74
Electric Field – Continuous Charge Distribution The distances between charges in a group of charges may be much smaller than the distance between the group and a point of interest In this situation, the system of charges can be modeled as continuous The system of closely spaced charges is equivalent to a total charge that is continuously distributed along some line, over some surface, or throughout some volume

Campo eléctricosesion3

  • Upload
    privada

  • View
    504

  • Download
    1

Embed Size (px)

Citation preview

Page 1: Campo eléctricosesion3

Electric Field – Continuous Charge Distribution

• The distances between charges in a group of charges may be much smaller than the distance between the group and a point of interest

• In this situation, the system of charges can be modeled as continuous

• The system of closely spaced charges is equivalent to a total charge that is continuously distributed along some line, over some surface, or throughout some volume

Page 2: Campo eléctricosesion3

Electric Field – Continuous Charge Distribution, cont

• Procedure:– Divide the charge

distribution into small elements, each of which contains Δq

– Calculate the electric field due to one of these elements at point P

– Evaluate the total field by summing the contributions of all the charge elements

Page 3: Campo eléctricosesion3

Electric Field – Continuous Charge Distribution, equations

• For the individual charge elements

• Because the charge distribution is continuous

e

qk

r

∆∆ =E r

2 20ˆ ˆlim

i

ie i eq

i i

q dqk k

r r∆ →

∆= =∑ ∫E r r

Page 4: Campo eléctricosesion3

Charge Densities

• Volume charge density: when a charge is distributed evenly throughout a volume– ρ = Q / V

• Surface charge density: when a charge is distributed evenly over a surface area– σ = Q / A

• Linear charge density: when a charge is distributed along a line– λ = Q / ℓ

Page 5: Campo eléctricosesion3

Amount of Charge in a Small Volume

• For the volume: dq = ρ dV

• For the surface: dq = σ dA

• For the length element: dq = λ dℓ

Page 6: Campo eléctricosesion3

Problem Solving Hints

• Units: when using the Coulomb constant, ke, the charges must be in C and the distances in m

• Calculating the electric field of point charges: use the superposition principle, find the fields due to the individual charges at the point of interest and then add them as vectors to find the resultant field

Page 7: Campo eléctricosesion3

Problem Solving Hints, cont.

• Continuous charge distributions: the vector sums for evaluating the total electric field at some point must be replaced with vector integrals– Divide the charge distribution into infinitesimal pieces,

calculate the vector sum by integrating over the entire charge distribution

• Symmetry: take advantage of any symmetry to simplify calculations

Page 8: Campo eléctricosesion3

Campo eléctrico debido a una distribución de carga continua

• Una barra de 14cm esta cargada uniformemente y tiene una carga total de -22µc.Determina la magnitud y dirección del campo eléctrico a lo largo del eje de la barra en un punto a 36 cm de su centro

Page 9: Campo eléctricosesion3

Un anillo cargado uniformemente de 10cm de radio tiene una carga total de 75µc Encuentre el campo electrico sobre el eje del anillo de a)1cm b)5cm c)30cm d)100cm

Page 10: Campo eléctricosesion3

Un disco cargado de modo uniforme de 35cm de radio tiene una densidad de carga de 7.9x10-3 C/m2.Calcule el campo electrico sobre el eje del

disco en a)5cm, b)10cm c)50cm y d)200cm del Centro del disco

Page 11: Campo eléctricosesion3

Electric Field Lines

• Field lines give us a means of representing the electric field pictorially

• The electric field vector E is tangent to the electric field line at each point– The line has a direction that is the same as that of the

electric field vector

• The number of lines per unit area through a surface perpendicular to the lines is proportional to the magnitude of the electric field in that region

Page 12: Campo eléctricosesion3

Electric Field Lines, General

• The density of lines through surface A is greater than through surface B

• The magnitude of the electric field is greater on surface A than B

• The lines at different locations point in different directions– This indicates the field is

non-uniform

Page 13: Campo eléctricosesion3

Electric Field Lines, Positive Point Charge

• The field lines radiate outward in all directions– In three dimensions, the

distribution is spherical

• The lines are directed away from the source charge– A positive test charge would

be repelled away from the positive source charge

Page 14: Campo eléctricosesion3

Electric Field Lines, Negative Point Charge

• The field lines radiate inward in all directions

• The lines are directed toward the source charge– A positive test charge

would be attracted toward the negative source charge

Page 15: Campo eléctricosesion3

Electric Field Lines – Dipole

• The charges are equal and opposite

• The number of field lines leaving the positive charge equals the number of lines terminating on the negative charge

