66
Coherent allocation of risk capital Michel Denault ´ Ecole des H.E.C. (Montr´eal) January 2001 Original version:September 1999 Abstract The allocation problem stems from the diversi cation e ect observed in risk measurements of nancial portfolios: the sum of the “risks” of many portfolios is larger than the “risk” of the sum of the portfolios. The allocation problem is to apportion this diversi cation advantage to the portfolios in a fair manner, yielding, for each portfolio, a risk appraisal that accounts for diversi cation. Our approach is axiomatic, in the sense that we rst argue for the nec essary properties of an allocation principle, and then consider principles that ful ll the properties. Important results from the area of game theory nd a direct application. Our main result is that the Aumann-Shapley value is both a coherent and practical approach to nancial risk allocation. Keywords: allocation of capital, coherent risk measure, risk-adjusted performance measure; game theory, fuzzy games, Shapley value, Aumann-Shapley prices.

Alocaton Of Risk Capital

Embed Size (px)

Citation preview

Page 1: Alocaton Of Risk Capital

Coh

ere

nt a

lloca

tion o

f risk cap

ital ∗

Mich

el D

enault

´ Eco

le d

es H

.E.C

. (Montr´e

al)

January

20

01

Orig

inal v

ersio

n:S

ep

tem

ber 1

999

Ab

stract

The a

lloca

tion p

roble

m ste

ms fro

m th

e d

iversifi

catio

n e

ffect o

bse

rved

in risk m

easu

rem

ents o

f financia

l portfo

lios: th

e su

m o

f the

“risks”

of m

any

portfo

lios

is la

rger th

an

the

“risk” o

f the

sum

of th

e p

ortfo

lios. T

he

allo

catio

n p

roble

m is

to a

pportio

n th

is

div

ersifi

catio

n a

dvanta

ge

to th

e p

ortfo

lios

in a

fair m

anner, y

ield

ing, fo

r each

portfo

lio, a

risk a

ppra

isal th

at a

ccounts

for

div

ersifi

catio

n.

Our a

ppro

ach

is a

xio

matic, in

the

sense

that w

e fi

rst arg

ue

for th

e n

ece

ssary

pro

pertie

s o

f an

allo

catio

n p

rincip

le, a

nd

then

consid

er p

rincip

les th

at fu

lfill th

e p

ropertie

s. Importa

nt re

sults

from

the

are

a o

f gam

e th

eory

find

a d

irect a

pplica

tion. O

ur m

ain

re

sult is th

at th

e A

um

ann-S

haple

y v

alu

e is b

oth

a co

here

nt a

nd p

ractica

l appro

ach

to fi

nancia

l risk allo

catio

n.

Keyw

ord

s: a

lloca

tion

of ca

pita

l, coh

ere

nt risk

measu

re, risk-a

dju

sted

perfo

rman

ce m

easu

re; g

am

e th

eory

, fuzzy

gam

es,

Sh

ap

ley v

alu

e, A

um

an

n-S

hap

ley p

rices.

∗The a

uth

or e

xpre

sses sp

ecia

l than

ks to F. D

elb

aen, w

ho p

rovid

ed

both

the in

itial in

spira

tion

for th

is work

and

gen

ero

us su

bse

qu

en

t ideas a

nd

ad

vice

, an

d to

Ph. A

rtzner fo

r dra

win

g h

is atte

ntio

n to

Au

bin

’s litera

ture

on fu

zzy g

am

es. D

iscussio

ns w

ith P. E

mbre

chts, H

.-J. L¨

Page 2: Alocaton Of Risk Capital

uth

i, D

. Stra

um

ann

, an

d S

. Bern

eg

ger h

ave

been

most fru

itful. Fin

ally

, he

gra

tefu

lly a

cknow

led

ges th

e fi

nan

cial su

pport o

f both

RiskLa

b (S

witze

rland

) and

the

S.S

.H.R

.C. (C

anad

a)

´´

†Assista

nt Pro

fesso

r, Eco

le d

es H

aute

s Etu

des C

om

mercia

les, 3

00

0 ch

. de la

ote

-Sain

te-C

ath

erin

e, M

ontr´

eal, C

an

ada, H

3T 2

A7

; mich

el.d

enau

[email protected]

