlgh InjHtlon RCl>ion- - - - - - - - - --A"""-/--"~'------""';'~,,","....-" RF

y .... - - ---,-I "

IIFBFT

~

~'-

,,,,,,,

.-1----------- '" II. IH

lo~ Ie

FIG.3 IS Curves FIG.6 & 6

Page 19: Definitive handbook of transistor modeling

VeE

01·.... '_alOMOI Hue.OC)O ....

,."'Owo, .. _ .. \.

"'Owol" Dl 'I1c..~

~- I

CtR 1

Forward & Reverse

C,ur.rent Measurements

"ol.t _1ror 'lC1 10 "oltl. th. flor- .. l1ud brr: .. 1.1 la the IC r"I' ot 10to )0 ...

Point _1'or VCI .. 1 "olt. the no ...... llud "rl .. l.O In til, [C ria,. of 10 to)0 _.

IC

30 mIo.

-----~

--..r- :

-VAF

Iq-IClvCIl-vcn

0'

rCl-OVCI1_(_VVl

oVCE

10

VAl _ ICl (ver:l-vcE? ,_ VCIlI r lel-[Cl J

FIG.7 VAF Mea s.

Page 20: Definitive handbook of transistor modeling

Modeling Transistors From Laboratory Measurements

with 2N2907 PNP Transistor Example

Page 21: Definitive handbook of transistor modeling

RECOMMENDATIONS FOR MODELING and LAB DATA GATHERING:

Problems with data taking will be encountered at every stage inthe modeling process. An analyst must be extremely careful inevery step. Seemingly accurate data may actually be in error,caused by what may be considered an insignificant detail. A goodindication of accurate data can be found in the fact the whenmeasurements are repeated, the data is reliable and repeatable.Some of the problems to watch for are:

1. Temperature variations At the low levels of current andvoltage measurement a change in temperature will greatlyaffect the data taken. Also, at high current levels, mostdevices will begin to heat up. This will cause inaccuratedata to be measured. If laboratory data is to repeatable andreliable. Care must be taken to record the temperature andkeep it reasonably steady. At high current levels, it isrecommended that input voltages and currents be pulsed with aduty cycle of less than 5%. See figure

2. Impedances of measuring equipmentWhen measuring low currents care must be taken to evaluatethe effects of loading on a test circuit by instruments.

'0'''"'1-","" , (.

....UCi_ .

r'ON·l~~

"", .. """1 ....."".".

'"r r. ";"r--,.......

OClolC,.. \~~

Telt Circuit For High Current Levell

Page 22: Definitive handbook of transistor modeling

3. Variations among devicesIt is best to evaluate a number of the same devices whenmeasuring data. Such a sampling and the information itprovides will help to filter out any extremes in the datapatterns that would lead to erroneous conclusions. Also,if a device is accidently overstressed, its subsequent datathat is yielded should come under additional scrutiny.

4. Circuits in this manual are presented for a guide only.Various sources of information on modeling may presentcircuits that appear to be different, however, the datathat is yielded should be consistent no matter whichtopology is used. In practice, however, this is not alwaysthe case. The test circuit that provides the mostconsistent (repeatable) and seemingly accurate data is thebest.

5. When testing for parameters, always choose operatingconditions that will resemble the model application'soperating conditions.

6. Because the Bipolar Junction Transistor is very complexand non-linear, no single set of model parameters will fit allapplications. It is important to know what the model's useswill be.

7. The ultimate goal of any good model is to reproduce thesame charactersitics as the real device. Thus, after aparameter is found using a test method, it is perfectlyacceptable to "tweak" that parameter to get the end result.

8. The default values should be used whenever possible. Thiswill save in computing time.

9. When using the model, always keep in mind the limitationsimposed onto the model. A model is only as good as theparameters that specify it and every parameter has limitsto its usage.

10. The order in which these parameters are presented shouldbe the order in which they are sought. In many cases, thevalue of a previous parameter is necessary to obtain the onebeing found.

11. Use as simple a model as possible. It is redundant to tryand get an exact model when an approximate one will suffice.

12. As each paramter is found it should be added to the SPICEmodel and tested to see if it contributes positively (ornegatively) to the overall requirements.

Page 23: Definitive handbook of transistor modeling

MODELING:

PARAMETER: NF

DEFINITION: forward current emi33ion coefficient

MEASURED VALUE: 1.21TYPICAL VALUE: 1.0SPICE DEFAULT: 1.0

METHOD:

NF = [VBE2-VBE1) / [(Vt)LN(IC2/IC1»)

CIRCUIT DESIGN:

1+ \.0"

//

//

(

forward DC characteristics,",,1.

NOTE: 1. VBE1,VBE2,IC1,IC2 are found from the straight lineportion of the IC vs. VBE curve.

2. Vt = kT/q =0.026 volts at 300K

EFFECT OF PARAMETER:NF affects IC in the forward DC, ideal region. As NF is

increased, the curve of IC shifts downward.

Page 24: Definitive handbook of transistor modeling

PARAMETER: IS

DEFINITION: transistor saturation current

IS = ICl / {exp[VBE1/(NF)(Vt)]-1}

MEASURED VALUE:TYPICAL VALUE:SPICE DEFAULT:

METHOD:

1. 101.01.0

E-12E-16E-16

amperesamperesamperes

(

//

//

NOTE: 1. IC1 and IB1 are taken fromof IC vs. VBE.

2. NF must be found before IS

the straight line portion

can be calculated.

CIRCUIT: use the FORWARD DC CHARACTERISTIC CIRCUIT SET-UP

EFFECT OF PARAMETER:IS greatly affects the forward and reverse characteristic

curves in the DC operation. The slopes of both IC and IB inthe linear region are changed as IS is increased or decreased.

Page 25: Definitive handbook of transistor modeling

(

(

PARAMETER: EG

DEFINITION: eneray aap of the semiconductor material

MEASURED VALUE: 1.1 e-volts (since silicon)TYPICAL VALUE: 1.1 e-volts for silicon

.67 e-volts for aermanium

.69 e-volts for Schottky-barrier devicesSPICE DEFAULT: 1.1 e-volts

PARAMETER: BR

DEFINITION: ideal maximum reverse beta

MEASURED VALUE: 11TYPICAL VALUE: .5SPICE DEFAULT: 1

METHOD:The curve tracer was again used. The measurement of BR is

identical with that of BF, the only difference is the emitterand collector pins were interchanged. Thus the collectorcurrent i6 actually the emitter current and the collector-emittervoltage is actually the emitter-collector voltaae.

VERT - collector current lma/divHORIZ - coll~ctor-emitter voltage .5v/divSTEP - base current 5ua/div

BR = reverse DC beta = IE/IB for a constant VEC

NOTE: 1. IE and IC should be measured at the operating pointintended for use in the circuit.

EFFECT OF PARAMETER:BR shifts the IB of the reverse DC ideal region in the same

manner that BF did for the forward DC ideal region.

Page 26: Definitive handbook of transistor modeling

PARAMETER: SF

DEFINITION: ideal maximum forward beta

MEASURED VALUE:TYPICAL VALUE:SPICE DEFAULT:

202100 - 300100

1ma/div.5v/div5ua/div

METHOD:A curve tracer was used to find SF. The settings of the

curve tracer were,VERT - collector currentHORIZ - collector-emitter voltageSTEP - base current

BF = forward DC beta = IC/IB for a constant VCE

NOTE: 1. IC and IB should be measured at the operating pointintended for use in the circuit.

EFFECT OF PARAMETER:BF shifts the forward DC ideal region's curve of lB. IB

shifts with respect ot the location of IC. As BF is increased,the distance between IC and IB is increased.

//

Page 27: Definitive handbook of transistor modeling

PARAMETER: NR

( DEFINITION: reverse current emission coefficient

MEASURED VALUE: 1.04TYPICAL VALUE: 1.0SPICE DEFAULT: 1.0

METHOD:

NR = [VBC2-VBC1] / [(Vt)LN(IE2/IE1)]

CIRCUIT DESIGN:

I.O~Lr)

// -

/-. • I.O¥

:Lr.1. 'I',:. V

1C lEI -

'It>C1 reverse DC characteristics

NOTE: 1. VBCl, VBC2. lEI. IE2 are found from the straightline portion of the IE vs. VBC curve.

EFFECT OF PARAMETER:NR affects IE (in the reverse DC ideal region) identically

the same way NF affects IC (in the forward DC ideal region).

(

Page 28: Definitive handbook of transistor modeling

PARAMETER: NE

DEFINITION: base-emitter leakage emission coefficient

MEASURED VALUE: 1.92TYPICAL VALUE: 2SPICE DEFAULT: 1.5

METHOD:

NE = [VBE2-VBE1] / [(Vt)LN(IB2/1B1)]

(

<-<>" (v)

NOTE: 1. VBE1. VBE2. IB1, IB2 are found from the non-linearregion of the IB vs. VBE iraph.

CIRCUIT: use the FORWARD DC CHARACTERISTICS CIRCUIT SET-UP

EFFECT OF PARAMETER:NE and ISE are responsible for forming the non-ideal region

of IB in the forward DC curves. NE affects the curving of IBin the transition from ideal to non-ideal reiion.

Page 29: Definitive handbook of transistor modeling

PARAMETER: ISE

DEFINITION: base-emitter leakage saturation current

MEASURED VALUE:TYPICAL VALUE:SPICE DEFAULT:

METHOD:

6.67 E-12 amperes1 E-12 ampereso amperes

(

ISE = IBI / (exp(VBEl/NE(Vt»-I]

161

'I.e. ,lO"J cv)

NOTE: 1. IBl, VBEl are taken from the non-ideal regionof the IB vs. VBE curve.

2. NE must be found first in order to calculate ISE.

CIRCUIT: use the FORWARD DC CHARACTERISTICS CIRCUIT SET-UP

EFFECT OF PARAMETER:ISE determines the slope of the non-ideal region of IB when

the transistor is forward DC biased.

Page 30: Definitive handbook of transistor modeling

counterparts of NE and ISE for the reverseNC determines the curving of IB in thethe transistor is reverse biased.

(

PARAMETER: NC

DEFINITION: base-collector leakage emission coefficient

MEASURED VALUE: 4.48TYPICAL VALUE: 2.0SPICE DEFAULT: 2.0

METHOD:

NC = [VBC2-VBC1] / [(Vt)LN(IB2/IB1)]

NOTE: 1. IB1. IB2, VBC1, VBC2 are taken from the non-idealregion of IB vs. VBE in the reverse bias mode.

CIRCUIT: use the REVERSE DC CHARACTERISTICS CIRCUIT SET-UP

EFFECT OF PARAMETER:NC and ISC are the

DC non-ideal region.non-ideal region when

Page 31: Definitive handbook of transistor modeling

PARAMETER: ISC

DEFINITION: base-collector leakage saturation current

MEASURED VALUE:TYPICAL VALUE:SPICE DEFAULT:

METHOD:

3.55 E-9 amperes1 E-16 ampereso amperes

ISC = IB1 / [exp(VBC1/NC(Vt»-l]

(

Tht

NOTE; 1. IBl and VBCl are taken from the non-ideal regionof IB vs. VBC with the transistor in the reverseDC biased mode.

2. NC is needed to calculate ISC.

CIRCUIT: use the REVERSE DC CHARACTERISTICS CIRCUIT SET-UP

EFFECT OF PARAMETER:ISC determines the slope of the non-ideal region of IB when

the transistor is reverse DC biased.

Page 32: Definitive handbook of transistor modeling

PARAMETER: RB

DEFINITION: zero biased base resistance

MEASURED VALUE:TYPICAL VALUE:SPICE DEFAULT:

40 ohms100 ohms

o ohms

METHOD:For DC analyses it is possible to obtain RB from a plot of

In(IC) and In(IB) vs. VBE. However, since this procedure involvessubtracting two large numbers, it is not uncommon to obtainnegative values for RB with this method.

A. Using IS BF RE and IB IE and VBE in the ohmic region

RB = l/IB [VBE - VT*ln(IB/IS)*BF - IE*RE) whereIE =IB+IC

B. Pulse Measurement Method

A current pulse is applied to the base and causes thedevice to turn off. The voltage across RB drops to zerowhile the base capacitance keeps the junction potential, VBE,constant. RB is then determined by:

RB = 4VBE/Ipulse generator

When the voltage drop no longer appears vertical on anoscilloscope trace, the constant-resistance model for RB isno longer valid. Adjusting the time base of the oscilloscopeuntil this condition is reached gives some indication of theswitching times at which the simple RB model is not adequate.

Some other techniques not mentioned here are, the noisemeasurement technique (for noise performance), Impedancecircle method (for small-signal tests).

NOTE: 1. RB is one of the most difficult parameters tomeasure because it is modeled as a lumped constantresistance although it is actually a distributedvariable resistance.

2. The value of RB obtained is strongly dependentupon the measurement technique used as well as thetransistor's operating conditions.

3. Thus the application of the model should determinethe test measurement technique to be used. Someother methods are the pulse measurement method,noise measurement method and the DC measurementmethod (See References)

4. The user may find that it is easier to "play"with the value of RB until a satisfactory model isderived rather than try and measure RB from atest method.

Page 33: Definitive handbook of transistor modeling

EFFECT OF PARAMETER:RB significantly affects the ohmic region of IB, IC and IE

in both the forward and reverse DC biased modes. IB isespecially susceptible to changes in RB. As RB increases,the current curves in the ohmic region bend downward.

1<.

--

RB also affects the switching time of the transistor model.Increasing or decreasing RB changes the delay and storagetimes of the transistor. Base resistances greatest impactis normally its effect on the small-signal and transientresponses.

':11

o. -j- ---:

-~.

+

~-

Vee

'l

o.il I.

", :-:..~.~.~..:-=.ll t YIU

lSI •••.un I t CHAHN(L 1

~:- tI V_.. .. ::·...-_t CHAflNH 2

He.sur~nt Setup to Determine rbby the Pulse Method

Page 34: Definitive handbook of transistor modeling

PARAMETER: RE

DEFINITION: emitter parasitic resistance

MEASURED VALUE:TYPICAL VALUE:SPICE DEFAULT:

.5 ohms1 ohmo ohms

HETHOD:11. RE Emitter Resistance

A curve tracer can be used:Curve Tracer Connections

CollectorBase

Emitter

Transistor ConnectionsBase

CollectorEmitter

Display the IB vs. VCE characteristics. The connection switch isset to emitter grounded, base terminal open. The horizontal knob isset to read base volts (VCE) and the proper ranges are selected toyield an easily readable slope. Choose two points. The straightline portion of the curve is = liRE. The slope should be determinedas close to the flyback portion at the bottom as possible.

RE = aVCE/LlIB.

//

I/

CIRCUIT DESIGN:

I/

I

NOTE: 1. RE is the'inverse of the slope of the straightline portion of the graph.

EFFECT OF PARAMETER:

RE mainly affects the ohmic region of IB in the forward DC biasedmode. It has no significant effects on IC in the forward mode andhas no noticable effects in the reverse biased mode. As REincreases IB's ohmic region concaves increasingly downward.

Page 35: Definitive handbook of transistor modeling

PARAMETER: RC

DEFINITION: collector parasitic resistance

MEASURED VALUE: 10 ohmsTYPICAL VALUE: 10 ohmsSPICE DEFAULT: 0 ohms

METHOD:Measure IB vs. VEC, a Curve Trace can be used.

Curve Tracer ConnectionsCollector

BaseEmitter

Transistor ConnectionsBase

EmitterCollector

1ma/div.2v/div

RC = (VEC1-VEC2)/(IB1-IB2)

Use the same set up as for RE.

RC may be obtained from a curve tracer photograph atlow values of VCE vs. IC. RCsat and RCnormal are the two limitingvalues of RC. The curve tracer settings are

VERT - collector currentHORIZ - collector-emitter voltageSTEP - base current

Il,: ...."T

/ S",I't.· ---/ R.L. No............ \.-

/

NOTE: 1. The RCnormal line is drawn through the knees ofthe characteristic curves.

2. RCnormal ( RC < RCsat most of the time.

Page 36: Definitive handbook of transistor modeling

EFFECT OF PARAMETER:RC affects the collector trace

characteristic curves at low VCE.suppressed the curves become.

curves by suppressing theThe larger RC is, the more

RC also strongly influences the ohmic region of IE in thereverse DC operating mode. The greater RC is, the more concavedIE becomes in the ohmic region.