Page 16: Campo eléctricosesion3

Electric Field Lines – Like Charges

• The charges are equal and positive

• The same number of lines leave each charge since they are equal in magnitude

• At a great distance, the field is approximately equal to that of a single charge of 2q

Page 17: Campo eléctricosesion3

Electric Field Lines, Unequal Charges

• The positive charge is twice the magnitude of the negative charge

• Two lines leave the positive charge for each line that terminates on the negative charge

• At a great distance, the field would be approximately the same as that due to a single charge of +q

Page 18: Campo eléctricosesion3

Electric Field Lines – Rules for Drawing

• The lines must begin on a positive charge and terminate on a negative charge– In the case of an excess of one type of charge,

some lines will begin or end infinitely far away

• The number of lines drawn leaving a positive charge or approaching a negative charge is proportional to the magnitude of the charge

• No two field lines can cross

Page 19: Campo eléctricosesion3

Motion of Charged Particles

• When a charged particle is placed in an electric field, it experiences an electrical force

• If this is the only force on the particle, it must be the net force

• The net force will cause the particle to accelerate according to Newton’s second law

Page 20: Campo eléctricosesion3

Motion of Particles, cont

• Fe = qE = ma

• If E is uniform, then a is constant• If the particle has a positive charge, its

acceleration is in the direction of the field• If the particle has a negative charge, its

acceleration is in the direction opposite the electric field

• Since the acceleration is constant, the kinematic equations can be used

Page 21: Campo eléctricosesion3

Un electrón entra ala región de un campo eléctrico uniforme E=200N/C como se muestra en la figura con una velocidad inicial de 3x10 6 m/s la longitud horizontal de las placas es 0.1m Encontrar la aceleracion del electrron mientras se encuentra en le campo electrico

Page 22: Campo eléctricosesion3

The Cathode Ray Tube (CRT)

• A CRT is commonly used to obtain a visual display of electronic information in oscilloscopes, radar systems, televisions, etc.

• The CRT is a vacuum tube in which a beam of electrons is accelerated and deflected under the influence of electric or magnetic fields

Page 23: Campo eléctricosesion3

CRT, cont

• The electrons are deflected in various directions by two sets of plates

• The placing of charge on the plates creates the electric field between the plates and allows the beam to be steered

Page 24: Campo eléctricosesion3

Flux Through Closed Surface, final

• The net flux through the surface is proportional to the net number of lines leaving the surface– This net number of lines is the number of lines

leaving the surface minus the number entering the surface

• If En is the component of E perpendicular to the surface, then

E nd E dAΦ = × =∫ ∫E AÑ Ñ

Page 25: Campo eléctricosesion3

Gauss’s Law, Introduction

• Gauss’s law is an expression of the general relationship between the net electric flux through a closed surface and the charge enclosed by the surface– The closed surface is often called a gaussian

surface

• Gauss’s law is of fundamental importance in the study of electric fields

Page 26: Campo eléctricosesion3

Gauss’s Law – General

• A positive point charge, q, is located at the center of a sphere of radius r

• The magnitude of the electric field everywhere on the surface of the sphere is E = keq / r2

Page 27: Campo eléctricosesion3

Gauss’s Law – General, cont.