; (51

4) 3

40

-71

61

1

Intro

ductio

n

Th

e th

em

e o

f this

pap

er is

the

sharin

g o

f costs

betw

een

the

con

stituen

ts o

f a fi

rm. W

e ca

ll this

sharin

g “a

lloca

tion”, a

s it is

assu

med

that a

hig

her a

uth

ority

exists w

ithin

the fi

rm, w

hich

has a

n in

tere

st in u

nila

tera

lly d

ivid

ing

the fi

rm’s co

sts betw

een

the

con

stituen

ts. We w

ill refe

r to th

e co

nstitu

en

ts as p

ortfo

lios, b

ut b

usin

ess u

nits co

uld

just a

s well b

e u

nd

ersto

od

.

As a

n in

sura

nce

ag

ain

st the

un

certa

inty

of th

e n

et w

orth

s (or e

qu

ivale

ntly

, the

pro

fits) o

f the

portfo

lios, th

e fi

rm co

uld

well,

and

wou

ld o

ften

be re

gu

late

d to

, hold

an

am

ou

nt o

f riskless in

vestm

en

ts. We w

ill call th

is bu

ffer, th

e risk ca

pita

l of th

e fi

rm. Fro

m

a fi

nan

cial p

ersp

ectiv

e, h

old

ing

an

am

ou

nt o

f mon

ey d

orm

an

t, i.e. in

extre

mely

low

risk, low

retu

rn m

on

ey in

strum

ents, is se

en

as a

bu

rden

. It is th

ere

fore

natu

ral to

look

for a

fair a

lloca

tion

of th

at b

urd

en

betw

een

the

con

stituen

ts, esp

ecia

lly w

hen

the

allo

catio

n p

rovid

es

a b

asis

for p

erfo

rman

ce co

mp

ariso

ns

of th

e co

nstitu

en

ts b

etw

een

them

selv

es

(for e

xam

ple

in a

rora

c

ap

pro

ach

).

Th

e p

rob

lem

of a

lloca

tion

is inte

restin

g a

nd

non

-trivia

l, beca

use

the

sum

of th

e risk

cap

itals o

f each

con

stituen

t, is usu

ally

larg

er th

an

the

risk ca

pita

l of th

e fi

rm ta

ken

as a

wh

ole

. Th

at is, th

ere

is a d

eclin

e in

tota

l costs to

be

exp

ecte

d b

y p

oolin

g th

e

activ

ities

of th

e fi

rm, a

nd

this

ad

van

tag

e n

eed

s to

be

share

d fa

irly b

etw

een

the

con

stituen

ts. We

stress

fairn

ess, a

s a

ll

con

stituen

ts are

from

the

sam

e fi

rm, a

nd

non

e sh

ou

ld re

ceiv

e p

refe

ren

tial tre

atm

en

t for th

e p

urp

ose

of th

is allo

catio

n e

xercise

.

In th

at se

nse

, the

risk ca

pita

l of a

con

stituen

t, min

us its a

lloca

ted

share

of th

e d

iversifi

catio

n a

dvan

tag

e, is e

ffectiv

ely

a fi

rm-

inte

rnal risk m

easu

re.

Page 3: Alocaton Of Risk Capital

Th

e a

lloca

tion

exe

rcise is b

asica

lly p

erfo

rmed

for co

mp

ariso

n p

urp

ose

s: know

ing

the p

rofit g

en

era

ted

and

the risk ta

ken

by

the co

mp

on

en

ts of th

e fi

rm, a

llow

s for a

mu

ch w

iser co

mp

ariso

n th

an

know

ing

on

ly o

f pro

fits. T

his id

ea o

f a rich

er in

form

atio

n

set u

nd

erlie

s the p

op

ula

r con

cep

ts of risk-a

dju

sted

perfo

rmance

measu

res (ra

pm

) and

retu

rn o

n risk-a

dju

sted

cap

ital (ro

rac).