Page 37: Definitive handbook of transistor modeling

PARAMETER "TWEAKING'

IHTH r ~

II

/.

"E

Effect of r b .nd ,.~

-- I4lTH ,.' MID'" Ib ,

/ __ HITHOOTI

I/.

'e

"

Effect of r~

'\'TlOIT .~,. - ........-------

II

I £.:;;;-------­I

~L~ ~----------

'"",Z""'~ YeE

leI

13~ t;_I II

I185-- 5 I

I II

• I I,/C I

I 6I I

I. I

III

III

II

III

I,

r8E) VB':! ~·BE.! ~oEl

L[Cr.HO:

,•co .UIII

NP',IS ... lid ." .p.c\rI.d.HI and lSI .dd~d .II and II .. ddo:d,IU .. dd.d.

Collective Effect Of Parameters

Page 38: Definitive handbook of transistor modeling

PARAMETER: IKR

DEF'INITION: corner of reverse beta high current roll-off

MEASURED VALUE: 3 E-3 amperesTYPICAL VALUE:SPiCE DEFAULT: infinite

METHOD:IKR is found the same way IKF is found, only now it is usingreverse DC bias. IKR is the value of IE at the transition betweenthe ideal and ohmic region for a reverse biased transistor. IKRis the value of IE where B is equal to BR/2. Again, IKR has to befound by curve fitting.

CIRCUIT: use the REVERSE DC CHARACTERISTICS CIRCUIT SET-UP

EFFECT OF PARAMETER:IKR affects IE (in the reverse DC biased mode) in the same

way that IKF affects IC (in the forward DC biased mode).

Page 39: Definitive handbook of transistor modeling

(

PARAMETER: IKF

DEFINITION: corner for forward beta high current roll-otf

MEASURED VALUE: 4 E-3 ampsTYPICAL VALUE:SPICE DEFAULT: infinite

METHOD:IKF is not easily determined from measured data. It is the

value of IC at the transition between the ideal and ohmicregion.

The method used to find IKF was to choose a value for IKF andcheck the model tit ot IC vs. VBE. It the SPICE model andactual measurements did not corrolate then another value waschosen.

//

//

NOTE: 1. IKF is also equal to the value of the collectorcurrent at the point where BF is 1/2 of itsmaximum value (BF/2).

2. "Curve fitting" is the only easy way to find IKF.

CIRCUIT: use the FORWARD DC CHARACTERISTICS CIRCUIT SET-UP

EFFECT OF PARAMETER:

IKF affects the ohmic region of IC in the forward biased DCcurves.

IKF also has some effects on the switching time of the transistor.

Page 40: Definitive handbook of transistor modeling

I

PARAMETER: VAF

DEFINITION: forward early volta~e

MEASURED VALUE:TYPICAL VALUE:SPICE DEFAULT:

48.2 volt~

100 volt~

inUnite

METHOD:A curve tracer photograph i~ used to find VAF. VAf is

'the negetive of the extrapolated intercepts of IC v~. VCEon the VCE axis. The curve tracer ~etting~ were,

VERT - collector current .5mA/divHORIZ - collector-emitter voltage .2V/divSTEP - base current 5uA/div

VAF = IC1/~10pe - VCEl

"" I

- -o

NOTE: 1. When extrapolations spread over a range of values,u~e an average or geometric mean of the value forVAF.

EFFECT OF PARAMETER:VAF affect~ the slope of the linear segments of the collector

characteristic curves. The ~maller VAF is, the larger the slope,

--------

~.~=~=-=-=-=-=-

Page 41: Definitive handbook of transistor modeling

t

PARAMETER: VAR

DEFINITION: reverse early voltage

MEASURED VALUE:TYPICAL VALUE:SPICE DEFAULT:

7.3 volts10 voltsinfinite

20uA/div.2v/div5uA/div

(

METHOD:VAR is found the same way as VAF. The only difference is the

collector and emitter pins are exchanged when interfacing thetransistor with the curve tracer. The 'settings are,

VERT - collector current (actually IE)HORIZ - collector-emitter voltage (actually VEe)STEP - base current

VAR = lEi/slope - VECl

/ ........

"U-l

EFFECT OF PARAMETER:VAR affects the slope of the linear segments of the emitter

characteristic curves. The smaller VAR is, the larger theslope.

'.

Page 42: Definitive handbook of transistor modeling

PARAMETER: CJE

DEFINITION: base-emitter zero-biased depletion capacitance

MEASURED VALUE:TYPICAL VALUE:SPICE DEFAULT:

23.0 E-12 farads10.0 E-12 faradso farads

(

METHOD:CJE was obtained using a multifrequency LCR meter. Using

no external biasing, the junction capacitance between thebase and the emitter was measured. The collector terminal waskept open.

EFFECT OF PARAMETER:CJE mainly affects the frequency response as well as the switching

time of the transistor.

NOTE:CJE, MJE, VJE are all parameters relating to the emitter

junction capacitance by the equation,

CEdepletion = CJE / [(l-VBE/VJE)**MJE]

where,CEdepletion = base-emitter junction depletion capacitanceVBE = reverse biased base-emitter voltage

and,** = "raised to the power of"

Page 43: Definitive handbook of transistor modeling

PARAMETER: VJK

DEFINITION: base-emitter built-in potential

MEASURED VALUE:TYPICAL VALUE:SPICE DEFAULT:

0.85 volts0.6 volts0.75 volts

(

METHOD:VJE can be obtained from measurements of the base to emitter

junction capacitance (CE) vs. the reverse biased base to emittervoltage (VBE). A multifrequency LCR meter with external biasingwas used to measure CE VB. VBE. During the measurement thecollector terminal is left open .

..

A graphical method is then used.

1. Tabulate CE vs. VBEreverse-biased2. Assume a value for VJE (usually between 0.6v and 1.Ov)3. Tabulate [VJE+VBEreverse]4. Plot CE vs.[VJE+VBEreverse] on log-log graph paper5. IF the line is straight then the assumed VJE is correct6. IF the line is not straight. go back to step 2 and

assume another value for VJE

"'".......

".. '-

'"_ vJ£.oN.~

".. '."Lk:{ ,~"'. '.

\..0"1 (,~ .. < ,11..1 ...,..."EFFECT OF PARAMETER:

VJE affects the frequency response and switching time of thetransistor.

Page 44: Definitive handbook of transistor modeling

\

(

PARAMETER: HJE

DEFINITION: base-emitter junction exponentioal factor

MEASURED VALUE: 0.4TYPICAL VALUE: 0.5SPICE DEFAULT: 0.33

METHOD:-MJE = [LN(CE1)-LN(CE2)] I [LN(VJE+VBE1)-LN(VJE+VBE2)]

II

I-------IIII

NOTE: 1. The straight line of CE vs. (VJE+VBE) mustfirst be found in order to obtain MJE.

EFFECT OF PARAMETER:MJE affects the frequency response and switching time of

the transistor model.

Page 45: Definitive handbook of transistor modeling

PARAMETER: CJC

DEFINITION: base-collector zero-bias depletion capacitance

MEASURED VALUE:TYPICAL VALUE:SPICE DEFAULT:

19.4 E-12 farads10 E-12 faradso farads

METHOD:CJC was obtained with a multifrequency LCR meter.

no external biasing, the junction capacitance betweenbase and the collector was measured. The emitter wasopen.

Usinatheleft

t

EFFECT OF PARAMETER:CJC affects the frequency response and switching times of the

transistor model.

NOTE:CJC, MJC. VJC are all parameters relatina to the base-collector

junction capacitance by the equation,

CCdepletion = CJC / [(1-VBC/VJCl**MJC]

where.CCdepletion = base-collector junction depletion capacitanceVBE = reverse biased base-collector voltage

and,** ~ "raised to the power of"

Page 46: Definitive handbook of transistor modeling

PARAMETER: VJC

DEFINITION: ba~e-collector built-in potential

MEASURED VALUE:TYPICAL VALUE:SPICE DEFAULT:

0.5 volts0.6 volts0.75 volts

METHOD:VJC can be obtained in the same manner as VJE. U~ing a

multifrequency LCR meter with external biasing, the base­collector junction capacitance (CC) vs. the reverse base­collector voltage (VaC) was measured.

Again, the graphical method was used to find VJC.

EFFECT OF PARAMETER:VJC affects the frequency response and switching time of the

transistor model.

Page 47: Definitive handbook of transistor modeling

PARAMETER: HJC

DEFINITION: base-collector junction exponential factor

MEASURED VALUE: 0."TYPICAL VALUE: 0.5SPICE DEFAULT: 0.33

METHOD:

-MJC = [LN(CC1)-LN(CC2)] / [LN(VJC+VBC1)-LN(VJC+VBC2)]

O!..

(

III

--1-----

II

NOTE: 1. A straight line of CC VS. (VJC+VBC) must first befound in order to obtain MJC.

EFFECT OF PARAMETER:MJC affects the frequency response and switching time of the

transistor model.

Page 48: Definitive handbook of transistor modeling

5.2 E-I0 seconds10 E-I0 secondso seconds

(

PARAMETER: TF

DEFINITION: ideal forward transit time

MEASURED VALUE:TYPICAL VALUE:SPICE DEFAULT:

METHOD:

TF = 1/[2(pi)(Ft)] - (CC)(RC)

Ft = 1 / [(I/Fmeas)-2(pi)(CC)(Rcollector)] for Rcollector » 0

Fmeas = (Fbeta)(Bo)

where,

Fbeta = frequency at which the magnitude of beta is l/sqrt[Bo]Bo = low frequency betaFt = unity gain frequency

NOTE: 1. CC is the base-collector junction depletion capacitancebiased at the same VCB as the circuit operating point.

2. Rcollector is the resistor on the collector lead ofthe circuit.

This method determines Ft from the frequency response of thetransistor in order to obtain TF. Using the following circuitset-up, a frequency response is plotted (AC beta vs. frequency).

- ~Ov

-. I

rv

'.

1 \'~rFl: l'wt:~

"" ~lo.l.~

Page 49: Definitive handbook of transistor modeling

From the frequency response, Fmeas ill found ..

B.

8, - -- --

/!>, :

(

And finally TF is found.

NOTE: 1. Beta is the AC gain of the transistor and not the DCgain.

EFFECT OF PARAMETER:TF affects the frequency response and switching time of the

transistor model.

Page 50: Definitive handbook of transistor modeling

PARAMETER: TR

DEFINITION: ideal reverse transit time

MEASURED VALUE:TYPICAL VALUE:SPICE DEFAULT:

34.4 E-9 seconds10 E-9 secondso seconds

(

METHOD:TR was found in the same way as TF. The only difference

was the collector and emitter leads were interchanged whenfinding the frequency response.

TR = 1/[2(pi)(Ft)] - (CE)(RE)

Ft = 1 / [(1/Fmeas)-2(pi)(CE)(Remitter)] for Remitter » 0

Fmeas = (Fbeta)(Bo)

where,

Fbeta = frequency at which the magnitude of beta is 1/sqrt(2) of BoBo = low frequency betaFt = unity gain frequency

NOTE: 1. CE is the base-emitter junction depletion capacitancebiased at the same VCE as the circuit operating point.

2. Remitter is the resistor on the emitter lead of thecircuit.

The test circuit used to find Ft is,

_ ~.o"

I.oeJ"F

.--------.-1f---'-----J\-"\,r----j

\\.I"..n..

EFFECT OF PARAMETER:TR affects the frequency response and switching time of the

transistor model.

Page 51: Definitive handbook of transistor modeling

SUMMARY:SUMMARY OF SPICE PARAMETER VALUES

FOR THE2N2907A PNP BJT TRANSISTOR

[parameter] [value] [default] (note]

NF 1. 21 1.0IS 1.10 B:-12 amps 1 E-16 ampsBF 202 100EG 1.1 e-volts 1.1 'e-volts use default,BR 11 1NR 1.04 1 use defaultNE 1. 92 1.5ISE 6.67 E-12 amps o ampsNC 4.48 2ISC 3.55 E-9 amps 0 ampsRB 40 ohms 0 ohmsRE 0.5 ohms 0 ohmsRC 10 ohms o ohmsIKF 4 E-3 amps infiniteIKR 3 E-3 amps infiniteVAF 48.2 volts infiniteVAR 7.3 volts infiniteCJE 23.0 E-12 farads o faradsVJE 0.85 volts 0.75 Yolts

(MJE 0.4 0.33CJC 19.4 E-12 farads o faradsVJC 0.5 volts 0.75 YoltsMJC 0.4 0.33TF 5.2 E-I0 seconds o secondsTR 34.4 E~9 seconds o seconds

Page 52: Definitive handbook of transistor modeling

t

(

EXAMPLE:

ACTUAL TEST OF 2N2907 PNP TRANSISTOR

Page 53: Definitive handbook of transistor modeling

I\

MCDONNELL

/

OOUGL~co,.,..o......,o....

PAGE

1,"1 ~ A

.l .1' '" A

"'" 01. M A

f. .." """

~.lq """

'1:'1& "" ..

IS,~~ ""II

I'\ ..,.~ ""'4

=.001 "" It..

.00'\ "' ..

. 0<:> /I """

r~

.01.,. r ~

. IS":> J" A

.'-.57/,,,

.'11' r "• 1~,!> /""

1.1"~ ,. A

.3.1+::> )" A

t..{,""t l} A12..11 r"n.b>. /" ~

, f."'; l' A

SI.I./I ,. ..

G.~.~1 ! ..8B ''1 r "­10/1.4 )< ..

"o.f..j'o"

I~~ I }' A

115;1 !' A

I~B.l )<"

r&O 1/

.Yl,,,.")0.0 ,

·4...- ,

.'iSov

.7lJo v

,.'~l.~\1

/. oX> v

.'500 "

,SSa "

.ilS 1/

5~~..:.. ..... p.

Page 54: Definitive handbook of transistor modeling

/

MCOONNELL OOUGL~CO,.~o...r'ON

Nf- .. .<-15 - .s7S

(0,..) c. (""~,,,, ')

NIO ' .5;>'<; - .~SO

('''''1.100 ) ..... ( .)"S~~.., )

~"'IC , . 'S!. )( ."'0[ .•~ J

~>p (,.,\,,.)( U'"'-) -\

(:r ... -1 1O'''' lrIf\lt~"

1.01.')....~

X \0

PAGE

V\'(\Rt,~'!lt! Mf':nQN""CtL. DOl/<'Ol..AS "' .. ,.",.,"""'.,,.,. .... ,· ...,U'·"'N~ H'"

30103 f,,' 'O~, JU'\: I',

Page 55: Definitive handbook of transistor modeling

..,

._'

-1

-_._----:----.

,,.... -.~-_._--

.~.~--~--:

t e -~..~~.~]L

o

...•

+ .. --

. -1..._

.-i- to. - +: . -:..~.:---;=- -0 .C'I ••• .0.- i-· -----;:~-~r-.------_l-t:-··~-1"':-·::':':·..:::::-.-'f---+-...-.1:---//-, _ 0 0

I .,L, - '-~._-o--t- ·--·1 / 0 ,,$..

E·-_.. ·_··_··-r··

.. I·

~-

,00

"

:0"

•I

•"

'.j

~.-

.1

: .~

- -- .., .

.. t=::: .,.. r==~_:

"',' .1, ,

. ',~'

-r-,··

",

-..,..---

:·:i~~.~~:~·1 .":' _'". ~

, I

.:.=.-I:..

I", ,

+

,.

I. I •

; ..

, ,

.'- :::r-.

"'.; .'

--I

_., .

"

I' _.,-1

i-·- _ .

,

,•I,

••

J

.\

"

,

.0 I

..••I

~ .~.

~ .u,>.u.~ .

w•.....-

(

(..1 'j

'.

· "101

:: .. -'---., .. . ", ,

Page 56: Definitive handbook of transistor modeling

.,

:,-',1. '~

~ j 1-:;~,-+

, ': -.; ':~:-'.: ~

~1~::~

., .. .: I.::e::=

_._......l ...._ . . I .. __

~_:_: ·l·:~:-·=

_._-~----_.... -----=--_.- --.. . - ...'.-, ,"/ j·;'r~-";'i"'- !~"'1 :- ..:j ~ i:--:.:..j-j :-1.q·-~.::. : .!- ~.: ~ :~::

: 'L..:

. ,.... ,..

j. ,

-, : ~ .: !-. , ,

I::i

l'''€...i:.-L ..