• The field lines are directed radially outward and are perpendicular to the surface at every point

• This will be the net flux through the gaussian surface, the sphere of radius r

• We know E = keq/r2 and Asphere = 4πr2,

E d E dAΦ = × =∫ ∫E AÑ Ñ 4E eo

qπk q

εΦ = =

Page 28: Campo eléctricosesion3

Gauss’s Law – General, notes

• The net flux through any closed surface surrounding a point charge, q, is given by q/εo and is independent of the shape of that surface

• The net electric flux through a closed surface that surrounds no charge is zero

• Since the electric field due to many charges is the vector sum of the electric fields produced by the individual charges, the flux through any closed surface can be expressed as

( )1 2d d× = + ×∫ ∫E A E E AKÑ Ñ

Page 29: Campo eléctricosesion3

Gauss’s Law – Final

• Gauss’s law states

• qin is the net charge inside the surface

• E represents the electric field at any point on the surface– E is the total electric field and may have contributions

from charges both inside and outside of the surface

• Although Gauss’s law can, in theory, be solved to find E for any charge configuration, in practice it is limited to symmetric situations

E A inE

o

qd

εΦ = × =∫Ñ

Page 30: Campo eléctricosesion3

Applying Gauss’s Law

• To use Gauss’s law, you want to choose a gaussian surface over which the surface integral can be simplified and the electric field determined

• Take advantage of symmetry• Remember, the gaussian surface is a

surface you choose, it does not have to coincide with a real surface

Page 31: Campo eléctricosesion3

Conditions for a Gaussian Surface

• Try to choose a surface that satisfies one or more of these conditions:– The value of the electric field can be argued from

symmetry to be constant over the surface– The dot product of E.dA can be expressed as a

simple algebraic product EdA because E and dA are parallel

– The dot product is 0 because E and dA are perpendicular

– The field can be argued to be zero over the surface

Page 32: Campo eléctricosesion3

Field Due to a Point Charge

• Choose a sphere as the gaussian surface– E is parallel to dA at each

point on the surface

2

2 2

(4 )

4

Eo

eo

qd EdA

ε

E dA Eπr

q qE k

πε r r

Φ = × = =

= =

= =

∫ ∫

E AÑ Ñ

Ñ

Page 33: Campo eléctricosesion3

Field Due to a Spherically Symmetric Charge Distribution

• Select a sphere as the gaussian surface

• For r >a

in

2 24

Eo

eo

qd EdA

ε

Q QE k

πε r r

Φ = × = =

= =

∫ ∫E AÑ Ñ

Page 34: Campo eléctricosesion3

Spherically Symmetric, cont.

• Select a sphere as the gaussian surface, r < a

• qin < Q

• qin = r (4/3πr3)

in

in2 34

Eo

eo

qd EdA

ε

q QE k r

πε r a

Φ = × = =

= =

∫ ∫E AÑ Ñ

Page 35: Campo eléctricosesion3

Spherically Symmetric Distribution, final

• Inside the sphere, E varies linearly with r– E → 0 as r → 0

• The field outside the sphere is equivalent to that of a point charge located at the center of the sphere

Page 36: Campo eléctricosesion3

Field Due to a Thin Spherical Shell

• Use spheres as the gaussian surfaces• When r > a, the charge inside the surface is Q and

E = keQ / r2

• When r < a, the charge inside the surface is 0 and E = 0

Page 37: Campo eléctricosesion3

Field at a Distance from a Line of Charge

• Select a cylindrical charge distribution – The cylinder has a

radius of r and a length of ℓ

• E is constant in magnitude and perpendicular to the surface at every point on the curved part of the surface

Page 38: Campo eléctricosesion3

Field Due to a Line of Charge, cont.

• The end view confirms the field is perpendicular to the curved surface

• The field through the ends of the cylinder is 0 since the field is parallel to these surfaces

Page 39: Campo eléctricosesion3

Field Due to a Line of Charge, final

• Use Gauss’s law to find the field

( )

in

2

22

Eo

o

eo

qd EdA

ε

λEπr

ε

λ λE k

πε r r

Φ = × = =

=

= =

∫ ∫E A

ll

Ñ Ñ

Page 40: Campo eléctricosesion3

Field Due to a Plane of Charge

• E must be perpendicular to the plane and must have the same magnitude at all points equidistant from the plane

• Choose a small cylinder whose axis is perpendicular to the plane for the gaussian surface

Page 41: Campo eléctricosesion3

Field Due to a Plane of Charge, cont

• E is parallel to the curved surface and there is no contribution to the surface area from this curved part of the cylinder