Our a

pp

roach

of th

e a

lloca

tion

pro

ble

m is

axio

matic, in

a se

nse

that is

very

simila

r to th

e a

pp

roach

take

n b

y A

rtzner,

Delb

aen

, Eb

er a

nd

Heath

[3]. Ju

st as th

ey

defin

ed

a se

t of n

ece

ssary

“good

qu

alitie

s” of a

risk m

easu

re, w

e su

gg

est a

set o

f

pro

pertie

s to b

e fu

lfille

d b

y a

fair risk ca

pita

l allo

catio

n p

rincip

le. T

heir se

t of a

xio

ms d

efin

es th

e co

here

nce

of risk m

easu

res, o

ur

set o

f axio

ms d

efines th

e co

here

nce

of risk

cap

ital a

lloca

tion

prin

ciple

s. (Incid

en

tally

, the sta

rting

poin

t of o

ur d

evelo

pm

en

t, the

risk cap

itals o

f the fi

rm a

nd

its con

stituents, is a

cohere

nt risk m

easu

re)

We m

ake

, thro

ug

hou

t this a

rticle, lib

era

l use

of th

e co

nce

pts a

nd

resu

lts of g

am

e th

eory. A

s we h

op

e to

con

vin

ce th

e re

ad

er,

gam

e th

eory

pro

vid

es a

n e

xcelle

nt fra

mew

ork

on

which

to ca

st the

allo

catio

n p

rob

lem

, an

d a

elo

qu

en

t lan

gu

ag

e to

discu

ss it.

Th

ere

is an

imp

ressiv

e a

mou

nt o

f litera

ture

on

the

allo

catio

n p

rob

lem

with

in th

e a

rea

of g

am

e th

eory

, with

ap

plica

tion

s ran

gin

g

from

tele

ph

on

e b

illing

to a

irport la

nd

ing

fees a

nd

to w

ate

r treatm

en

t costs. T

he

main

sou

rces fo

r this a

rticle a

re th

e se

min

al

article

s of S

hap

ley [2

8] a

nd

[30

] on

on

e h

an

d; a

nd

the

book o

f Au

bin

[5], th

e a

rticles o

f Bille

ra a

nd

Heath

[9]), a

nd

Mirm

an

an

d

Taum

an

[18

], on

the o

ther h

and

.

At a

more

gen

era

l level, th

e in

tere

sted

read

er m

ay co

nsu

lt a g

am

e th

eory

refe

ren

ce a

s the n

ice O

sborn

e a

nd

Ru

bin

stein

[21

],

the

ed

ited

book o

f Roth

[24

] (inclu

din

g th

e su

rvey o

f Tau

man

[32

]), or th

e su

rvey a

rticle o

f You

ng

[33

], wh

ich co

nta

in le

gio

ns o

f

refe

ren

ces o

n th

e su

bje

ct.

Th

e a

rticle is d

ivid

ed

as fo

llow

s. We

reca

ll the

conce

pt o

f coh

ere

nt risk

measu

re in

the

next se

ction

. Sectio

n 3

pre

sen

ts the

idea o

f the co

here

nce

in a

lloca

tion

. Gam

e th

eory

con

cep

ts are

intro

du

ced

in se

ction

4, w

here

the risk

cap

ital a

lloca

tion

pro

ble

m

is mod

elle

d a

s a g

am

e b

etw

een

portfo

lios. W

e tu

rn in

sectio

n 5

to fu

zzy g

am

es, a

nd

the

coh

ere

nce

of a

lloca

tion

is exte

nd

ed

to

that se

tting

. This is w

here

the A

um

an

n-S

hap

ley v

alu

e e

merg

es a

s a m

ost a

ttractiv

e a

lloca

tion

prin

ciple

. We tre

at th

e q

uestio

n o

f

the

non

-neg

ativ

ity o

f allo

catio

ns in

sectio

n 6

. Th

e fi

nal se

ction

is devote

d to

a “to

y e

xam

ple

” of a

coh

ere

nt risk

measu

re b

ase

d

on

the m

arg

in ru

les o

f the S

EC

, and

to a

lloca

tion

s that a

rise w

hile

usin

g th

at m

easu

re.

Rem

ark: B

ew

are

that tw

o co

nce

pts o

f coh

ere

nce

are

discu

ssed

in th

is pap

er: th

e co

here

nce

of risk

measu

res w

as in

trod

uce

d

Page 4: Alocaton Of Risk Capital

in [3

], bu

t is use

d it h

ere

as w

ell; th

e co

here

nce

of a

lloca

tion

s is intro

du

ced

here

.

Risk m

easu

re a

nd risk ca

pita

l

In th

is pap

er, w

e fo

llow

Artzn

er, D

elb

aen

, Eb

er a

nd

Heath

[3] in

rela

ting

the

risk o

f a fi

rm to

the

un

certa

inty

of its fu

ture

worth

.