;',

i : I

i--·-'-'-+...·-._:-·1 -~ -.-.• ', .

.- ,

••• j ..

~. ~ ~:---. :.:~:..:,' ...

., I

.-: .:= I ~ ::.~

~. .:

,- ':--i--.-'

~ :t::~~;: :.~:.:-=; ===.-I ~_.

.~__ 4 _

!

,. --;--'""7""---'

, ,

------,

I '

-,+t--.:+,

1- ---- •.--.

.­I _ -!

'.":' :-.~ -.:

, .I • ~ P'!" -"'"-.j ;. '!'"' .: ~ - ••

L_

J.

.1. _.. .•7.

•5.

..,

'09

8 .7 •

,- --,

I. __ ...8. __

,- -­6__ .~==~·.:-=;..::..·

S._. -:-~ --

10. __9. _8 __ • -1.r.;; ...,•, -

,­••7

•,.•

(

o-N'"''"'..

( ,

..z0~:;0~K...w_....U,> ,U.~.

!::!d~u

u~w-0

~~

8"... d..i~ww...W•:lC

(

I\

.. .·r D.... "1 o l.> ," -: '.-

Page 57: Definitive handbook of transistor modeling

/MCDDNNE.... DDUG"~

I CO,._IItAT'ON

\

PAGE

e.)(.A.~rLc... I/.I<\lCf>SE =- e...-u..~c:...""E.i2-\~ i'<--S

1£.

X...

A

\,0_

r~, ,6<

..1.- ~

\I Be::. "L~ :I.E.

,14>0 .O>-a IA,'l.1!£ .'J>+ rA.. ~oO ,O~." 1'1:>...7.1.t; .0,. i A

.7<1> .011 i A .£»0, M 1

.">/1S .liO }I., ·ObQ">- ""'" f..:.

( ,.,"" ,110 !' A ,o<:<>t .. A

. '\'>A; .~~'!' " .00:" ... to..

-t<;u .~10'" J' A .001\ "'" A.

M, .1'(') } A ,00)...).. "'" ~

·~o I.S'I. } A ,o.~ '" '"

's'" '.~ }.A .0\1. "'" t>.

,~ 1,'1"i } A .O~l ..... "·SlS' 11,~ .fA, ..,.." .... A

••tt> ~l. I • , A . ,1\ ..... ,..,., '".V),) 1).0 !''''

,~).r.. ..... A,1oS0 ,Sll·S' )< A 1,'1..b",,~

·:"1S"" '"1>$ f A '1 tt'l- II'\. tJ.

.1eX> c.).~ oS' .J- A G>, I~ 1M"."1) 1.;:1..\& M "- If, ~t- '" ""

., '" .l..40 '" A J~.ll ...... A,

·1,'5' ~ .... t, ""I>., "~.,,,} ... A

.1 "" e.o, ""'A H·"'., A

,\~, ~.Ol >viA ",'e.", A

·~SU ''''.w"" A 'i").,,, .... A

W(lH .... S·tll '; "",('nONNCLI. DOUG' .... S ASTRONAUT'C~ CO....,,...... "".·· ...,~,

3010:1 I,' IO~l JU'>j .~.

Page 58: Definitive handbook of transistor modeling

MCDONNELL

>Ie. •

/

OOUGL~co-__·r'ON

"SO - ,$00

.~ - ,).S~

PAGE

(

[- -"" 1(_.~~)

-,x ",

-.

-\

-'1" \0

WORKSI.I rl IMCOONN,·tL OOUr-LAS A!'irHONAt.'r"· ... "(>.",,.,,~, H'I""

30 , 0::1 M (O~, JU!\j '!'.oj

Page 59: Definitive handbook of transistor modeling

-'--- .......J

. ._.

•,--:.;-

i '.-1 -

"': .. -. _ J

-- .J

-/.-'

:-::r­I

.-."1

-7.1-/'

i...J_

II1!

--f-:-'-:;'.:' I _....•i -

, .1 -

! __-'- L

. i f-:I'·"

f .rTit i__Co? -- .._- ~r _-~ -Jti_---":.-'"

.:.! Io.. "/.J .-+- -r~·-' . I

,.

o _,

I •.: J

.--1-. .-1 ' 7

-~. p •

I

. ,

......:.

1._7."" ..:...i- - ..1

~ ......r--".'-- .....~._- '---,---

,1':0'

,I ,,7

,

,

.'

,- -

10,e.7

•,

I

\'00,e7

•,

,.:, .:

(

Page 60: Definitive handbook of transistor modeling

-- 1

r-.

.'" '.

"0; .

'---:-

, ,

o .,

-

. i

---~-"--"'" ·"-.:....1·

--I-I- .-,

-j .

!

• <

ILI----.

:-1 . _J

-,---- -7._. ,

- - .;-.

~:..'I~~.,·

1--•

,.~•,

, .-

,

.1

.r

'00••,6

'.

oN

'"'"<t

~

Zo~;;o

.-

•. -~ :U> ­J

(

Page 61: Definitive handbook of transistor modeling

/

MCDDNNE.... DOUG"~co",,.O,,,AT'ON

P"GE

1_%,\/

sr'X....

CO\..Lf(..""O~

u., I .,../!t.'<'0:'~ . ----- • :Ie.:. .s .,...A ,,~ . 10_

bor"1.06 _At

I~" ~~. S."'R • \c . So :t~ .10 r'

~c. .,~ 'i.e. ...... ., "--' ~~........\

~ ...... - ""'-, 1<" l".1 fL-1 .~ "' ....

Ro(. • \0 ,,__

ec.101~ ....... 0.,. '" 9.+ ..n..-.i ) .... 0\

"" .",\0 _.~

4B.4 "VAF- ----- .q, I~' ".r'".of ~/{,.II;., R.

II!!.1"'"- .4." 7. '.>, J:.~1 >S,/,;"

'~J"A•••

Page 62: Definitive handbook of transistor modeling

MCDONNELL

/DOUGL$--co,.~o~.y,o ...

PAGE

;l.,.1.." - ." ...

SO_~

Ie. . S.UQ _,..

(-.5,00 v

-31,""

- ;. '-t v

}.h, ~

- ~.~"

- ~.ro"

- >. (...1,) II

>.70 "

1",00 v

- S... "

y Al-----ln

,H-" M A.

.&.5'1~ ".'iB<> ~ "

I. D.>t -1\

1.111 "'A.

I .9f; ~ A

I.~ ""1\

1.1..1 _ A

I )..19 ~I..

).1).." y' A

"t. 01" ~A

30103 M 105 JUN ,!;:II

Page 63: Definitive handbook of transistor modeling

I

I. I

. .

III,

"I·. i· .

II

.. -I.-· . I

. ii

,.- T• I •.. .

.1 .j - •

.! {.,. - .. .· ­· .- ....

:I

'j'"• 4 __

.. . .

.-._-

._00.

, 0

. rf--- - ...,..;... --- - --_~ ...0..-._

, ' '._.-

----

--

0.....,-_ '-'_1.. ..! --4 -. 1- . -..., ..:

''-- ..... -,--'

--1.--.... =--t:i .::_::.:, i-i .;:..;:::: .. .

I ~ -r' - .~'- .

. ",;., ."T"""""1 ~ :; . .. .,..-t ,....l 4~ _, .1 ...... :.

IT:] il -::L.;-:: :j~+-!J-, I , ,

+0_1-' 1"!:..':. :i~~- ,J ~ -:~; :~.:~ ~i:;.1- :.:- _: ; .: : :-.. : i : :

-=-!-:=r...: -:~ : :..: :: !.:,-- ;.: .,-: - 0- • I . I . .

iI

:·1I

""i ';-=r .I .'r~--1"- . ,---..._-~ ..~-~ ~ ~ .

,~:

_. __.,~ ._ ..

'T ~--r,-

1.Ll- . 1 __

. _J .

- .... 1

I

---; ~.

1--.. I· ...

. .. - -

I ,

I.~

'; ;

--j .+T-

o

.._------;--,-f-----'--- .....

J--'---i-'-

!-.. - - - _...:.! +-' ... - .._....... ;-- I, ---.-- .

f--. ---n--:- --------,-'-- . . .,- 0

--~. - -j ..: I..:...-=f:: ::=:.. :i..:

__ .•. _ .. . 1

. .. -- .. II • _...:...._ .:~. : ~:~

••

L

'--,--r:

._ .U

. ,. (;. i .

.... t ......

.-1- ---' ' __1_:· :

o 0 I

.~.., .- -i' L--:;::P:-LI --'--h--.-'-

I

-' j

, .

:1 :•

r

I___-.LI-

- -- ..•.._..J __

...

, .

-,-' .

----- ..-!- _.......:..._.- _.- .· _-,- J..+-_-,- _.. -_....! ---,---;, ---,-•.

----

..

j

--

------

, j-~_.,._-+ ..1......_ • c . +".. _.;- .- -,-:--~ -: 1T-

:_.~ :::rr-r--- ..,.- ..- - ...+ i~-~_L f-:-4_-; -.!

· .. _. '-'--I-' -'.._--· . .' ~ _~ :-J_ ~ __

..,'--..,-

....

... ..:....L_

1---.

1--. .,------ -_ ..-,', --,..,

1... - --. .

j - ~ i... I.. 1

I

• . t··

, .

...

..-.- ._-.. -+-~-.- -'1-

. . .... ... . .. , .. I .~ -1- . - _. -- .. ~ - - .. I

--:---- -_ ••_-- t

.. -­..-

-'~--

I...J U_L L: L1...J U ...-.. _... ~ ..- . - ....-. --1-- -

I

:: .. : .: . ...::.. ..:-:- . r:...:.:: ,- I ..

I I~."I (;' I .f..---J----l-- ----.-_---''--_ -+__f-~+-_-t-_---l__---J. ---- .

, I : i --4- 0 ~.'

1--- -- - - ro-·h--::L..T--, ~ I • i jH-'R I' , -1- r-,- ,

I :

! :I.

I

,..

•••

• •

o~

,.•

••

,.,

Page 64: Definitive handbook of transistor modeling

I\

/MCDONNE.... DOUG"~

cO,.~_.,..ON

PAGE

e.)(A '"rL& ~~ ~e-reR ~EA"'"'I;:e.:Mc~T

~ S£:0, l~.o ff'

- \" I'" yf- :J. v 1'\ .• f r

- ~" 12. oS" TF

'I" I\. '\ t F

- es. v 10.S fF-

c;re. •. ,~

F2?o " '0

V;:re. ~ .~.

f'lIE ~ Ve.e CI:

_ 0 &~ ~ 1'r1.8e 1\'.' \'r

2.85 l"r. o fr

~.~~ 1:l,S fr,,\-0<;' II. '" \'F

- 5.8, lo.~ r""

~jE,

"~ ( ,.., )Ii IO'a) - ~W (n.", )( 10'-') = o.!>q"

.... ( , Os ) .... ( ...... )

Page 65: Definitive handbook of transistor modeling

(

I

s

7 3 4 5 6_ ._L_8__9_101", ",I ! ·--:-i-'-,:,....,.-:--'.1....,-·;-:..,.---.'"j'-,r-.-----;:p--jT : . j ,:.. I ' !!: I,~. • :. '.•~,.:--:-i_-:---:-·~p·l ..--- - _. 1'--:--'--1--:--·'·,.... :. "-"-i' - -T ~T

.'. T:'~> (_. ~ , '-+~_._ ...-'~~,.,: ~--~"'·--"~·.'_'-'--I_-·"-_-""~~ ·-'·l·':-L. ~'!;~i'::::1 ::::'-fr-·. "I'~"::,~i--';-~H-·-l+-+n··j+··::~-:~:· :':':~:'I.-' : ' . 'I .-.----:I~-.".·-·J·.i

: :. • \ .,.. • ., : ., .....: , • I : ••• ,

J " 1· i .. :::' ::!. 'I. , . I. " _ ... -'.+.9"~" .. ... .'---'-_i._i.....:.--'. __L __+_...C~·~I;· :;"::~'i':':;c::;:: ."" .. -.. .: .::,::.:::.' .C:::;:':";::---C:i :". :1; .J.! I::, II iii: ~,i: ''''!'~'...., '-I fv:-=4-'- .. ~·::;-=- .~.:.: : :',].:; . '::1:: 'I", 'I ,:::<'\:: 'I-f- ...,_.. , 1-·:t':.i'I,!:i I :: ':_'1'..1.':"1'__ -ri.'~,I.',.·~."._." : .......-,-:-,t." .. --'. __ ._;,....... ":-r.-=t.:::~J.:-. '--'r ;.::.:...J~ 1 _: ~

i- -:..: :.'j~' .; - I. -r 1':.' ~;- j : ii :;": 'i!:' . ! 'I" J : , !', ..I. I r-1-.--, .., ... .i.j~I·I:~~ii·i·l .. I" , I 'I'"~ .,. :,.. i'.-.- ..... " '. !' I ! ' . I : I .! ' ' .. ",' '. ' I' , .. J

... .i. " I - .~: . i I : .: . '. I ) : I, I I: : T : I I : :-i i 1 • ; • . l'::',- .. '.. ".' r'''~ .. 1~I :".' . I I ' "tn'" ." '~...:...-: :_·:....-,-'-+·t+-;.. .. _·!'_·_ ..·.. _--~, ·f:"..,..:~:.I..;-,::;::=:-:-tI1 ..'+:.. -'---n-t--i.. liT .-., . :1'''::-::'' "~ ......,' .. :!'! " '"1'''=1:-,:-' ;- :-i'~-:'-" -;:.'1-:-:-' :L'-' :,;. J: ,!, ~ ':, I, :. _.' j • :., !!l :,,' .;,.: :: :::::'-' ·1.. '·, "1--, .. 1 ',.1:' .. "I·'· : .,_.-... I.. , ..... , II

(f¥) ~: _I ,- I .. I ... ; I' : I : i : ;, 'I!'; i I . " 'I

I· I ' , I ,I ., I. ! .' L . I . i . ,., , '-"""'1

... : . I 'J .....:.~.-,.:: _: -:... .., _ -. _ --., .... " I I1-. I :...;- .I . i . ; ~ ': :' " .i , !... . I : I " .: : I.J . --+-['1--'''' 'I" 'I' J ,I '., , .,.. , ,., ..1 ." r : .. " , . ,

! - ~ - -- -!- -,- . , I' , l' , :, I.:". ,_, " . I : . ~" .: i' : i: -- i' .. ,I ., , ',' 'l

~, , I 'I' '", .. , :"~";-'''c~_::..::-,:J=--i-;:+'-:-±d-:-":'~r-'-:'::+-f ::;+t:i~i::i:'C ~;-~..:~:...:-::- __ .._ .'Ic::i,~'c; .2_1..:.:!~.J::::I.:.:...:...L .L..j_ ....,..:. .':1--:-' ~ .. c':', - _. . , ...-:. I I,-" .. '-:....j....:.......:....:....:.. i ". +-'I'~'-" --:T'--'-'" -. : ;-:.; :'J. "'c::: i: .-- , I ' .._.

g; -- ...:T~ .•. i.. ~~. :.• ~4:.LlL+· ;~ .:l.:.0~~ . :":.~......~ :':·:-L·:":' :~.;.:.:~.:.. :.;.:--t-::-.rfl·_···..·· .:: I: ~ ~-J-:-i=±:j"':"'I-:-:[ Hi:: . ;~r·t: -p: r:: :':', : ..;--;.:.-=~=.~ ~ ..~ -~::T::~' :~: .;:~ -=:..i::::.~:':'" ... I.. : ~ ':-:' :.- :_ :. i ~: ;~~~- :;- ~:-1~.r .)~:r:~_-~-·T-:-...::. :....:....~~ ~ :~- :~~~~. -,' :~- .- .. ~, "+:..__ .

... 1\0' ...... ' ! I' I j , I 1'1'1 I I I ... ,L." ••• L ,. -, , " I.: I

~ : Uf---l I·~ .-,.-!. ,.. . I ' '~ 'L .~ ...L ~ I: .... ::':': . c.... ---" --- _...--.--. I' ": i .