• The flux through each end of the cylinder is EA and so the total flux is 2EA

Page 42: Campo eléctricosesion3

Field Due to a Plane of Charge, final

• The total charge in the surface is σA

• Applying Gauss’s law

• Note, this does not depend on r

• Therefore, the field is uniform everywhere

22E

o o

σA σEA and E

ε εΦ = = =

Page 43: Campo eléctricosesion3

Electrostatic Equilibrium

• When there is no net motion of charge within a conductor, the conductor is said to be in electrostatic equilibrium

Page 44: Campo eléctricosesion3

Properties of a Conductor in Electrostatic Equilibrium

• The electric field is zero everywhere inside the conductor

• If an isolated conductor carries a charge, the charge resides on its surface

• The electric field just outside a charged conductor is perpendicular to the surface and has a magnitude of σ/εo

• On an irregularly shaped conductor, the surface charge density is greatest at locations where the radius of curvature is the smallest

Page 45: Campo eléctricosesion3

Property 1: Einside = 0

• Consider a conducting slab in an external field E

• If the field inside the conductor were not zero, free electrons in the conductor would experience an electrical force

• These electrons would accelerate

• These electrons would not be in equilibrium

• Therefore, there cannot be a field inside the conductor

Page 46: Campo eléctricosesion3

Property 1: Einside = 0, cont.

• Before the external field is applied, free electrons are distributed throughout the conductor

• When the external field is applied, the electrons redistribute until the magnitude of the internal field equals the magnitude of the external field

• There is a net field of zero inside the conductor• This redistribution takes about 10-15s and can be

considered instantaneous

Page 47: Campo eléctricosesion3

Property 2: Charge Resides on the Surface

• Choose a gaussian surface inside but close to the actual surface

• The electric field inside is zero (prop. 1)

• There is no net flux through the gaussian surface

• Because the gaussian surface can be as close to the actual surface as desired, there can be no charge inside the surface

Page 48: Campo eléctricosesion3

Property 2: Charge Resides on the Surface, cont

• Since no net charge can be inside the surface, any net charge must reside on the surface

• Gauss’s law does not indicate the distribution of these charges, only that it must be on the surface of the conductor

Page 49: Campo eléctricosesion3

Property 3: Field’s Magnitude and Direction

• Choose a cylinder as the gaussian surface

• The field must be perpendicular to the surface– If there were a parallel

component to E, charges would experience a force and accelerate along the surface and it would not be in equilibrium

Page 50: Campo eléctricosesion3

Property 3: Field’s Magnitude and Direction, cont.

• The net flux through the gaussian surface is through only the flat face outside the conductor– The field here is perpendicular to the surface

• Applying Gauss’s law

Eo o

σA σEA and E

ε εΦ = = =

Page 51: Campo eléctricosesion3

Conductors in Equilibrium, example

• The field lines are perpendicular to both conductors

• There are no field lines inside the cylinder

Page 52: Campo eléctricosesion3

Derivation of Gauss’s Law

• We will use a solid angle, Ω

• A spherical surface of radius r contains an area element ΔA

• The solid angle subtended at the center of the sphere is defined to be

2

A

r

∆Ω =

Page 53: Campo eléctricosesion3

Some Notes About Solid Angles

• A and r2 have the same units, so Ω is a dimensionless ratio

• We give the name steradian to this dimensionless ratio

• The total solid angle subtended by a sphere is 4π steradians

Page 54: Campo eléctricosesion3

Derivation of Gauss’s Law, cont.

• Consider a point charge, q, surrounded by a closed surface of arbitrary shape

• The total flux through this surface can be found by evaluating E.ΔA for each small area element and summing over all the elements

Page 55: Campo eléctricosesion3

Derivation of Gauss’s Law, final

• The flux through each element is

• Relating to the solid angle

– where this is the solid angle subtended by ΔA

• The total flux is

( ) 2

coscosE e

AθEθ A k q

r

∆Φ = ×∆ = ∆ =E A

2

cosAθ

r

∆∆Ω =

2

cosE e e

o

dAθ qk q k q d

rεΦ = = Ω =∫ ∫Ñ Ñ

Page 56: Campo eléctricosesion3

Densidad de las líneas de campo

∆NSuperficie gaussiana

N

Aσ ∆=

Densidad de líneas σ

Ley de Gauss: El campo E en cualquier punto en el espacio es proporcional a la densidad de líneas σ en dicho punto.