Th

e d

an

ger, in

here

nt to

the id

ea o

f risk, is that th

e fi

rm’s w

orth

reach

such

a lo

w n

et w

orth

at a

poin

t in th

e fu

ture

, that it m

ust

stop

its activ

ities. R

isk is then

defined

as a

ran

dom

varia

ble

X re

pre

sen

ting

a fi

rm’s n

et w

orth

at a

specifi

ed

poin

t of th

e fu

ture

.

A risk

measu

re ρ

qu

an

tifies th

e le

vel o

f risk. Sp

ecifi

cally

, it is a m

ap

pin

g fro

m a

set o

f ran

dom

varia

ble

s (risks) to th

e re

al

nu

mb

ers: ρ

(X) is th

e a

mou

nt o

f a n

um

´era

ire (e

.g. ca

sh d

olla

rs) wh

ich, a

dd

ed

to th

e fi

rm’s a

ssets, e

nsu

res th

at its fu

ture

worth

be a

ccep

tab

le to

the re

gu

lato

r, the ch

ief risk o

ffice

r or o

thers. (Fo

r a d

iscussio

n o

f acce

pta

ble

worth

s, see [3

]) Cle

arly

, the h

eftie

r

the

req

uire

d sa

fety

net is, th

e riskie

r the

firm

is perce

ived

. We

call ρ

(X) th

e risk

cap

ital o

f the

firm

. Th

e risk

cap

ital a

lloca

tion

pro

ble

m is to

allo

cate

the a

mou

nt o

f risk ρ(X

) betw

een th

e p

ortfo

lios o

f the fi

rm.

We

will a

ssum

e th

at a

ll rand

om

varia

ble

s a

re d

efin

ed

on

a fi

xed

pro

bab

ility sp

ace

(Ω, A

, P). B

y L

∞(Ω, A

, P), w

e m

ean

the

space

of b

ou

nd

ed

rand

om

varia

ble

s; we

assu

me

that ρ

is o

nly

defin

ed

on

that sp

ace

. Th

e re

ad

er w

ho

wish

es to

do

so ca

n

gen

era

lize th

e re

sults a

lon

g th

e lin

es o

f [12

].

In th

eir p

ap

ers, A

rtzner, D

elb

aen

, Eb

er a

nd

Heath

([3], [2

]) have

sug

geste

d a

set o

f pro

pertie

s th

at risk

measu

res sh

ou

ld

satisfy

, thu

s defin

ing

the co

nce

pt o

f coh

ere

nt m

easu

res o

f risk1:

Defin

ition

1 A

risk measu

re ρ

: L

∞ → R

is coh

ere

nt if it sa

tisfies th

e fo

llow

ing

pro

pertie

s:

Su

bad

ditiv

ity Fo

r all b

ou

nd

ed

ran

dom

varia

ble

s X a

nd

Y , ρ

(X +

Y ) ≤

ρ(X

)+ ρ

(Y )

Mon

oto

nicity

For a

ll bou

nd

ed

ran

dom

varia

ble

s X, Y

such

that X

≤ Y

2 , ρ

(X) ≥

ρ(Y

)

Positiv

e h

om

og

en

eity

For a

ll λ ≥

0 a

nd

bou

nd

ed

ran

dom

varia

ble

X, ρ

(λX

)= λ

ρ(X

)

1On th

e to

pic, se

e a

lso A

rtzner’s [1

], and D

elb

aen

’s [12

] an

d [1

3]

Page 5: Alocaton Of Risk Capital

2The re

latio

n X

≤ Y

betw

een tw

o ra

nd

om

varia

ble

s is take

n to

mean

X(ω

) ≤ Y

(ω) fo

r alm

ost a

ll ω ∈

Ω, in

a p

rob

ability

space

(Ω, F ,P

).

Transla

tion

invaria

nce

For a

ll α ∈

R a

nd

bou

nd

ed

ran

dom

varia

ble

X,

ρ(X

+ α

rf )=

ρ(X

) −α

where

rf is th

e p

rice, a

t som

e p

oin

t in th

e fu

ture

, of a

refe

ren

ce, riskle

ss

investm

en

t whose

price

is 1 to

day.