Hi ~-- . .: I • J~"'·~f ~f; y.~. :~ +;.l~ ~ ..... ~!:-~.~: :;~'.."F<··~';~~~- :;:-'-~.: ,o '-1-... T=l.-'-I-- - .. -- 1l)~ .. I '.-. " . _ •.- ,. ·-~t,:"··'~·l ,I, Io· I-t-I

--J ' " ' .. l' 1 I l..-t-l '. ~,L.• " .. , ... 1"'1 ." 'I""- -- , '-i'~' . ",'.,'''". . 'i' ,-t- ,-,--, - , , 1" '-.j ..' I I -l.- ' • .- _ • •• I I ' I I IW. '---r- . "" " N,I I '" I I~L LI.J.L.iI.I~' :"If'''' :".I",j d'd"........ '.H-.. -4--j L .J_._!_ -!-.J__~ ..I. 1..1 : I , I ! II I' -'-,:-':.: . " . , . --,' _ ..: __ ..~, , ''''--,',-I"'" ;-I~' -;., - ~. :~~_.:-!"~-: .:. .,. ..,

---.. I.,., , .. ' .. , I , :---: __1 ,...,' " .. . 'I.... "-;-~"-;--;'-"i-'- --:--:-~:i'''T' ~.. [ .' I· r:--.,., t'~l~-'i~17 -"!1-; 1;- ) : i i "., 1[: :.~ ·:-:·~.~~.":--Ll~r-rl~~-=i(- .. . .. i :-:-2"1': r; 3'" 4! t 1-(:;6

(

CE

\ ( \J J t - '-J BE:. )

Page 66: Definitive handbook of transistor modeling

"

/

MCDONNELL Doua~C:O"~.Ar'ON

PAGE

~ s;.O. 1'.<4 "\'F

1 • I~. 8 r F

~, 10,,,- fF

:!Jv tot TF

"I. &.~ r F

s. 1.~ r F

c. 'J'C • I': "• 1>-

X \0 F'

v;r, . 0$

(('JS'- ~ "B<.) C<..

0$ \~1 l'F

's 11·8 rF

•. 1"" 10,\# fF~... '·1 fF

"IS 6.1. 1" F

5"> 11 fF

/ ..~) ( .._)...J<....11.S )1,,10 _ \,.t.I, 8.(.,. '1:10

..... ('.s)

'.

x. '...--"W(lnt ~.HII 1 /MCDONNeLL DOUGLA'" A~TRON.... ur'i·1'o c.:OI\o1,-'""",' Wf'.-"'f

:lO '0'" ,..~ IO~' J\JN ~51

Page 67: Definitive handbook of transistor modeling

,"

'. .',.

-+-+---f-

• ..,.. ., ._ .::::: ::;.::.': .:;-~ :.1:: ...~•....•• " .. ~ .. • I. . . . I

:i

1M

." ,~~=,->;1T:~,",;;?m;,m:g~.,=,fls 1;;~!"1 :p.;I!!f!I'B .. : ..'ff'i'§"'i'fr&ffi; i if' :ii!nffi llii!iiii ,j;! ;

I't-:=:'ic""::c'CT'-:;..:t---e,....:--.+,....:..,::"j.. _",,,,.:,"1:'_:::_-+-+,-+-H+-=+-j--j-+---'--!---+.-:":::±::::-::+--:-t-I·-t._ .._.,... I --j:·i~!-jJ:: ~ :' ··.I·~ "'::; :~~; :;:~;:::

.;: if]" ---"'-' ! ! .+----'-""""'�:':.',.---:--..,';J,.5,.--!-....L-L.J..-!-l~,L-!--!--!--!IO!:-----I:':',---:--..,,:':.5,--!,--'---;---l----;~-7--;- 9'10

(

l'l'0-N.

"".. ,0.. : v••••

~ ••~. -.~ •~v •-. •«v ,~"

••o'

-"~

'lee)

~.

Page 68: Definitive handbook of transistor modeling

':I

I /

MCDONNE.... DOUO"~CO,.~,..r'ON

PAGE

Ex...... pL.E. : II='-

Fl1.£G !.'" :Ie" ,6,<

50 \It. Ht. J.1OS ....." / IV ,,-, bJ\- III/'.lo.' .... t408,t>

10 l<. \lL 2.""" .... v /'1 ... ,Scsf- ly /,-,>" J'- \'\to ~

looK. 1\">- J.1..... _"/I,)a..'1- Iv /";0.7 j\.- ~ll ,!,

Joo k. 1\ ~ l~ .S_"'/I').,_.n. ~."vjl>o' 1 f\.- 1'\\.,('"

$001" \IT. ",l.-...s~v/\n.-- .• .sL ~"'./ 30.' IV \ ?,S.~

700.0:. II .. t."L.~-""/I'2.:'Jl- .~vA()., S\- '~.t>

1~1,\%. 2.S_ Iol / IO-. l ..n- .1'\o.,llo" ..n.- 1.S',~

\.&10\ Ih' 'l.7,( .... V/In."I~.Sl.- .l.l..S'"".,I/'3o ."'7..S\.- bO,"',3'i I\'l.. 10/_vi10".a l...,.. ,,\....s"y4o.1 .n- ~,,\\

~.' 1~8 ,e,

\oG ,":L

\If:.. ... -,CoI\";

- \.~ 01

\Jc..P.. .. - 0,'" \v

cc..

t .,

WO Rt< SH EEl MCDONNCl-&.. OOUGa.A,!'i: A:!'iTRo"",.ur,cs CO""PAN1-' ....cs T

30 l03·M 105 JUN 15\

Page 69: Definitive handbook of transistor modeling

r- K-E LOGARITHMIC _Z X l CYCLESK[UFFEL & ESSER CO "'0( ,_ II"

-.467320

8 976Pp\"'fiev C-l,~e...u1'1""

3 J 52

\~ ~""A.__p

567891

F"e.EG, 1l..E'5.po,..b£,. ~ "llP3

4328 9 I76432

'.."~"

5

1"'0 ,--.----":T~___r-r-._.".,r:__r'"'7'1..."."r;;;n=___r.,~rTT"":""'T"......,_;;T:T=mT'n:::_T"':'I=TI'lm;="'"TI:r_,_,....,_"_,______,"'_,_r_..,,.,._:T:_l=;r====='"""~oo I --" : I' :p-~ ~: :: ': :::~ ;:; :: t: ;;;: ii. ::: :: ;;; ;~: ~ i :~ ::; :r ;:~;l;:;; ·ii~ ~n1~i; ;;;:

____._ .1'1. I I Ii' i::, : : < :.:.' ,:,:. ,;:' ",:,: '::. i I ,.. ;::0 .f;:; !~: ::I· I I· 1··1 I ··:"Ii. i :::i :::::: : .... ··::!'II:I:: .::;':.:!!:: :"'11 'I .:':::"::: i:l'~:~E~::"

I t- " ", •. 'I'·,! 'I ••• , •••• 1.. •.•• ..... , •••••4~i~I ... 4._.,.'>:.

,I· 'I-+~Hd-: !:: I::: :t,M8~F+l~~TIrM ::I';.+···t·-n~~·., "'1 '1 '1 I'''' ' "'1' '''1'''1''''1 '1"1' '..··I"':' .. ··I·' ..'.. ··'TI·'I , - "f" "!"'TrU"j""I""\""m'"·'I....l·

"

, . t·· "., . t· .. , :"J. , ·tl~ -r'o •• '.1.".1.. .,... . I ""1 '1~ ti:J· ..·····,t .' ·'·::l::.; j: i :;~i ',:: ::~;:·:···:::::;;~H~;;:;:·~:··::;t· l'~ --: .. i ·1 :··:l:·:·~;·!rt;4.1::;~·::

·1-~l

-- ---'--

----

!---

)', ..

..1 i -~.-,·'8·' i~~ '.:; i::i,,: L2.¥:~.: "'!:: ! ~~·8:.: .<i~~:ii;:~~i~!~;:::''''1 I I . ... I, : , '.".. '''J.:: ,. I .,....... · .. '····1···· ..'- ., jl~ ..:;:~:~::.:::I~::~:::_·:.If-' l: ":.:lIi. j;: ii ::'i :i:!":' ·ll'·ii :i::'·;·;':. ··::::::::::::::~r~::·

.----i _'! __~I--'I'C~- :::::C , ...': :;:<;:::::ll;:~';:::::\;:: : :1. i:;!j~~;<}i~:~~::::

. I! . ..1 ... 1.... 11 ' .... : .... :1:, .... 1.1. ! ......:,.", ... ",:.: ..I: .. '_. .:.r: j Ii!:.. ::~ ":: ::::.:: inf ~~:i .,.: ;.::!~:: j • : j ,: :' :""-J .:t. t·~~ful,\ ~I ._"I· ..· I·· .... "Ii" i "iT i' ..... ,,' Idl :';:" .. :'" ;,dl"rrbl-t, ~k.· ~:ol' ~: ':<ij:i~ :' ~~]:i::

1"',

~:7...

L

to

9

<

f.

-1 ••. - 1-.- ....

. -- .• ;,:II·-l·t ..

.. ..,....\_ ..\..:.:..: ;:::: :;:: :..

::;:h;'::I;:'1::.1.0:1~;:I""I'·.. _- .., .---, " . ,.. .

4 "\ 5"\ 6" 7>', &-\ ~ 10...3"1

•"'J. I i~: ")hi I '---+.-,~c.:. T- K'--j:1 .:I;'. l.i~:I~'~f"l

2"1

'""'"'::'1':;'1::::"I' .", ••• ,•.•

i:+::;I:'::" ..

Hi!

.,..,.,.::::

,. i' 4

3~ dcco.:... 500~~~9d1""?cn~

I . 1--+-·t:1--l"-' .:: .:: .. : :!.- -~'~~+'I'l '1 1~ .. :::::,,:,,; ·L .

~1'.1-- .J " ,.~. . . '.' Ii·ij. ..': I .... 1 .. :: : :: co:: ..•. : . I :.- -_. i-+.+1,·-8·.:.:,tt.::4'1:4~1::+:+::::::+-1::;:::, .' I' ':'.' :' ... ::. : ! . - ... _-: :-~.'- :::l;:11:~:C

~.. , ,.,.,

,. ·1--'---'--" '~-~'''''':'+'--+·--'I-·-·f:·''l:'''l-'.·:: ",. :: :: '.' .,.r:- .~, ;:. . '.• ~ : ... :' .

H-----

I

i

+-.

- 1--'.+.+ "1:-"'---

,1

-~"'-- ':0.... t)\i<. (p\.. ;.b\;..~ot-

Ir

O~

I .~. .1 III.t- .... --I I I I L I

I ; I

. - _.: -\ ~-

; I . +-, I ..: I ! ,.\.I l: ..' I . I I il I l;:;t:::ll

. -1' -- -- .. , .. - . - _. _.- _. . -- -- - . --1--1-- .. "-I-:-rtt:tt:ij i .- '11

' j i. i ._.--- .I I. 1 . I I ' . i"l ITT T I . I----..J'--_--'-__

,

-,

,

o

,I!

01

-0

'0

-ITTTTT' , . :., ..' lilLi' :.. ::. ,- .-. .-. 'j' :1 , _.' !IiT 'j .~.. _.. . I . I.. • :. ...• '" 1"3.:J.:!o ; ~ i... ; •• -~ . II l.i: ~ t!;' : 1'1-'

• 1 ..j.. ., I' , ,'" ' -..: 1"- .. , . . ~;' 1 ••..I - I I .'q . _ , 1

i i I I I 1 i"· 'I. ""I'" '1- .-, .. ,. : •. , : ,,,Iil 1:1, If,...: .i_, .-. '" i'" '., ,,;~i!tH1;;j -..

1001__ 1 I'. I' , In;. -R')d-: tH+t1~~ II : :1111'1>:;: it:: l; :-:1:;:::: j:i:~i:::::::::::::: :'0< i.:; :';r,:"::i;:n~t~~~m::::1

8",-

F-ItEQuEt·.\(..'1 L~E:.t.-,.Z) .~

Page 70: Definitive handbook of transistor modeling

..

...CDDNNE.... DDUG"~CO"_,,AY,ON

PAGE

t.l< ~"'f <.c IR

r"'§9 --.!..L 4 IS ..

~I<.\I:l- '__ "'/11.1. .1\ .'" /1O!-1 n. \0.11 'Ie. "'J.Of"., oJ

10 I<. Hz. 10 ........ /41.l,. J").. .,,-, /I.M "- 1°·11v<. • o.o.~

1001<. " .. lO....V!ll,j. ..J\.- .'\4, II.~ ll- IO.S~ \Ie, • -,w'\O 'II

150\:. '" ".\0....,,/11 ,t,.~ ~o('./ I.~.,. f\- I" ·"b V~,,- ~L;''-l",

.3coIl "' .... LO_~ 111.~ I\.- .\4t"'/IO".1 J\.... , ,<\-...

SCoI:.. "~ u.s..."/ll.~ l\... .1W!L"},1' 1,.. (. .....1~l:. I-\z. l-tfr....,,/u..... S\... ,(,,.."/lo~.., .n.- "\.'\.,

1~lh. 1'S' ...trJ~I."" 11.- .~"'/I.~.~ S\- ~1'\

I.SI"\ Il" 1.0_"/11,1" .n- '10""/'0'''' ~ 1..~

-3 "-I Il .... ~.s ..."/11.1,; n,.. ,~:I ,., ..\ S\- \ .....

tlCfT&: all

ee-l ~ IG.vyF- t,... iT\"·\' 6'J6"\I~)'4E-'0" I.~looo).v' 'l~. c..e..

(6 • 1.<.....

fu-:._J A:~~""~~,,~ ;21\ (\5·'-tl'-)(\O,~",)J,~ ~ ~ (~.'-'k'h.) (,s.c r~ 'f 0·1<\ n.')

~ ~"\.,,\ )( 10" ~

WORKSHEET MCDONNELL OOUOLI\:o. ANTRONAur,cs CO"""'AN"'·MfSNT

30103 M 105 JUN 'SI

Page 71: Definitive handbook of transistor modeling

r".,u-

S'""u.

•C

I! .I

I

--

-_..j

1

, ,

T-+-.

",

i,

i .:

-,

"-j- ,

.... i.

",U\ ,,\, , ..

:::: ,:~:.: :;:.: .:.::: _ ...:-

.... ~.""-...: ....

;q-'

~. I ..

: ::. ~

-'..';'.,..--

.1

.. .i::.:

w.,.. - ,... .,. ~

:: ::.. ::::

.. '" ..., ,.

'''~

..'...

..... _.. - .... --..... 1=:: :~,'-.' .. :: .:'~::.:~. :~: : ... - --"'~ ...- ~

J++-1_-J...JL-!-.L_ _ .1-- ...i _ -- ,'" I--! . I· .J, '

fJ~t-r-h-++"+-+I-j~-+_~H-+!-+-+--!-~-+I.....:..J---:...--l--I I I I ----I

HH---:iti-+t-+:-1-+-+---=-:--·~-=--=-1'11"-1-=-t·_· ..+-_·_+,-=.:.·f-~':~-=J=~:.~-~-l-~... --I .- ·_-f-·-";·-H-- -+ - ~- ·-t-· ...

ex>

.. "~~

!!"%

~­: a.

§:\l.

•w"U>U

(

(

I,

':

I~~----_ .. - -_.. _.

r ., ,,

Page 72: Definitive handbook of transistor modeling

2N.t.YU~), A), 2N:lYU)S, AS 2N290b, A 2N2907, A(SllIC_2N3485, A, 2N3486, A 1

'.;

i"

CASt n OJlTO lSI

JN2'9Ot ....,....:1'901.""

II

PNPSILICONSWITCHING ANO AMPLIFIER

TRANSISTORS

'CAS[ 1t01

'0 "JH1tQ4S.AS:IiN'*S..u

· .. deItgned lor highofPMd IWhttlln,' circuit., DC 10 VHF emplJflefIppliutlonl end compIetN:•• tMy cfrcullfy.