Ley de Gauss: El campo E en cualquier punto en el espacio es proporcional a la densidad de líneas σ en dicho punto.

∆A

Radio r

rr

Page 57: Campo eléctricosesion3

Densidad de líneas y constante de espaciamiento

Considere el campo cerca de una carga positiva q:Considere el campo cerca de una carga positiva q:

Superficie gaussiana

Radio r

rr

Luego, imagine una superficie (radio r) que rodea a q.Luego, imagine una superficie (radio r) que rodea a q.

EE es proporcional a es proporcional a ∆∆N/N/∆∆AA y es y es igual a igual a kq/rkq/r22 en cualquier punto. en cualquier punto.

2;

N kqE E

A r

∆ ∝ =∆

εεοο se define como constante de se define como constante de

espaciamiento. Entonces:espaciamiento. Entonces:

0

1

4 kε

π=:es ε Donde 00EA

N ε=∆∆

Page 58: Campo eléctricosesion3

Permitividad del espacio libreLa constante de proporcionalidad para la densidad de La constante de proporcionalidad para la densidad de líneas se conoce como líneas se conoce como permitividad permitividad εεοο y se define como:y se define como:

2-12

0 2

1 C8.85 x 10

4 N mkε

π= =

Al recordar la relación con la densidad de líneas se tiene:Al recordar la relación con la densidad de líneas se tiene:

0 0 N

E or N E AA

ε ε∆ = ∆ = ∆∆

Sumar sobre toda el área A Sumar sobre toda el área A da las líneas totales como:da las líneas totales como: N = εoEAN = εoEA

Page 59: Campo eléctricosesion3

Ejemplo 5. Escriba una ecuación para encontrar el número total de líneas N que salen de una sola

carga positiva q.

Superficie gaussiana

Radio r

rr

Dibuje superficie gaussiana esférica:Dibuje superficie gaussiana esférica:

22 2

; A = 4 r4

kq qE

r rπ

π= =

Sustituya E y A de:Sustituya E y A de:

20 0 2

(4 )4

qN EA r

rε ε π

π = =

N = εoqA = q N = εoqA = q

El número total de líneas es igual a la carga encerrada q.El número total de líneas es igual a la carga encerrada q.

EANAEN 00 y εε =∆=∆

Page 60: Campo eléctricosesion3

Ley de GaussLey de Gauss:Ley de Gauss: El número neto de líneas de campo El número neto de líneas de campo eléctrico que cruzan cualquier superficie cerrada en eléctrico que cruzan cualquier superficie cerrada en una dirección hacia afuera es numéricamente igual a la una dirección hacia afuera es numéricamente igual a la carga neta total dentro de dicha superficie.carga neta total dentro de dicha superficie.

Ley de Gauss:Ley de Gauss: El número neto de líneas de campo El número neto de líneas de campo eléctrico que cruzan cualquier superficie cerrada en eléctrico que cruzan cualquier superficie cerrada en una dirección hacia afuera es numéricamente igual a la una dirección hacia afuera es numéricamente igual a la carga neta total dentro de dicha superficie.carga neta total dentro de dicha superficie.

0N EA qε= Σ = Σ

Si Si q q se representa como la se representa como la carga carga positiva neta encerradapositiva neta encerrada, la ley de , la ley de Gauss se puede rescribir como:Gauss se puede rescribir como: 0

qEA

εΣ =

Page 61: Campo eléctricosesion3

Ejemplo 6. ¿Cuántas líneas de campo eléctrico pasan a través de la superficie gaussiana

dibujada abajo?

+

-q1

q4

q3-

+q2

-4 µC

+5 µC

+8 µC

-1 µC

Superficie gaussianaPrimero encuentre la carga Primero encuentre la carga NETA NETA ΣΣqq encerrada por la encerrada por la superficiesuperficie::

ΣΣq = (+8 –4 – 1) = +3 q = (+8 –4 – 1) = +3 µµCC

0N EA qε= Σ = Σ

N = +3 µC = +3 x 10-6 líneasN = +3 µC = +3 x 10-6 líneas

Page 62: Campo eléctricosesion3

Ejemplo 6. Una esfera sólida (R = 6 cm) con una carga neta de +8 µC está adentro de un cascarón hueco (R = 8 cm) que tiene

una carga neta de–6 µC. ¿Cuál es el campo eléctrico a una distancia de 12 cm desde el centro de la esfera sólida?