Th

e p

rop

ertie

s th

at d

efin

e co

here

nt risk

measu

res a

re to

be

un

dersto

od

as n

ece

ssary

con

ditio

ns fo

r a risk

measu

re to

be

reaso

nab

le. Le

t us b

riefly ju

stify th

em

. Su

bad

ditiv

ity re

flects th

e d

iversifi

catio

n o

f portfo

lios, o

r that “a

merg

er d

oes n

ot cre

ate

extra

risk” [3

, p.2

09

]. Mon

oto

nicity

says th

at if a

portfo

lio Y

is a

lways

worth

more

than

X, th

en

Y ca

nn

ot b

e riskie

r than

X.

Hom

og

en

eity

is a

limit ca

se o

f sub

ad

ditiv

ity, re

pre

sen

ting

what h

ap

pen

s w

hen

there

is p

recise

ly n

o d

iversifi

catio

n e

ffect.

Transla

tion

invaria

nce

is a n

atu

ral re

qu

irem

en

t, giv

en

the m

ean

ing

of th

e risk m

easu

re g

iven

ab

ove a

nd

its rela

tion

to th

e n

um

´

era

ire.

In th

is pap

er, w

e w

ill not b

e co

nce

rned

with

specifi

c risk

measu

res, u

ntil o

ur e

xam

ple

of se

ction

7; w

e h

ow

ever a

ssum

e a

ll

risk measu

res to

be co

here

nt.

Cohere

nce

of th

e a

lloca

tion

prin

ciple

An

allo

catio

n p

rincip

le is a

solu

tion

to th

e risk

cap

ital a

lloca

tion

pro

ble

m. W

e su

gg

est in

this se

ction

a se

t of a

xio

ms, w

hich

we

arg

ue

are

nece

ssary

pro

pertie

s of a

“reaso

nab

le” a

lloca

tion

prin

ciple

. We

will ca

ll coh

ere

nt a

n a

lloca

tion

prin

ciple

that sa

tisfies

the se

t of a

xio

ms. T

he fo

llow

ing

defin

ition

s are

use

d:

•X

i, i ∈

1,2

,...,n

, is a b

oun

ded

ran

dom

varia

ble

rep

rese

ntin

g th

e n

et w

orth

at tim

e T

of th

e i th

portfo

lio o

f a fi

rm. W

e a

ssum

e

that th

e n

th p

ortfo

lio

is a riskle

ss instru

men

t with

net w

orth

at tim

e T

eq

ual to

Xn

= α

rf , w

here

rf th

e tim

e T

price

of a

riskless in

strum

en

t with

price

1

Page 6: Alocaton Of Risk Capital

tod

ay.

•X

, the b

ou

nd

ed

ran

dom

varia

ble

rep

rese

ntin

g th

e fi

rm’s n

et w

orth

at so

me

n

poin

t in th

e fu

ture

T, is d

efin

ed

as X

Xi.

i=1

•N

is the se

t of a

ll portfo

lios o

f the fi

rm.

•A

is the se

t of risk ca

pita

l allo

catio

n p

rob

lem

s: pairs (N

,ρ) co

mp

ose

d o

f a se

t of n

portfo

lios a

nd

a co

here

nt risk m

easu

re ρ

.

•K

= ρ

(X) is th

e risk ca

pita

l of th

e fi

rm.

We ca

n n

ow

define:

Defin

ition

2 A

n a

lloca

tion

prin

ciple

is a fu

nctio

n Π

: A R

n th

at m

ap

s

each

allo

catio

n p

rob

lem

(N, ρ

) into

a u

niq

ue a

lloca

tion

:

Π1(N

, ρ) K

1

Π:(N

, ρ)

−→

Π2(N

, ρ)

. .

=

Page 7: Alocaton Of Risk Capital

K2

. .

such

that K

i = ρ

(X).

..

i∈N

Πn(N

, ρ) K

n

Th

e co

nd

ition

en

sure

s th

at th

e risk

cap

ital is

fully

allo

cate

d. T

he

Ki–n

ota

tion

is u

sed

wh

en

the

arg

um

en

ts a

re cle

ar fro

m th

e

con

text.