2,362

"., SILICON ANNULAR HERMETIC TRANSISTORS

• Htth DC (;Y,tWI' G..., Specifted - 0.1 10 500 mAde

• Htoh CU,,...,,.(;.in-Btndwkhh Product _tr • :lOO MHI (Mini_ Ie • 60 mAde

• Low Cot~Of·Emllt.. $etur'llon VOlt....VeEIWl'- 0." Vdc IMIMI .'C. 160 mAde

• 2NN04,A lhrv 2H2807,A Comptem.,l 1o NPN 2N2218,A.2N2219,A',2Nml.A.2N2222.A

• JAN, JTX, JTXV A....lllbl., EICctipt 2N2904S, AS, 2N3485 .nd 2NJ0486

SELECTOR aUIDE

o-....t"OVCllO 'PE....... 'c-tO..... Ie. '''''''''' 1c·'I0~ 'c·soo.......

T_ V- - - - ....-"'- .., ,. .., 10'0.:)0"'-

t

10 '00 '""'- ,. .., 20T().II"',o,n 10 '00 '""',.., ,. .., 10TQ.46"'- 50 '00 '""'_. 10 .., .. ..,'0 """00'"

I'00 100 50

"'-. .. .. ..TO,'l1:lNnQ1A, '00 '00 50"',..,. .. .. ..TQ.46"'_A '00 100 50

~AXIMUMR"''flNGS......"'~... Non·" Suffi. A-s..Hi. Unil

Coll-elor.fmin.. vou... \lcee '0 10 V<kCOUtclor· .... VOl•• Ve. 10 V'"Emln.,·"_ VOl,. V" .0 V'"Co'III(,or Cu.,...., - eor.""UOUI 'e 100

~"'"CASE 260:-"'-.. lN2IOI,A _,A fTO·461"'_.. 2Nao1.A _,A)N).II.~ "TOI" Owiol Oi-'-11On '0 100 - - .... )N).III6,".T,,-1&oC

Oer... -.ow 15°C '" ,,, ". mlNfOCTo'" 0.._ O'~'1(ln '0 " " '0 IN.,,,.TC"15oC0...,. -txl... 1SoC ,,, '0 , 110 mIN'oC

ClcMt.,I"Q....., 5100' • .IU"CIoOf'l TJ.T"9 -65 '0 -100 'eT_."... A......

-'<>dlc-," J( Ole ~..'_.., 0.,.

Page 73: Definitive handbook of transistor modeling

'''PSILICONWITCHING AND AMPLIfiER

TRANSISTORS

_________L~- ,~_~__'__,_,_.---'~M' CHMAC"f'l1ffca

rtMf_..." •.,.

ON CHAflJACTffIJllftca

-ELECTRICAL CHARACTEftlSTIClITA" ". """"'.~........"

2-363

'''d,u,.. J(D(C fI ..." ..... D.,.111,. ...1.. T.., ,...,. w,,,"' $ JOO~. 0.." C"C1. S '20,,"11I'T I, "..,_ •• _ "M"_,," _OC," ..,.1 ...._,.,•• '0 ..",."

:IN:l~U4S, AS, :IN:l~UbS, AS, :IN:l~Ub,A, :IN:l::lUI,A, :lN~llb,A, :IN:J411b,A lconunued/

DYNAMIC CHA"AeT' fIlIIT.CS

CoUc_.f.mhMr~ "'.....111 I"ao ••IIC· IO ....... I•• OI HMoA IwffUl .. -

A....... 10 - -CoIMC......~ Vof.... "COO 10 - - ••IlC·IO~II·OI

1E .....n.·... .,...~V.._ IVUO '.0 - - ••liE .. 10".... IC-0I

Col_tor «),jto"~t 'ax - - .10 .-IVCE • 110 V., V... 0.' V*I

~*tOl' eu..., Cl.!,","' 'coo .-IVe... iO 'Ick, II ·01 ~Sw"I. - - 0010A·S..HI. - - 0010

IYel "10 VdI:. IE .. O. TA" lldlel ~A&.t"i. - - ,.""..tfi. - - ,.

a... O.no"~t 'I - - 10 .....lVCE .. )0 'Idc. VIlE .. 0' Vckl

DC~IGe4fl Off -lie .. O. t ""'-*. Vet .. 10 "'*' 2N2904.2N1tOe.2'H3&IS ,. - -

2'H 2106.2N1IOl.2N,.. • - -2N2'904A.:fN~7HJ.6ISA .. - -2N1906A.2N2t07A,lNJ48&A " - -

I~C" I.OI'Mdc. VCf" 10 'Idcl 2N2lKM,2H2'tOe.2NJAe5 ,. - -2'H2t05.2H2tOl.2N)4IlI 10 - -

2H2904A.2N:lt06A.:lHJ4aA ... - -2H2I06A.2N2't01A,2'H~ '00 - -

lie" 10 mAde. Va .. 10 Vdid 2N2fKM.lN2'I08.2H~ •• - -2N2t06,2H2901.2N:MII ,. - -

2H2904A.2H2908A.,2H:M85A .. - -2H2I05A.?N 7I01A,2N:Ma6A '00 - -

lie" 160 mAde. VCE .. 10 '1*1111 2H2904,A,2N2'tOlS,A.2HJ415.A .. - ,,.2N 2905.A.:1N1I01.A.2N34M.A '1.00 - >00

"C - 500 """'*- Vet: • 10 Vckll ll :IN 2904,:lN 1106,:lN)415 JO - -:IN:l'J05, 7N 7901,:lN)4a6 30 - -

:lN2904A.1N1t05A,:lN:wes.... .. - -'N:l906A.'~A :lN3486A ~ - -

CouI<:10l'·Em'Il... s.w,.... VOll.ll! VCEI...I) vo<llC· ISO l'f\Adc.II· 1& mAckI - - ••IlC • 500 lnAck, Ie • so mAckl - - ...

.....·Emlu.. S.lu'''tOtI 'loll", VUIMIi v.IIC· 150 lnA*. I, • 1& mAdell11 - - "JIIC • SOOmAdc, I, • 60 mAdeI - - J.I

SWITCHING CHAflJACTlfIllSTICS

C,,',.nt·G..n -I..-doowod'fl l"Odutl'" 'T ,.. - - MH'IIC· 50 mAde. Va • 20 'Ilk. I· 100 MHrl

OvI$H.lI e""'l..-.c. C.. - - I. .,lVCI • 10 'Ilk. IE ·0,1 • 100 IIM,l

l"'OUI~i~ CoO - - 30 .'weE'" 0 VdC. Ie • O. I • 100 Hill

T,,",,-o... TWne ... - JI .s ••lVee· JO 'Ide. IC • ISO "I......

o.t.... Tinw II' ·I~""'lkl .. - I .• ,. ..A,.. T",.,. ."...... IS-I ••, - _'0 ..Tu,n·Off T,_ 'oil - ,. ". 0'

lVce· fiOVOC.IC· '!l(j",Adc$.Of.T...... tll,·II,·I~I'/\AIkI

" I .. .. o·

F.II T, .....l' ......~ 15tl1

I .,. ---:.-"

l~l

.'•

(

OJ,

....,.•~

1\.; 2N.L~U~ , Als'Llcl• I

I

Page 74: Definitive handbook of transistor modeling

2N2"", AS, 2N2905S, AS, 2N290.,A, 2N2907,A, 2N346li.A. 2N'4S.,Alro""12

'",

IIQI'

MflitM"11l1 111("'l5

," v

,..''', J1

!.-Lil!. )II 0 01)0I '.U'" 111'01",

"

,,II,ll

1r

.,u..,

t"...-,0 l

.... II 'll. ~."""""'" ."G flO'" <C~"

OIM, "1111 ""'. .... Ill ....

..

"QUI" '1Mo -ITOJIAOI AND 'AUTlMI TIlT CIRCUIT

'0'"z.·lOn"'·110""IIMTMll(..,U,.

CASE nTO III

2·364

III .1l(IIUMill ..... MI" .....

.]1 ~ .. OlOt D.no, '.n t 0 It

.1 .,, ,

:" ii"O. II

" .c~ljfi~~ ne--

rUt ijr::-0-1,-"...1..-'_TIll!

,"

• •

OUTLINE DIMENSIONS

0'.A

TO Ole/HOSeOf'(III" fl.( <U ..

:frl, ,

--l-H-o

N ffYl[ I

~"... ''''"''N z. ....w

'" ,,~ , 0 1<0"'"''

ItO

SUTI"I;'LAIiI(

...

..

S" II 'mj I ~"ITll.

: ....SIl tOlIICTO~o

PlOU'IlI , .. - DILAY AND ""IllMI TIlT C"'ClHT

r' ~l,;;jfTii"iT IlleMUD'M 111'11 IlIU l1li1......

:-12fM~ ::~ '-h~' ~o. l-··'D 01 0)] II 011

/It I I

0"

C4Sl "02TO J9

~i'", .,

Jr: ..... ;-1,.., .. L,-IIf ( l I

I ~~,SU1'JlG I

'I"'" _. 0

"'""z..·ton"" . ..,mIIISlltlilf C:l~ ...

~).....;"

(

'.

l.,..r

{if~.~:

..,

Page 75: Definitive handbook of transistor modeling

(

EXAMPLE:

SPICE RUN OF 2N2907 TRANSISTOR MODEL

Page 76: Definitive handbook of transistor modeling

(

"

II

f'C1l.lIJ"I1tt:> 'DC Cl\..?oo\~S~

SPICE ANALYSIS OF OUT. OUT on 1-03-B6 pige 1

~:,...

aVV

/ t~~

<-

/I" /' --y / --

/

CH 1 IOB(VICI V5 VBE CURSOR LEFT RIGHT DIFFERENCEYSCALE 20DBA/DIVVlERO -96.0 DBA VER -52.B DBA -31. 4 DBA 21. 4 DBAXSCALE 100MV/DIVXlERO 700MV HOR b90MV 900MV 210MV

CH 2 IOBIVIBl V5 VBE CURSOR LEFT RIGHT DIFFERENCEYSCALE 20DBA/OIVVlERO -96.0 DBA VER -134 DBA -93. 1 DBA 40.9 DBAXSCALE 100MV/DIVXlERO 700MV HOR 500MV 700MV 200MV

.MODEL PARAM PNP (lS=1.10E-12 BF=202 BR=b NF=1.21 RB=700.0+ RC=IO.O RE=0.74 IKF=750E-3 IKR=3.0E-3 VAF=4B.2 VAR=7.3+ NC=4.483 ISC=3.55E-9 NR=I.22 NE=1.92 ISE=b.b7E-12+ TF=5.2E-IO CJE=23.0E-12 VJE=0.85 MJE=1.254 CJC=19.4E-12

VJC=O.5 MJC=O.20 TR=34.3E-9)

Page 77: Definitive handbook of transistor modeling

(I

..

SPICE ANALYSIS OF OUT.OUT on 1-03-S6 p.ge I

~V"

/ ~-

>!1~V/

~

,)

//V

~VY'

--

~

~~

/

CH 1 IDBlVIE) vs VBC CURSOR LEFT RIGHT DIFFERENCEYSCALE 20DBA/DIVVZERO -100.0 DBA VER -55.3 DBA -21. 8 DBA 33.5 DBA.XSCALE 100MV/DIVXlERO 600MV HOR 670MV 900MV 230MV

CH 2 IDB(VIB) vs VBC CURSOR LEFT RIGHT DIFFERENCEYSCALE 20DBA/DIVVZERO -100.0 DBA VER -117 DBA -60.B DBA S6.1 DBAXSCALE IOOMV/DIVXl ERD 600MV HOR 495MV 710MV 215MV

.MODEL PARAM PNP (IS=I.IOE-12 BF=202 BR=6 NF·1.21 RB=1.5+ RC=.5 RE c O.74 IKF=750E-3 IKR=IOOE-3 VAF=48.2 VAR=7.3

NC=4.483 ISC=3.55E-9 NR=I.22 NE=1.92 ISE=6.67E-12TF=5.2E-IO CJE=23.0E-12 VJE=0.85 MJE=1.254 CJC=19.4E-12

+ VJC=0.5 MJC=0.20 TR=34.3E-9)

Page 78: Definitive handbook of transistor modeling

(

.'

SPICE ANALVSIS OF TRACE, OUT on 1-03-86 page I

.-. .'

:"r-/il

/....

I/1 /

..... .-

V//VhII v--:-

/I;/~~

--

~<.

CH I I (VIC) vs VCEV5CALE IMA/DIVVZERO 4, 20MAXSCALE 50MV/DIVIZERO 200MV

CURSOR

VER

HDR

LEFT

-2.08UA

9.31NV

RISHT

8,34MA

397MV

DIFFERENCE

8.35MA

397MV

,MODEL PARAM PNP 115=I,IOE-12 8F=250 8R=6 NF=I.21 RB=40RC=l RE=O,74 IKF=750E-3 IKR=3E-3 VAF=48.2 VAR=7. 3NC=4.483 15C=3,55E-9 NR=1.72 NE=I.92 ISE=6.67E-12

• TF=5.2E-lO CJE=23,OE-12 VJE=O.B5 MJE=I.254 CJC=19.4E-12• VJC=O.5 MJC=O.20 TR=34.3E-9\

Page 79: Definitive handbook of transistor modeling

r

(

.'

~\~ "",,~ ~-r

SPICE ANALYSIS OF RT-2907.0UT on 1-03-86 p~ge 1

----1-----

.~ ...

/v-.

V--

/

V;1

- --

CH 1 V(I) vs TIME CURSOR LEFT RIGHT DIFFERENCEVSCALE 5V/OIVYIERO -23.0 V VER 0.00 V -16.0 V -16.0 VXSCALE 10NSEC/DIVHERO 50.0NSEC HOR 2.00FSEC 99.5NSEC 99.5NSEC

CH 2 VI3J vs TI ME CURSOR LEFT RIGHT DIFFERENCEVSCALE 5V/DIVYlERO -10.4 V VER -30.0 V -28.0 V 2.05 VXSCALE 10NSEC/DIVHERO 50.0NSEC HOR 10.0NSEC 16.5NSEC b.50NSEC

1100EL PARMI PNP (IS=1.10E-12 BF=202 BR=b NF=1.21 R8=350RC=10 RE=0.74 IKF=4.0E-3 lKR=3.0E-3 VAF=48.2 VAR~7.3

T NC=4.483 ISC=3.55E-9 NR=I.22 NE=1.92 ISE=b.b7E-12+ TF=5.2E-I0 CJE=23.0E-12 VJE=O.85 MJE=1.254 CJC=19.4E-12+ VJC=O.5 MJC=O.20 TR=34.3E-Q)

Page 80: Definitive handbook of transistor modeling

·\

, .

..

. ,r .,

SPICE ANALYSIS OF FT-2907.0UT on 1-03-Bo pige I

) •.-

"':;

~ -- --

":-...

~- ----

"- .....""'-

CH I V( II Vi TI ME CURSOR LEFT RIGHT DIFFERENCEYSCALE 10V/DIVYlERO -35.0 V VER -30.0 V 0.00 V 30.0 VXSCALE 10NSEC/DIVXlERO 50.0NSEC HOR 2.00FSEC 99.5NSEC 99.5N5EC

CH 2 V(31 vs TIME CURSOR LEFT RIGHT DIFFERENCEYSCALE 500MV/DIVYlERO -~.10 V VER -4.31 V -4.4B V -170MVX5CAlE ION5EC/DIVXlERO 50.0N5EC HOR IO.ON5EC 12.5N5EC 2.50N5EC

.MODEl PARAM PNF' 115=1.IOE-12 BF=202 BR=6 NF=1.21 RB=1.5K+ RC=!O RE=O.74 IKF=4.0E-3 IKR=3.~E-3 VAF=4B.2 VAR=7.3+ NC=4.483 15C=3.55E-9 NR~I.22 NE=I.92 15E=6.67E-12+ TF=5.2E-l0 CJE a 23.0E-12 VJE=O.85 MJE=I.254 CJC-19.4E-12+ VJC=O.5 MJC=O.20 TR=34.3E-91

Page 81: Definitive handbook of transistor modeling

..

INTRODUCTION:SPICE contains "built-in" equations for the Gummel-Poon model

of a PNP Bipolar Junction Transistor. The model diagram anddefining equations are listed in the following section. Of the40 parameters used to characterize the transistor, 25 of them havehave been calculated to customize the Gummel-Poon model to simulatethe 2N2907A PNP BJT.