ΣΣq = (+8 – 6) = +2 q = (+8 – 6) = +2 µµCC

0N EA qε= Σ = Σ-6 µC

+8 µC--

--

-

-- -

Dibuje una esfera gaussiana a un Dibuje una esfera gaussiana a un radio de 12 cm para encontrar E.radio de 12 cm para encontrar E.

8cm

6 cm

12 cm

Superficie gaussiana

00

; net

qAE q E

εΣ= =

2

2

-6

2 -12 2Nm0 C

2 x 10 C

(4 ) (8.85 x 10 )(4 )(0.12 m)

qE

rε π πΣ += =

Page 63: Campo eléctricosesion3

Ejemplo 6 (Cont.) ¿Cuál es el campo eléctrico a una distancia de 12 cm desde el centro de la esfera sólida?

Dibuje una esfera gaussiana a un Dibuje una esfera gaussiana a un radio de 12 cm para encontrar E.radio de 12 cm para encontrar E.

ΣΣq = (+8 – 6) = +2 q = (+8 – 6) = +2 µµCC

0N EA qε= Σ = Σ

00

; net

qAE q E

εΣ= =

6 NC2

0

2 C1.25 x 10

(4 )E

r

µε π

+= =

-6 µC

+8 µC--

--

-

-- -

8cm

6 cm

12 cm

Superficie gaussiana

E = 1.25 MN/CE = 1.25 MN/C

Page 64: Campo eléctricosesion3

Carga sobre la superficie de un conductor

Conductor cargado

Superficie gaussiana justo adentro del conductor

Dado que cargas iguales Dado que cargas iguales se repelen, se esperaría se repelen, se esperaría que toda la carga se que toda la carga se movería hasta llegar al movería hasta llegar al reposo. Entonces, de la reposo. Entonces, de la ley de Gauss. . .ley de Gauss. . .

Como las cargas están en reposo, E = 0 dentro del Como las cargas están en reposo, E = 0 dentro del conductor, por tanto:conductor, por tanto:

0 or 0 = N EA q qε= Σ = Σ Σ

Toda la carga está sobre la superficie; nada dentro del conductorToda la carga está sobre la superficie; nada dentro del conductor

Page 65: Campo eléctricosesion3

Ejemplo 7. Use la ley de Gauss para encontrar el campo E justo afuera de la superficie de un conductor. Densidad de carga

superficial: σ = q/A.

Considere Considere q adentro de la cajaq adentro de la caja. . Las líneas de Las líneas de E E a través de a través de todas las áreas son hacia todas las áreas son hacia afuera.afuera.

Densidad de carga superficial σ

++

+ ++

+ ++

+

+ +++A

E2

E1

0 AE qεΣ =Las líneas de E a través de los Las líneas de E a través de los ladoslados se cancelan por simetría. se cancelan por simetría.

E3

E3 E3

E3

εεooEE11A + A + εεooEE22AA = = qq

El campo es cero dentro del conductor, así que EEl campo es cero dentro del conductor, así que E22 = 0 = 0

00

0 0

qE

A

σε ε

= =

Page 66: Campo eléctricosesion3

Ejemplo 7 (Cont.) Encuentre el campo justo afuera de la superficie si σ = q/A = +2 C/m2.

Densidad de carga superficial σ

++

+ ++

+ ++

+

+ +++A

E2

E1 E3

E3 E3

E3

10 0

qE

A

σε ε

= =

Recuerde que los campos Recuerde que los campos laterales se cancelan y el laterales se cancelan y el campo interior es cero, de campo interior es cero, de modo quemodo que

2

2

-6 2

-12 NmC

2 x 10 C/m

8.85 x 10E

+= E = 226,000 N/C E = 226,000 N/C

Page 67: Campo eléctricosesion3

Campo entre placas paralelasCargas iguales y opuestas.Cargas iguales y opuestas.