Defin

ition

3 A

n a

lloca

tion

prin

ciple

Π is

coh

ere

nt if fo

r every

allo

catio

n p

rob

lem

(N, ρ

), the

allo

catio

n Π

(N, ρ

)satisfi

es th

e th

ree

pro

pertie

s:

1) N

o u

nd

ercu

t

∀ M

⊆ N

,

Ki ≤

ρX

i i∈M

i∈M

2) S

ym

metry

If by jo

inin

g a

ny su

bse

t M ⊆

N\

i, j, p

ortfo

lios i a

nd

j both

make

the sa

me co

ntrib

utio

n to

the risk ca

pita

l, then

Ki =

Kj .

3) R

iskless a

lloca

tion

Kn

= ρ

(αrf )=

−α

Reca

ll that th

e n

th p

ortfo

lio is a

riskless in

strum

ent.

Furth

erm

ore

, we ca

ll non

-neg

ativ

e co

here

nt a

lloca

tion

a co

here

nt a

lloca

tion

wh

ich sa

tisfies K

i ≥ 0

, ∀i ∈

N.

It is o

ur p

rop

ositio

n th

at th

e th

ree

axio

ms o

f Definitio

n 3

are

nece

ssary

con

ditio

ns o

f the

fairn

ess, a

nd

thus cre

dib

ility, o

f

Page 8: Alocaton Of Risk Capital

allo

catio

n p

rincip

les. In

that se

nse

, coh

ere

nce

is a y

ard

stick by w

hich

allo

catio

n p

rincip

les ca

n b

e e

valu

ate

d.

Th

e p

rop

ertie

s can

be

justifi

ed

as fo

llow

s. Th

e “n

o u

nd

ercu

t” pro

perty

en

sure

s that n

o p

ortfo

lio ca

n u

nd

ercu

t the

pro

pose

d

allo

catio

n: a

n u

nd

ercu

t occu

rs wh

en

a p

ortfo

lio’s a

lloca

tion

is hig

her th

an

the

am

ou

nt o

f risk ca

pita

l it wou

ld fa

ce a

s an

entity

sep

ara

te fro

m th

e fi

rm. G

iven

sub

ad

ditiv

ity, th

e ra

tion

ale

is simp

le. U

pon

a p

ortfo

lio jo

inin

g th

e fi

rm (o

r any su

bse

t there

of), th

e

tota

l risk ca

pita

l incre

ase

s b

y n

o m

ore

than

the

portfo

lio’s

ow

n risk

cap

ital: in

all fa

irness, th

at p

ortfo

lio ca

nn

ot ju

stifiab

ly b

e

allo

cate

d m

ore

risk ca

pita

l than

it can

possib

ly h

ave

bro

ug

ht to

the

firm

. Th

e p

rop

erty

also

en

sure

s that co

alitio

ns o

f portfo

lios

cann

ot u

nd

ercu

t, with

the

sam

e ra

tion

ale

. Th

e sy

mm

etry

pro

perty

en

sure

s th

at a

portfo

lio’s

allo

catio

n d

ep

en

ds o

nly

on

its

con

tribu

tion

to risk

with

in th

e fi

rm, a

nd

noth

ing

else

. Acco

rdin

g to

the

riskless a

lloca

tion

axio

m, a

riskless p

ortfo

lio sh

ou

ld b

e

allo

cate

d e

xactly

its risk m

easu

re, w

hich

incid

enta

lly w

ill be n

eg

ativ

e. It a

lso m

ean

s that, a

ll oth

er th

ing

s bein

g e

qual, a

portfo

lio

that in

crease

s its cash

positio

n, sh

ould

see its a

lloca

ted

cap

ital d

ecre

ase

by th

e sa

me a

mou

nt.

Gam

e th

eory

an

d a

lloca

tion

to a

tom

ic pla

yers

Gam

e th

eory

is th

e stu

dy

of situ

atio

ns w

here

pla

yers

ad

op

t vario

us stra

teg

ies to

best a

ttain

their in

div

idu

al g

oals. Fo

r now

,

pla

yers w

ill be a

tom

ic, mean

ing

that fra

ction

s of p

layers a

re co

nsid

ere

d se

nse

less. W

e w

ill focu

s here

on co

alitio

nal g

am

es:

Defin

ition

4 A

coalitio

nal g

am

e (N

, c) con

sists of:

%•

a fi

nite

set N

of n

pla

yers, a

nd

%•

a co

st fun

ction

c that a

ssocia

tes a

real n

um

ber c(S

) to e

ach

sub

set S

of N

(calle

d a

coalitio

n).