BACKGROUND:

JA = non-ideal forward region base currentJB = ideal forward region base currentJC = non-ideal inverse region base currentJD = ideal inverse region base currentJF = forward region dependent currentJR = inverse region dependent currentCC = collector junction capacitanceCE = emitter junction capacitanceRC = collector bulk resistanceRB = base bulk resistanceRE = emitter bulk resistanceRl = collector-base junction leakage resistance*R2 = emitter-base junction leakage resistance*

* not included in SPICE model

Page 82: Definitive handbook of transistor modeling

.'

************ USER'S GUIDE TO USING THE 'BUILD' COMMAND ************BUILD.BAT is a batch command file run on an IBM PC's Disk Operating'

System and used in conjunction with Intusoft's SPICE program. BUILDallows an operator the freedom to run a specific model card in anyparticular circuit layout without having to edit the circuit. Afterthe circuit is completed, BUILD automatically runs SPICE on the circuit.

The format to execute BUILD. BAT is

BUILD <circuit> <model name> <output file name>

where,<circuit> = circuit files ending with the filename extension

of .TST<model name> = model card files ending with the filename

extension of .MOD<output file name> = the name of the completed circuit

NOTES: 1. The filename extensions are omitted in the command.2. If the batch command needs to be terminated at any

time, type <CTL> <BREAK>.3. Do not use any output file name identical with either

the circuit file name or the model card name. If thishappens, BUILD may delete a current file in the process.

4. The circuit files which are named with simply the type ofdevice (i.e. -PNP,-NPN) are generic in nature. They canbe used to test the model card of any specific device. Thesetests will help in the tweaking and altering of deviceparameters in the model card.

FWD-PNP.TSTFWD-NPN.TSTREV-PNP.TSTREV-NPN.TSTTRC-PNP.TSTTRC-NPN.TSTRT-2907.TSTRT-2222.TSTFT-2907.TSTFT-2222.TST

The current list of circuit files include:- forward DC characteristics test

forward DC characteristics testreverse DC characteristics testreverse DC characteristics test

- collector trace curves of a PNPcollector trace curves of a NPN

- rise time test of a 2N2907A PNPrise time test of a 2N2222A NPN

- fall time test of a 2N2907A PNPfall time test of a 2N2222A NPN

The current list of model cards include:2907.MOD - 2N2907A bipolar PNP transistor2222.MOD - 2N2222A bipolar NPN transistor

of a PNP transistorof a NPN transistorof a PNP transistorof a NPN transistortransistortransistortransistortransistortransistortransistor

Example:If an operator wants to run the collector trace curves of the

2N2907A transistor, the command would be

BUILD TRC-PNP 2907 CURVES

where the built card would be called CURVES.CIR and the SPICEoutput would be called CURVES. OUT. Remember that the filenameextensions are omitted in the command.

Page 83: Definitive handbook of transistor modeling

, .,

'>DIR

Vol UfllE:! in cJr i vt.~ C hi."s no 1 atJ(~)

Dlrecto,'Y uf C:\SPICE\CIRCUITS\KH\CALLAHAN

<DIR><DIR>

11-11-85 11:55a11-1. 1-85 1 I. : 55a

T1 I) 12-:15-85 8: 17aBUILD BAT 48 12--1l~-8~; lO:4·2aEND OAT 9 12-13-85 4: 40pSPICE DOC 52642 1(1-1 ::'j -85 8: ll4aHJD-F'NP TST 166 12--13-85 4: 4·7pFWD--NF'N TST 167 12-1 :::-8::; 4: 4·9pREV-PNF' TST 166 12-15-85 8:09aREV-NPN TST 166 12-14-85 2:33pTRC-PNP TST 190 12-14-85 lO:26aTRC-NPN TST 190 12-14-85 10:27aRT-2907 TST 243 12-14-85 1 j : 08aRT-2222 TST 247 12-14-8;j 11: 12aFT-2907 TST 403 12-14-85 1.1 : 16aFT--2222 TST :576 1.2-14-85 11:21a2907 MOD 283 12-14-8:3 1 1 : 19",~''''...,,., 110D 205 12--14-'85 1 I.: 131':'~.' • .L . .t. ~.

USER MAhl TXT 26~j!.l 12-1 ~-8~5 8: 48a19 Fi.le(s) 15278(18 byl.(~", f,. E.\(-?

)SUILD.BAT

COPY Xl.TST + X2.MOD + END.DAl X3.CIRIS X3.CIR

)ENUJI

'"• t:1~D

Page 84: Definitive handbook of transistor modeling

•., /

)2907.MOD

.MODEL PARAM PNP (IS~I.10E-12 BF=202 BR=6 NF=I".21 RB=350.0+ RC=10.0 RE=O.74 IKF=4.0E-3 IKR=3.0E-3 VAF=48.2 VAR=7.3+ NC~4.483 ISC=3.55E-9 NR=I.22 NE=I.92 ISE=6.67E-12+ TF=5.2E·-lC) CJE~:23.0E-12 VJE~O.85 MJE=1.254 C.JC~19.4E-12

+ VJC-O.S MJC=O.20 TR=34.3E-91

)?222.MOD

.MODEL PAR AM NPNIIS=I.9E-14 BF=IS0 VAF=100 IKF=.17S ISE=5E-II NE=2.5+ BR=7.5 VAR=6.38 IKR-.035 ISC-S.7E-12 NC-I.S RB~40 RE=.41 RC=.4+ CJE=26PF TF=. 15[-9 CJC=(IPF TR=2E-9 NR=.8 KF=3.2E-171

Page 85: Definitive handbook of transistor modeling

"

)FWO-PNP. TST

FORWARD DC CHARACTERISTICS OF A PNP TRANSISTOR..G'PNP :3, IVI8 1 -,..VBE (I 2VIC 3 4VCE 0 4.. DC 1.0V

. DC VSE .4V IV .05V

.PRINT DC I (VIB) I (VIC)..

)FWO- NPN .TST

FORWARD DC CHARACTERISTICS OF A NPN TRANSISTOR..QNPN ::;; 1VIS 2 1V8E 2 (>

VIC 4 3VCE 4 I)..

o PARAM

DC 1. OV

. DC VRE .4V IV .05V

. F"~ J I~l DC' I (V '[ 8) I (V I C)..

'.

Page 86: Definitive handbook of transistor modeling

)REV-PNP. TST

REVERSE DC CHARACTERISTICS OF A PNP TRANSISTOR

*QPNP 0 3 PARAMVIS I 2VSC 0 ~

"-VIE 3 4·VEC (l 4 DC I . OV

*.DC VSC .2V IV .05V.PRINT DC leVIS) IeVIE)'

*

)REV-NPN .TST

REVERSE DC CHARACTERISTICS OF A NPN TRANSISTOR*.L1NF'N (l j

VIS 2 1VSC 2 0VIE 4 3VEC 4 I)

*DC I.OV

.DC VSC .2V IV .05V

.PRINT DC I eVIS) I eVIE)*.

Page 87: Definitive handbook of transistor modeling

\

)TRC - PNP. TST

COLLECTOR TRACE CURVES OF A PNP TRANSISTOR

*QPNF' 2 1 (I PI~RAM

IE< 4 (>

VIC 2 3VCE (I 3VIE< 1 4

*.DC VCE OV .4V .02V IE< 10UA 50UA 10UA.PRINT DC I(VIC).OPTIONS LIMPTS=1000

*

)TRC -NPI\j .TST

COLLECTOR TRACE CURVES OF A NPN TRANSISTOR

*QNF'N 2 1 (I PARAMIE< a 4VIC 3 ...,..veE '~; 0VIR 4 1

*.ne veE 01,.' .4V .02V 18 lOlIA :::;OUA 10UA• F'RINT DC '[ (VIC),OPTIONS LIMPTS=1000

'."

11

r-8.:I,

-,T "

1'" -

.

Page 88: Definitive handbook of transistor modeling

I 0 PULSE 1-30V OV IONS INS INS 200NS IOOONS)I 2 lfWHMS.;, 2 0 PARAM4 3 370HMS4 0 -6V2 5 If<OHMS2 (I DIODE5 0 I :;v

, tI"

>FT -2907. TST

FALL TIME TEST OF 2N2907 PNP TRANSISTOR~.

VINRIQPNPR37veeR201VI5

*.MODEL DIODE DIRS-.464 eJO-l.37PF IS=I.29E-9 N=I.78 VJ-.6+ TT=I.15E-8 M=.OI81 BV=125V I8V=IOOUA)

*.TRAN INS lOONS.PRINT TRAN VIII V(2) V(3).OPTIONS LIMPTS-500

*

___ 0"

_30,,---'

\

>FT - 2222. TST

FALL TIME TEST FOR 2N2222A NPN TRAMSISTOR..VJr~

Rlf<QNPNR20nveeOJ

I (I PULSE ( 16. 2V _·J-'.. 8V

I 2 lKOHMS3 " t) F'ARr\t'1.'I 3 20(lOH~lS

4· t) 30V0 '2. DIODE

1'.>NS J "S 1 t,IS 700NS 212NS)

".~10f'Fl DJllDF DIRS .'If,4 I~,'" 1:":71-< TSc).;·"-IE'-9 N"'!.78 \/,1-.6\1,. T I - J .. j ~E--'j ~1~. (>.\ 81 l<V .. J :.. :N l8V' I (Ii)!JI'I'

•. TRril'~ 1 NS 2(>ot~S

.PRINT TRAN VIII Vl21 V(3)T IONS L. I MF'TS<:.iOO

Page 89: Definitive handbook of transistor modeling

.'

)RT-2907.TST

RISE TIME TEST FOR 2N2907A TRANSISTOR

*VIN I 0 PULSE IOV -16V IONS INS INS 200NS luOONS)RIK 1 2 IKOHMSl1PNP 3 2 0 PARAMR200 4 3 2000HMSvee 4 0 -30V

*.TRAN .5NS lOONS.PRINT TRAN VIII V(2) VI31.OPTIONS LIMPTS~500

*

\J Cc.

O'-L~\l<:>'1

>RT - 2222. TST

RISE TIME lEST FOR 2N2222n NPN TRANSISTOR

*

""

VIN I 0R619 I 2QNPN 3 2 (I

f~200 4 ..:'vee 4 0..

PULSE lOV6190HMSF'ARAM200DHI1S30V

9.9V IONS INS INS 200NS 1000NSI

. TR{\r~ . ~jNS I (lONS

. PI~ (~IT TRAN V( J 1 V(7) v n 1

.OPll0NS LIMPTS~50(l..~O­

~'''~

1

lOOA

1

Page 90: Definitive handbook of transistor modeling

I>r

REFERENCES:

1. HOOVER, J.W. "HANDBOOK OF SEMICONDUCTOR MODELING FOR SPICE2",MCDONNELL DOUGLAS CORP. AUGUST 1983

3. GETREU, IAN "MODELING THE BIPOLAR TRANSISTOR", TEKTRONIX INC.,BEAVERTON OR, 1976

4. YOUNG P.A. ALEXANDER D.R. ANTINONE R.T., SIMON, ROBERT G."HANDBOOK OF MODLEING FOR CIRCUIT ANALYSIS-INCLUDING RADIATIONEFFECTS", BDM CORPORATION, ALBUQUERQUE, NHAFWL-TR-79-86, AIR FORCE WEAPONS LABORATORY, KIRTLAND AIRFORCEBASE, ALBUQUERQUE NM available from DEFENSE TECHNICALINFORMATION CENTER as AD A071857

5. NAGEL, LAURENCE W., "SPICE2: A COMPUTER PROGRAM TO SIMULATESEMICONDUCTOR CIRCUITS", MEMORANDUM No. ERL-M520, ELECTRONICSRESEARCH LABORATORY, UNIVERSITY OF CALIFORNIA, BERKELEY,BERKELEY, CA.

6. BOWER, J.C., ENGLISH, N., NIENHAUS. E.A., "PARAMETERDETERMINATION TECHNIQUES FOR THE GUMMEL-PooN TRANSISTOR MODEL"UNIVERSITY OF FLORIDA, TAMPA, FL. '

Page 91: Definitive handbook of transistor modeling

and yet another

DEFINITIVE HANDBOOK OF MODELING SEMICONDUCTOR DEVICES

subtitled "Modeling can be fun!"

Contains Procedures for

MODELING DIODES & TRANSISTORS

Contributions By

Charles E. HymowitzKenneth HoritaJeff T. RobsonKirk T. Ober

January, 14 1986

Page 92: Definitive handbook of transistor modeling

CONTENTS

I. Introduction

II. Diode Modeling Methodology

III. Conclusion

APPENDICES

A. Sample SPICE Listings

B. Calculation Summary

C. Manufacturers' Data Sheets

Page 93: Definitive handbook of transistor modeling

I. INTRODUCTION

The behavior of a diode model relies heavily on a set of prescribedparameters. These parameters govern the overall electrical habits of thedevice. Some parameters are readily available from a manufacturers datasheet for a given device. Other parameters are not as evident or must becalculated from bias data. In some cases parameters are not given in thedata sheets so circuits must be developed to measure them.An understanding of diode modeling is fundamental to the task of modelingany semiconductor device.

r-:- VD

~~u 1---.0

CDSpice diode model

The following pages contain procedures on how to derive the parametersnecessary for SPICE to model a semiconductor diode. In particular, thelN5811 rectifier and lN4148 switching diodes are modeled here but theprocedure may be applied to other diodes. Sample calculations for severalparameters appear at the end of the procedures.

A comparison is made between the model and the actual device for thetransient time experiment. SPICE was run on an IBM-PC with graphics byINTUSOFT.

II. DIODE MODELING METHODOLOGY

The foundation of all diode models is the diode equation which relates theforward diode current to the forward diode voltage. Forward bias data ona diode is both easily obtained and yield three important SPICE parameters.These parameters are the emission coefficient (N), the saturation current(Is) and the parasitic (ohmic) resistance (Rs). The basic diode equation(SEE equation «2) gives the gross first order I/V characteristic. Incircuits where the details of the diode response are important to properoperation, additional model parameters must be included to simulate secondorder effects. The variation of the default Spice diode curve as eachparameter is added, can be seen on the next page. For example, the emissioncoefficient, N, shifts the curve up and down, particularly in the non-idealregion. Whereas, the bulk resistance affects the curve in the high ohmicregion by bending the curve. In addition to the methods of laboratory datameasurement and data sheet parameter extraction, one of the quickest waysto obtain a fairly accurate model for a particular application is toparameter "tweak". This is done by inserting "Ball Park" numbers into themodel and "tweaking" the parameters until simulated curves look likesome known data curves such as those from a data sheet. This procedure isdiscussed in greater detail in the Transistor Modeling procedures.

Page 94: Definitive handbook of transistor modeling

Obtaining the desired data is done through use of a log ID vs VD graphs inthe forward region. Most data sheets supply these graphs from which datamay be extracted. A more accurate way is to obtain the dataexperimentally and plot the graph manually or through the use of acomputer graphics package such as SOFT_SCOPE (by INTUSOFT).

-"

c

lOCAL (IlARACT(RIST!C/'

/'/'

/'/'

/ '.o:n ['l[,l,l 0: ~aE/'

/'/'

/'/'

O~I( ~((jIOU

H/(,H iIlJ£CTIOfI RCCoIO'J

KOOIO(Al R(GIONc

HIGtl INJ((TlO~ R[GIOrl

c

tlONIO£Al R[GIOu

'0

Inclusion of H\qh InjectIon

0'11 Ie R(G ION

- -qVollKT - - - HIr.H IIlJ(CT lOr. R(OIO"I"----------

ttl,}1110[:'l j)[G!Crl

'0

Inclusion of Bulk Res;st4nce

lOW IHJtC' 1011

'0

Page 95: Definitive handbook of transistor modeling

The following circuit will yield the data necessary for a forward currentversus voltage plot for a 1N4148 diode.

The following data.collected.

ID (mA)

0.10.20.51.02.05.0

10.020.050.0

100.0200.0500.0

1000.0

an average of readings for several diodes, was

VD (volts)

0.48770.52320.56890.60370.64020.69020.73280.77840.86210.94951. 0731. 2771.780

Similar data was compiled for the IN5811 diode using the same test circuitwith different voltage supply and resistance values:

ID (A) VD (volts)

.01 0.5341

.02 0.5635

.05 0.60320.1 0.63440.2 0.66570.5 0.70681.0 0.72772.0 0.74025.0 0.83668.0 0.8514

Applying this data grap~ically results in the following plots.