Dibuje cajas gaussianas en Dibuje cajas gaussianas en cada superficie interior.cada superficie interior.

+++++

Q1 Q2

-----

Campos ECampos E11 y E y E22 a la derecha. a la derecha.

E1

E2

E1

E2

La ley de Gauss para cualquier La ley de Gauss para cualquier caja da el mismo campo (Ecaja da el mismo campo (E11 = E = E22).).

0 AE qεΣ = Σ0 0

qE

A

σε ε

= =

Page 68: Campo eléctricosesion3

Línea de carga

r

E

2πr

L

q

Lλ =

A1

A

A2

0

q; =

2 L

qE

rLλ

πε=

02E

r

λπε

=

Los campos debidos Los campos debidos a Aa A11 y A y A2 2 se cancelan se cancelan debido a simetría.debido a simetría.

0

; (2 )q

EA A r Lπε

= =

0 AE qεΣ =

Page 69: Campo eléctricosesion3

Ejemplo 8: El campo eléctrico a una distancia de 1.5 m de una línea de carga es 5 x 104 N/C. ¿Cuál es la

densidad lineal de la línea?

r

EL

q

Lλ =

02E

r

λπε

=02 rEλ πε=

2

2

-12 4CNm

2 (8.85 x 10 )(1.5 m)(5 x 10 N/C)λ π=

E E = 5 x 10= 5 x 1044 N/CN/C r = 1.5 mr = 1.5 m

λ = 4.17 µC/m

Page 70: Campo eléctricosesion3

Cilindros concéntricos

+ + ++ + + +

+ +

+ + + + ++ + + +

+ +

+ + a

b

λa

λb

r1r2

-6 µCra

rb

12 cm

Superficie gaussiana

λa

λb

Afuera es como un largo Afuera es como un largo alambre cargado:alambre cargado:

Para r >

rb02

a bEr

λ λπε+= Para

rb > r > ra 02aE

r

λπε

=

Page 71: Campo eléctricosesion3

Ejemplo 9. Dos cilindros concéntricos de radios 3 y 6 cm. La densidad de carga lineal interior es de +3 µC/m y la exterior es de -5 µC/m.

Encuentre E a una distancia de 4 cm desde el centro.

+ + ++ + + +

+ +

+ + + + ++ + + +

+ +

+ + a = 3

cm

b=6 cm

-7 µC/m

+5 µC/m

E = 1.38 x 106 N/C, radialmente hacia afueraE = 1.38 x 106 N/C, radialmente hacia afuera

rr

Dibuje una superficie Dibuje una superficie gaussiana entre los cilindros.gaussiana entre los cilindros.

02bE

r

λπε

=

0

3 C/m

2 (0.04 m)E

µπε

+=

Page 72: Campo eléctricosesion3

E = 5.00 x 105 N/C, radialmente hacia adentroE = 5.00 x 105 N/C, radialmente hacia adentro

+ + ++ + + +

+ +

+ + + + ++ + + +

+ +

+ + a = 3 cm

b=6 cm

-7 µC/m

+5 µC/m rr

Gaussiana afuera de Gaussiana afuera de ambos cilindros.ambos cilindros.

02a bE

r

λ λπε+=

0

( 3 5) C/m

2 (0.075 m)E

µπε+ −=

Ejemplo 8 (Cont.) A continuación, encuentre E a una distancia de 7.5 cm desde el centro (afuera de ambos

cilindros)

Page 73: Campo eléctricosesion3

Resumen de fórmulas

Intensidad de campo eléctrico E:

Intensidad de campo eléctrico E:

Campo eléctrico cerca de muchas cargas:

Campo eléctrico cerca de muchas cargas:

Ley de Gauss para distribuciones de carga.

Ley de Gauss para distribuciones de carga. 0 ;

qEA q

Aε σΣ = Σ =

CN

rkQ

qF

E es Unidad2==

vectorialSuma 2∑=rkQ

E

Page 74: Campo eléctricosesion3

CONCLUSIÓN: Capítulo 24El campo eléctrico