Page 96: Definitive handbook of transistor modeling

I, i~' ' , .,-1/, : . ./ I..

( ,.. ' , , , ,i , i-·

"

II

I

1

'1--':'.------ii---'--t-'-I=----'-'-j----'-H ~J,-':-i-+-:.........--+----'......:..1----/-.....:.-T!·+-----1'1 I

" .

-'t:o ..-'-'l_ -l 1-''':3-'33''--§'~c::LJ:: ; '-'==8-' TI,·-"~·=.J~-·-· "1'1'· _:" .. ... . ...., .-l.---t-l -,- _ 'I::j-- . I- -,-.-._- - L-t=" -_'..:_.:.=:=:=,===' ..:_::::_==-1=:2 -.' • .-.0_.- _1_ 1_ - _1· __ 1_ _' 1-" ._._ .. _ •• _. '_l 1_ I ••• -~: ••

I. ,~, H---+---A\I---f---I~I3 ----+---+--:---+---I'/----!----+----I----!---I-/----'1

)", -f-f::El=:i:;:. I . '-?

1----11----1----+--/--+----1---- .-'----------

,

IO'~9===+==+===t==t=t==:=:j===t===t==+==:l==~;'t----t---+---t---/--/-----i-----t----I----j---·--f----l

1 -

1,

j.,i -- -

i·: --,-\,TI

.

-----_._-----

I '

----- -- -------- --_. ---

----- --.- ._-.---- --- -

----~:

"------.-----+-----,1- -1'--1------1----+-----:,- .- ,-----' --- ~

I------J,.' - ...---t------l---__j-.~--+---__j-_----I---

,.j ____J _• "1 - - --'1 ..-- -.--· 'r-- -· 'I' !-_.- - -_. -.' -_.. I

· I j . •,,,

~. ~

- ;•

oOl",Ill.

'"~ ;

J -----1- ---t-_._- ---,-------- 1------_! L ,.__. __. -,-.----- I,

I·'1---+---t-'--'-<l--j----1----!-..,----l--,---~---- ---.--_.---,

: .1

i -! .. ~i_·l·~"; ,. i !, ---.. I' ! '11

.1'-----:---+-4'-~---.-lC.----;-'----:-~--:-'--. .t, ."1'- .,- I I.&) /.2. I.~

Page 97: Definitive handbook of transistor modeling

IN:J KII

.. ,

. ,t--'-"~---,,-I--'-'--'-j--- -j----- -+-+--'--1--'---1--'-'---+---1

).

,,----I,---,'

.._----- .._.. '

·9,g'7.f:,

j.

.:1.2-.(

I

i-fJ~O'- jr..D~ __

i-~~t~", 1.- -- ~, I

,: -- L-I~---~-; --~- i ,I---+.----+----t--------L------ ---·f-'-+---I--- -'----r- . -- :.

i·· Ji I!: .--'-----'---- -----_.. ----- _ ..

''I

:1 .-1- ; ~~. I-_to I •. , I

117/ '

I (I~I-===+==+==J-----t---- -----I-----I·.81;--I-r----t-----:=:al-~I__~I____t~==-=-='~===+===+===~S;:;;~=;.A_A'..;t==-- .'I . __ ,

r'I--~..:.,.t_'____''---l-'--'---'--1--·----· . /. .- "

I-'-----'---t---'-=-+-,-'---+---.-------+---+---t--.:..:i+i+-j-c----.-' -.- ,r----I--.----t----+------------ . -. - ,

1/1----+---+----+----1---·-- ----j----j--t-I-j----I-- --- J

. - . - I .: c'I ---1':"-'-- -,-:-1£- -: -.-.T_': ,-:-.:1-: _-:".:.~'::-.-~ -:--.: -.~ "::::r- ::!-:--,j~'_ -; :-;"

I 7

Iii /

~ /':~===l===__=+1~=-~-=-_=-'tL_ =.=:=-=-'1=+_-t Ii·!-_r--__-t-..-_-:-==,----j ----.- - .:.~-r·==r---- -~-- ;----=.---1=---

-J----j----·!---t-------- ----1-- - .~--, -----,----1-------'- I __.__---1 ---.-,---- _. --- -.- •

I------t- ---- l..._.-- j -. -1--..-----'--- •-L----J-- -J_i I!'!

I

I I0./ -----1--' - !--:-:..-"=l-=--==':' ---=~ ....

I ..----f--- --- ----. -l ----- ---.---- -- - - 1--

:. ~=-=-I~--=: -- - --j

3 --__L. i...

~ ; ;:: JT ••

"

o'""Vl

<0.,

Page 98: Definitive handbook of transistor modeling

I ',, I

)0

.. ," -.",,--

,',,<

,t,

Page 99: Definitive handbook of transistor modeling

A. Determination of N

The analyst who wishes to simulate diode performance over several decadesof current will realize that the ideal diode equation is not sufficientbecause most diodes do not have an ideal characteristic. The non-idealregion of the diode can be modeled as an emission constant (N) in thediode equation. N is determined by choosing two points from the straightestportion of the forward bias graph. These data points are then appliedto the following equation:

N = VD2-VD1/(VT*ln(ID2/ID1» Eq. #1

where Vt (thermal voltage) = KT = .025875 (at 300K).

K (Boltzman's Constant) = 8.62 x 10-5 ev/KT (junction temperature in Kelvin)

The value of N typically lies between 1 and 2.

B. Determination of Is

The reverse saturation current, Is, is the amount of current a diodewould conduct over a large range of reverse bias voltage. Ideally,this is the flat (constant current) region between initial reversebias and breakdown. Practically, this region is not very flat sographically obtaining this value could lead to erroneous results.Is is however obtained using the following equation which is based ona chosen operating point in the forward bias region (Pick a point onthe linear portion of the forward characteristic). Typical valuesare on the order of 10-12 amperes, however, a variation in the range ofseveral orders of magnitude is not uncommon. The Is parameter affectsthe shape of the forward characteristic, especially in the non-idealregion.

IS = ID/«(exp(VD/(n*VT»-l)

C. Determination of Rs

Eq. #2

The parasitic or ohmic resistance Rs of a diode may be determined fromthe plot of forward current versus voltage. Two points are chosenfrom the high ohmic region of the graph. This is the curved region ofthe forward bias graph. One point is chosen directly on the curve. Thesecond point is located at the intersection of the first points'current level and an extrapolation of the straight line region of thecurve to a different voltage level. Both points should have the samecurrent level in common but different voltage values. Rs can then becalculated as follows (refer to figure 1).

RS = ~VD/ID Eq. #3

Page 100: Definitive handbook of transistor modeling

Typical values for Rs are around or under 1 Ohm. In Spice. RS ismodeled as a linear resistance and will greatly affect the forwardcharacteristic of ID vs. VD in the high ohmic region.

Reverse Characteristics

Reverse bias data for a diode is necessary to obtain two more SPICEparameters. These parameters are reverse breakdown voltage (BV) andreverse current at breakdown voltage (IBV). In general, fairly goodvalues for BV and IBV may be obtained from device data sheets. Thesevalues may also be obtained experimentally. The following circuit maybe used to measure reverse voltage versus current values:

L-__......L -l ""'II-.e----l

The following data is an average of several measurements for the 1N4148and 1N5811 diodes.

VD ID(uA)15 .1430 .1945 .22760 .26075 .29090 .320105 .352120 .393135 .440150 .570165 1.24180 3.13195 8.64200 24.60

VD102030405060708090

100110120130140150

ID(uA).01.01.01.015.02.02.02.02.02.02.025.03.05.10

3.27

Figures 3 and 4 are the plots representing the collected data.

Page 101: Definitive handbook of transistor modeling

Ij-'I

11." l"~-~-'r- '0

i-- ---r-

II

I- ... -

I_ •. . __ J

i

.. j..I

--~

1-/----+------ ._-. ---

-- ._.J--,--+_.- I

D.I .-----.,,.--.-.·,------·~-I~~---j~------ I-C=1-----'-JI

-I. ~ - .J

I

I,Ii

.-t .... - -- -

, I.... -- -- -- -1------ ----

I ----, ---.. f

""." __ ."..,..L,..,..."_,,,..,._.."j'..._. .,...1.. ... _.. J

Page 102: Definitive handbook of transistor modeling

A. Determination of BV and IBV

From the graph~, BV may be obtained by extrapolating the straight lineportion of the breakdown curve. IBV cannot accurately be obtainedfrom the curve. However, knowledge of the maximum power dissipationrating and BV is enough to yield IBV.

As an example from the data sheets for the lN5811:

Minimum Breakdown Voltage @ 100mA = 160V

Graphically the BV for the lN5811 is 135V (see figure 3).

Depletion Region Capacitance

An analysis of the capacitance in this region usually referred to asjunction capacitance yields not only the SPICE parameter CJO but alsoaids in the determination of junction potential (VJ) and gradingcoefficient (M).

By including the parameters CJO and M the accuracy of transientanalysis is greatly improved.

Determination of CJO

Some data sheets specifically state CJO. When CJO is not availablefrom the data sheets, an experimental approach must be used.

Through the use of an HP4271 LCR meter junction capacitance as afunction of bias voltage data can be collected; specifically, thecapacitance at zero bias. These values are typically in the pico­farad range. The default value for CJO is zero. Experience with Spicehas shown failure in DC convergence and excessive iterations intransient analysis with CJO=O. It is recommended that a CJO value of atleast 2 picofarads be used in all diode models.

Determination of VJ and M

With the same test set up used to find CJO, obtain ~everal morecapacitance values in the reverse bias range.

Once this data is collected, determination of VJ and calculation of Mcan be accomplished through graphical techniques.

The technique involves first guessing a value for VJ (typically aboutO.6V) and then plotting the resultant value of CJ as a function of(VJ-VD) on log-log paper. If the resulting curve is a straight line,the guess for VJ is correct. Should a concave down curve be obtained,decrease the value of the VJ guess and replot the graph.

Page 103: Definitive handbook of transistor modeling

'!: ;, i :: ~:,'" ::- ...

'!.

. " , ...... ..,.... ,i: . ,: I ' . ~ : : : ': ::, I:: ;:: . .' :::;.. ' ..,. ,., .. .. , .

! ':'" i. ;. " •• --~. -2~I'7 -,-1;-- +~127~-:-1+ 0"0 -' .-J.J '-__. r~~ --'1-- ~ -:..:.....:- -1·- --

,.: "T-- ..,~ , T' ~- ~+- l:.,:;f- ~ i-I~S ---- ..._- --'....:.. _..~.- ''-,:::' --- -1- ....- ,..

'" ..0 ..N

" "'" ,< • 0v,"'~

u "'- .~ ~ ::.. "

", I 1 8 ~ 10 I '

vr- Vp ({"Iv)FlblAltE 5'

Page 104: Definitive handbook of transistor modeling

. "/.-.-.

~£Dk.e.~l> c.. -v P~T

Foft TI+~ IN 5'8/1

I.' . . .

I--I-~.f-,-I--I-·--1- -- - I-- ..:...._-. . _·_+...,.....~+='4'--I-~' -- -~HH+---II-- _ .....

1-.:...~'--.+-...l-.+---+--I--1--I--/-I-+- - - ._,'- -,_,_-+__I-.G: :-,1.,..,.--1---1 -,---IH---I--- -- --. -1

_.-- r

,

... -; -

, ,t, I' ,J

I ; .,_~ .. ,U, ,

.~_._- -- - -

I ...

.--- --- 1----- -1- -

-

1--'---+---1--+---'I---f---1- !- .- _. ---- - -- ,-I

-+---r.---.........-j--+--+--+--j-+--+-t-t-H-t--+---r---t-...JI-+--+--J-+-H-!--!--H~-1,

I

-+--- .-T- -+-- .- -r _'- .--. J ..~ __ ++-:-1~ I .~~'~_ II~"J i : I' " , '

, -- I-------r---- I ·-'-t --·--·-l__. t· "~"I' ~-~:!~-----=r=-t--l :___ !._ ._. .. ~ __.._!. _.1 I I " i :: :,!

.1 --.--~--..- --:----1- -~ --~tt+++-·--·-------l" --j-' i _...+- ..

. , . ""1- -_.... .....,.. .. ',: - I, ,. .. • ;... ! I ij i !

, -eli- I ! I ________! __.-1 _I! I

I I' I:! I

l_~_____!___:I~..L--·-.l.I_-'L..--·.L.!0+--'1_ .!-·L'--,--..L".,L·_, ._L.._!..

J I ~ '1 !J B 9 10 I ~ ~ ~ 1 J

,,+~- -+----t--j-~,~.+-++ -1---1--1---1-- - _. -,---1-- --_.- -- --I-'-..-1-'- - -- _.

I I It2' '+.,..,..,..,~b~hdd7:_:_:_b4",+.+!_d_:_4++_r.J_,_,_,____-:-:+-=4..."..,.,.-+-+-+-+-,+-II:++_+_H___j,., :f:Li 1-j·ii-Pjl~iP iji il1i8W !Ilijlll; IT; j!ii ii'" "I'U I,'j' Hij','~.j H"j ipi ~u ~-I'_I""; j ;' :;i Ii iii j I: :il:,il'l; i!i::H '1'".; 'It: :i~ ,'iii :j.;:+;"i: ;::: ,i:: ::,:__ .1r." ..1.T... !!.', ..... ,r.~.. j .... r:": 11.1 j",,~. ,.II.I.,~!!:I.. III It .... 1. .. , ..• " ......, .j H:,.1. .. 1.. , .. 1.1 : •.••

" • , , .j •• , ••

~'" ·------+,~':~;:~~;=:~~,,·,·I :II'E-----::-::: ">-- "'-... ,!: ii,

-o..:::::::~ , I : I'"

--'-----,--- .~~ ]--'t· ~~i '

I i ~Q---M '1' ,

" .

,.,o"~

•" .,"

",

V:r-VD (llol-b)

FI,"\.AR.E b

Page 105: Definitive handbook of transistor modeling

· , .. ,;' - --'~

Once a straight line is obtained, M is.calculated as follows:

M = -[(log(Ctl)-log(Ct2»!(log(VD1)-log(VD2») Eq. #4

M is typically 0.333 (graded Junction) and 0.5 (step junction) but maybe much less for gold doped junctions.

*~or the 1N5811 and 1N4148 diodes, the following data wascompiled for the reduced C-V plot (see figures 5 and 6).corresponding grading coefficient for each diode is also

collected andThe

calculated.

As can be seen by the graphs, both diodes exhibit junction potentialsof 0.6V.

Transient Time

When a forward biased diode is abruptly reverse biased, there is adiscrete amount of time which elapses before the diode is no longerconducting. This amount of time is called the reverse recovery time(trr) .

Some data sheets indicate trr and the test values used to obtain it.When this data is not available, the following test set up may beemployed.

OUTr 10 SA1~Pllt~GSCOPf

\00

o v

U1H'l]9~

1 '0 I.41 ..J

t STORAG( r /1.(

I

L~/

1N5811 Reverse Recovery Time Test Circuit

Figures 7 and 8 are the results of tests performed on the 1N5811 and1N4148 using this circuit. Spice analysis of these circuits followverifying the model against the laboratory data.

Determination of TT

""- VO-O

,

(: (I I

Itsd I

- I r

IO

From the data sheets for the 1N4148, a reverse recovery time trr isgiven as 5 ns at IF = IR = 10 rnA and RL = 100 ohms. The reverse recoverytime is best explained graphically as follows:

If

Page 106: Definitive handbook of transistor modeling

where t = -(RL+RS)*CJO*ln[.lIR/IF].

and tsd is the storage delay time.

therefore trr = tsd + t

Applying the equations to the lN4148 data we find:

t = -(100+.78)(4pf)ln(.01) = .928uS

Eg. #5

Eq. #6

Eq. #7

therefore, tsd = trr -t= 4.07ns

The SPICE parameter transient time (TT) is obtained through thefollowing equation:

TT = tsd/(ln[l+ IF/IR]) Eq. #8

Experimentally, TTdiscussed earlier.40 ns. Therefore:

is found by extracting trr from the circuitFor the lN5811 (see figure 6) trr is approximately

t = -(100+.0052)(117pf)ln(.01) = 26.94ns

tsd = trr - t =13.06ns

TT = 13.06/1n(2) = 18.84ns

The transit time parameter, TT, may be left at the Spice default valueof zero where reverse recovery time is not important in the particularcircuit application.

Miscellaneous

SPICE models reverse breakdown with the parameters BV & IBV. If BV isnot included in the model, the diode will not break down at any valueof reverse voltage.

The Spice diode does not contain a leakage resistance. Incorporation ofa fixed resistor in parallel with the diode has been found to improvethe running time, and sometimes required to prevent termination of arun, where the diode is switching and especially where the diode isused as a ZENER diode. An arbitrary value of 100 MEG ohms may be usedfor many circuit applications. Otherwise, a value may be calculatedfrom a data sheet reverse current vs. reverse voltage graph. Use theequation;

RC = VD/ID Eq. #9

The data points used should be at least several volts away from thereverse breakdown point.

Page 107: Definitive handbook of transistor modeling

The SPICE parameters XTI & EG are used.for temperature analysis thefollowing values are typical for these parameters:

XTI = Saturation Current temperature exponent3.0 for Junction diodes *2.0 for Schottky-Barrier diodes

EG = Activation Energy in electron volts1.11 for Si *0.69 for Schottky-Barrier diodes0.67 for Ge

* SPICE defaults to these values.

SPICE parameters flicker noise coefficient (KF), flicker noiseexponent (AF) and coefficient for forward bias depletion capacitanceare not covered in this study.

Conclusions

When finding TT experimentally, great care must be taken whenassembling a test set up. Using a copper clad breadboard is stronglyrecommended. Also needed is a pulse generator which has both a fasttransition time and an output amplitude around lOY. The faster andcleaner that your input pulse is, the better the accuracy of yourfinal results.

When at all possible, extraction of data from the manufacturers datasheets is recommended since this data is a mean over a large number ofcomponents and will be able to yield either a MIN, MAX, or TYPICALmodel depending on the data used.

Page 108: Definitive handbook of transistor modeling

1N4148 CALCULATIONS

from non-Ideal regIon

101 ; .1 rnA @ .4877V102; 2 rnA @ .6402

N ; (V02-V01)/(Vt(ln(I02/I01))); (.6402-.4877)/( .026(ln(2/.1))) ; 1.9674

IS ; I01/[exp(V01/(N(Vt)) - 1); .001/[exp( .60371( .026(1.9674)) - 1) ; 7.0746E-9 A

from Ohm'c RegIon

RS ; dV/I03 103 ; lA @ 1. 78VStraIght Extrapolated V ; IV

; (1.78 - 1)/1; .78 ohms

t ; -RC(ln(.I)) ; -(100)(4Pf)(ln(.1)) ; 9.21E-l0 Sec

tsd ; trr - t ; 7.079 NSec

trr ; 8 NSec

TT ; tsd/1n(2) ; 1 .0213E-8 Sec

.. , ...'I

Page 109: Definitive handbook of transistor modeling

lN5811 CalculatIons

from Non-Ideal RegIon

~ 101 ~ .05 rnA @ .6032V102 =.1 mA @ .6344V

N = (V02-V01)/(Vt(ln(I02lI01») = 1.7396

IS = I01/[exp(V01/N(Vt» - 1] = 75.695 pA

RS = dV/I03= .0052 ohms

8A @ .8514V

t = -RC (In(.l)) = -(100j(117pf)(ln(.1»= 3.108E-6 Sec

trr = 40 NSec from PIcture

tsd = trr - t = 40 - 31.08 = 8.915 NSec

TT = tsd/ln(2) = 12.86 Nsec

,

Page 110: Definitive handbook of transistor modeling

. ' .

.'

•¥, . "

',I ,'.

, .~ :\~,1·. ~ '~'.,

'J ,c,..

..,

J

,·1

E;N•••ma•••") YI I N;. ~.~:!~~... 'j' •••••••••

'.••••••••••' . • .,••••••• ·Yln·

Q. ..~••~iiiii•. ••~.~•••• ,

:E••••••••• ,

Page 111: Definitive handbook of transistor modeling

, ,

\

C>TYPE IN4148.CIR'N4148 REVERSE RECOVERY TIME ANALYSIS

MODEL DIODE DlRS=.78 CJO=4PF IS=7.0746E-09 N=I.9674 VJ=.6V• TT=5.8847E-09 M=.448 BV=100VI01 3 6 DIODEVR 5 0 PWLlO 0 5N 0 5.5N -0.5 6N -1.25 6.5N -2 7N -2.75 7,5N -3.5.8N -4.25 8.5N -5 9N -5.75 9.5N -6.5 ION -7.25 10.5N -8.0 liN -8.75.11.5N -9.5 12N -10.25 12.5N -11 13.5N -11.75 14.5N -12,5 15.5N -13.25.16.5N -14 24N -13.5 25N -13 26N -12.5 27N -12 2SN -11.5 29N -II 34N -11.35N -11.25 37N -11.75 39N -12 42N -12.25 45N -12.5 4SN -12.75 65N -13.70N -13.25 SON -13.5 90N -13.75 lOON -141VS I 0 DC 17.5R1 I 2 100Cl 2 (I .47UFR2 2 3 100C2 3 5 .47UFVMD 6 7R6 7 0 100.TRAN .5NS 200NS.PRINT TRAN !lVMDI V(5).OPTIONS LIMPTS = 500.END

C>

Page 112: Definitive handbook of transistor modeling

SPICE ANALYSIS OF IN4148.0UT on 8-26-85 page

.--'-r- ---,-'--.,---r'--,---,----,----',----,-----,~<, '\

f---~-~-_'lo"rl---f-.-_+--_+_----jf---+---+_------.--f----1~-~"'~dk~v=t=*==P=t~==-:..;r:"t---'I,,--.::--..--- ------------- ,-----1------ ----,------ ----.. ----

f--'-......~....~ ..... ............-... -+-+-+--•..: ~.....- - ..............- -+-+ -............

--------~~--------"._-,----------- ,--_.. --,---

~" -.~, -----':.i~--- -=-- ---. ---~

,-_._,- -,_._---- _.._---,- ------~;/- ------- ---

'--__....J~, .. , .'-__..L.. c-, , .. _

.0\ 1" .........

CH 1 I(VMDl vs TIMEYSCALE 20MA/DIVYlERO 36.0MAXSCALE 2NSEC/DIVXZERO 12.6NSEC

CH 2 V(SI vs TIMEYSCALE 5V/DIVYlERO -23.0 VXSCALE SNSEC/DIVXZERO 26.5NSEC

CURSOR

VER

HOR

CURSOR

VER

HDR

LEFT

B3.3UA

B.90NSEC

LEFT

0.00 V

1. SONSEC

RIGHT DIFFERENCE

-5.31MA -5.40MA

13.9NSEC 5.00NSEC

RIGHT DIFFERENCE

-12.8 V -12.8 V

SI.5NSEC 50.0NSEC

Page 113: Definitive handbook of transistor modeling

C>TYPE IN5BIl.CIR'N5BII REVERSE RECOVERY TIME ANALYSISI 3 b DIODE

,MODEL DIODE DIN;1,739b RS;.0052 CJO;135PF IS;75.b95E-12 VJ;,bV• M;.37b BV=lbOV IBV=IOOUA TT=12.BbNSIVR 5 0 PWLID 0 5N 0 5.5N -.5 bN -I b.5N -1.5 7N -2 7.5N -2.5.BN -3 B.5N -3.5 9N -4 9.5N -4.5 ION -5 10.5N -5.5 liN -b 11.5N'-b.5 12N -7 12.5N -7.5 13N -B 20N -7.9 21N -7.B 22N -7.7 23N -7.b 24N -7.5.25N -7.4 2bN -7.3 27N -7.2 2BN -7.1 29N -7.0 30N -b.9 31N -b.B 32N -b.7'33N -b.b 34N -b.5 3bN -b.b 3BN -b.7 40N -b.B 42N -b.9 44N -7 4bN -7.1t4BN -7.2 50N -7.3 52N -7.4 bON -7.5 bBN -7.b 74N -7.7 B2N -7.B 90N -7.9HBN -BIVS 1 0 DC 13Rll2l00Cl 2 0 .47UFR2 2 3 100C2 3 5 .47UFVMD b 7Rb 7 0 100. TRAN .5NS 200NS.PRINT TRAN !IVt1DI Vl51.OPTIONS LIMPTS ; 500.END

C>

'.

,

·· .... ··.11_

Page 114: Definitive handbook of transistor modeling

SPICE ANALYSIS OF IN5811.0UT on 8-26-85 page 1

r---,.----,.---- ----,.---- - -.-.-------.-----.-- ---._-

"~:l

-

------- ~t p'...~~~~:::':::::::::~. ;,..~__ ... ----;;;;: b-------. 1------- ... ------:L___ .. --~ ....-__:»

-_.-. '-"---""-'- __..__.- ,,_.._._-_.- ---_ __ .._--_ _._ _.._-_ _- ._-- - '--'-"-' .._.._. '-' -- _-

-.-.-..-.. .-- -..--.--..--- .....--.._.--- -------r---"--- ---'--'-- -----.--..,,----.-- -,,---.--.-- --.----.-

<~"", ~ .i; .. -,,- ---I --------. --- -7 ---,,---- ----- --_ .-- --..--. ---'--- .... ,,-- ...-- ------- ,,-----

=-=:~~_=l-~=~==_=__:__~:~=:: =~~:CH 1 V(51 vs TIME CURSOR LEFT RiGHT DIFFERENCE

YSCALE 2V/DIVVZERO -9.40 V VER -509NV -8.00 V -8.00 VXSCALE 10NSEC/DIVXlERO 51.0NSEC HOR 1.00NSEC lOlNSEC 100.ONSEC

CH 2 I IVMDI '5 TIME CURSOR LEFT RIGHT DIFFERENCEYSCALE 20MA/DIVVZ ERO 50.0MA VER 396UA -c.. 94MA -4.33MAXSCALE IONSEC/DIVXl ERO 51.0NSEC HOR 9.00NSEC 49.0NSEC 40.0NSEC

·r·---·......._

Page 115: Definitive handbook of transistor modeling

RtyttM R"en< -...R".... rorw'fd Ro<o<"" Cuntnl Junclion ForwlfdT,po Voll·rt Volt,.t Tome @2S'C c"paCII,nce CurrenllN4S6 30V 1.0@40mA 2SnA 90mAIN4S7' 70V 1.0@20mA 25nA 75mAlN4SS' lSOV 1.0@7mA 25nA 55mAIN459' 200V 1.0@3mA 2SnA 40mAIN483B" 80V 1.0@ 100mA 2SnA 200mAIN485B·· 200V 1.0@ loomA 25nA 200mAIN64S··· 270V 1.0@4oomA 25nA 20pF 400mAlN9l4·· looV 1.0@ 10mA 5nS' 2SnA 4pF 7SmAIN3064·· 7SV 1.0@ 10mA 4nS loonA 2pF 7SmAlN3070 200V 1.0@ loomA SOnS 100nA SpF lOOmAlN3S9S··· ISOV .83·1.0@200mA 3"S InA 8pF ISOmA1N3600··· 7SV .54·.62 @ ImA 4nS IOOnA 2.SpF 200mAIN4148'" 100V 1.0@IOmA 4nS 2SnA 4pF 200mAIN4149 7SV 1.0@ 10mA 4nS 25nA 2pF 200mAIN4150··· 7SV .S4-.62@ ImA 4nS lOOnA 2.SpF 200mAIN4lSI 7SV 1.0@SOmA 2nS SOnA 2pF 1SOmAIN41S2 40V .49·[email protected] 2nS SOnA 2pF 1SOmAlN4153··· 7SV .49·[email protected] 2nS SOnA 2pF I SOmAIN4154 3SV 1.0@3OmA 2nS IDOnA 4pF l50mAIN430S 7SV .S·[email protected] 2nS IOOnA 2pF ISOmAlN4444 70V .44·[email protected] SOnA 2pf 200mAIN4446 7SV 1.0@20mA 4nS 2SnA 4pF ISOmAIN4447 7SV 1.0@20mA 4nS 2SnA 2pF 1SOmAIN4448 7SV .62·.72 @SmA 4nS 2SnA 4pF I SOmAIN4449 7SV .63·.73 @SmA 4nS 2SnA 2pF ISOmAIN44S0 40V .42·[email protected] 4nS SOnA 4pF 200mAIN44S1 40V .4·[email protected] 4nS SOnA 6pF 200mAI N44S2 40V .42·[email protected] SOnS SOnA 30pF 200mAIN44S3 30Y .43·[email protected] SOnA 30pF 200mAIN4454··· 7SV 1.0@IOmA 2nS 100nA 2pF 200mAlN4500··· 80V .64·.72 @ IOmA 6nS lOOnA 4pF 300mAlN4607 8SV 1.I @4oomA IOnS 100nA 4pf 400mA

SWITCHING AND GENERALPURPOSE DIODES

• ~"fll'tll, n JAN··AWlII.bl, n JAN, JANIK

···".... I.bl' f\ JAN, JANIJ(, jANfJ('i

'.

UNITROO[ COflPOItATtON • ~ 'ORIES ItOADLUtNeTON, MA ClUJ· f[l, I'm Ml-4S040TWX enOl m,,!IOt • T(LEX tHo&o4 619

PRODUCT SELECTION GUIDE

!I

,.,...UD I0Il v,.

·_.. ".,.!r.Ic-~

Page 116: Definitive handbook of transistor modeling

. . •. '\....::. _ .'.\..l-~ .....~

u

'.J,

o11

's 100 12S ISO

I.SV lOOpl

1 SV 4Spf

"T, _ltAO TtMP(A4tUA( I'CI

Output CUH.nt n, lud Temp.

l\. ...., II"U I I\.1 l • ~.~ l!""",...., "0"'1 '00,

\

"'.'" \"1.- "'-, .... I'-. 1\

"-t\.\"\

"

00·4

..

ISns

lin.

".

INSII2·1NSlII

..,

3Sns., 1.0·1.0·0.IA

248

...w.

'" ,

)Ons, 1.0· \.0 O.IA

...CASt T(MPtlIIAtUAt ,'CI

Output Current ¥s. Cue Temp,

1\II ..., U_III

,

1\\

1\\

••

"

"

.~

~

z

~••

~,u

• • a<ll

I •

" ~•

n "u•~>•

......m ..m Lell'l. ',p.t•• '0...... 11'O......d CUH,.., M.. ,mu"" A'''''Ui t,p.e.' 'o.....'d A.co...... , t,II,UI , .. t><t .....

VOII••• @PlV A.co....., t,me lI.cOw• .., T,...e YolI'.e C'~C,I...c.0<00' n'c 100'C '.. '.. '., f' \'" Iteto", 10 IV @ ." II =t". -lOY

.815@ IA I,A 5O,A lSns. O.SA·O.SA O.OSA lin, 1.5V ISpl

.875@4A !l"A

.900 @ lOA IO... A

.. '" - .., -.,. "".1 •··,:.::....~w~:: @,~

.,.1.1....".

50VI'V100V12SV150V

50V15V100VI~V

150V

50V15V1<XlV12SV150V

•n 100 12S 1)0 I'S""

1.1 ... , u ••n I Il • l,u. l'"""

"0"'1 800,

'R-~1.1>,:'-.: I "-, .............

I--..... "\ ... '

"' ""' ""'l

INS801INS808IN5809INS810INS811

lNS812lNS813INS814INS8ISINS816

INS801INS803IN_INS80SINS806

UNtTlIIOOt COlllPOA_TION ' S 'OABtS AO"'Ol(IUNGTON, MAo 011'1. tel. 16"1"'·65"0tWX alDI )H·tSO' • t(LU n·I06"

ELECTRICAL SPECIFICATIONS ,.. tWe unless notedl

t,IM PlY

MECHANICAL SPECIFICATIONS

Output Current n. lud Temp.

••", .1I ....hl.c:.It."t 'fiJI! numb" PI''''!fG on m.I,' CI"

, iI,: '''''00' '0 .1...11 eno"' W';'''l: 1.0 Cit ... ,, .. ".-II.lion '"e...ll,nll MI.l ......... " .. I..b,,(,'ed 11,,<1 10'Q..I'10 ,ncn 1JO",,"dt

'''um.1 " ..it....ul J I\'C/W

z"••,v •

~

~•::;••">•