We d

en

ote

by G

the se

t of g

am

es w

ith n

pla

yers.

Th

e g

oal o

f each

pla

yer is to

min

imize

the co

st she in

curs, a

nd

her stra

teg

ies co

nsist o

f acce

ptin

g o

r not to

take

part in

coalitio

ns

(inclu

din

g th

e co

alitio

n o

f all p

layers).

Page 9: Alocaton Of Risk Capital

In th

e lite

ratu

re, th

e co

st fun

ction

is usu

ally

assu

med

to b

e su

bad

ditiv

e: c(S

∪ T

) ≤ c(S

)+ c(T

) for a

ll sub

sets

S a

nd

T o

f N

with

em

pty

inte

rsectio

n; a

n a

ssum

ptio

n w

hich

we m

ake

as w

ell.

One o

f the m

ain

qu

estio

ns ta

ckled

in co

alitio

nal g

am

es, is th

e a

lloca

tion

of th

e co

st c(N) b

etw

een

all p

layers; th

is qu

estio

n is

form

alize

d b

y th

e co

nce

pt o

f valu

e:

Defin

ition

5 A

valu

e is a

fun

ction Φ

: G R

n th

at m

ap

s each

gam

e (N

, c)

into

a u

niq

ue a

lloca

tion

:

Φ1(N

, c) K1

Φ:(N

, c)

−→

Φ2(N

, c) . . .

=

K2

. . .

Page 10: Alocaton Of Risk Capital

where

Ki =

c(N)

i∈N

Φn(N

, c) Kn

Ag

ain

, the

Ki–n

ota

tion

can

be

use

d w

hen

the

arg

um

en

ts are

clear fro

m th

e co

nte

xt, a

nd

when

it is also

clear w

heth

er w

e m

ean

Πi(N

, ρ)o

rΦi(N

, c).

4.1

The co

re o

f a g

am

e

Giv

en

the

sub

ad

ditiv

ity o

f c, the

pla

yers

of a

gam

e h

ave

an

ince

ntiv

e to

form

the

larg

est co

alitio

n N

, since

this

brin

gs a

n

imp

rovem

en

t of th

e to

tal co

st, wh

en

com

pare

d w

ith th

e su

m o

f their in

div

idu

al co

sts. Th

ey n

eed

on

ly fi

nd

a w

ay to

allo

cate

the

cost c(N

) of th

e fu

ll coalitio

n N

, betw

een

them

selv

es; b

ut in

doin

g so

, pla

yers still try

to m

inim

ize th

eir o

wn

share

of th

e b

urd

en

.

Pla

yer i w

ill even

thre

ate

n to

leave th

e co

alitio

n N

if she is a

lloca

ted

a sh

are

Ki o

f the to

tal co

st

that is h

igh

er th

at h

er o

wn

ind

ivid

ual co

st c( i

). Sim

ilar th

reats m

ay co

me fro

m co

alitio

ns S

⊆ N

:if Ki e

xceed

s c(S) th

en

every

pla

yer i in

S co

uld

i∈S

carry

an

allo

cate

d co

st low

er th

an

his cu

rren

t Ki,if S

sep

ara

ted

from

N.

Th

e se

t of a

lloca

tions th

at d

o n

ot a

llow

such

thre

at fro

m a

ny p

layer n

or co

alitio

n is ca

lled

the co

re:

Defin

ition

6 T

he co

re o

f a co

alitio

nal g

am

e (N

, c) is the se

t of a

lloca

tion

s

K ∈

Rn

for w

hich

i∈S

Ki ≤

c(S) fo

r all co

alitio

ns S

⊆ N

.

A co

nd

ition

for th

e co

re to

be

non-e

mp

ty is

the

Bond

are

va-S

hap

ley

theore

m. Le

t C b

e th

e se

t of a

ll coalitio

ns o

f N, le

t us

den

ote

by 1

S ∈

Rn

the ch

ara

cteristic v

ecto

r of th

e co

alitio

n S

:

(1S

) i = 1

if i ∈ S

0 o

therw

ise

A b

ala

nce

d co

llectio

n o

f weig

hts is a

colle

ction

of |C

that S

∈C

λS

1S

=1

N . A

gam

e is b

ala

nce

d if S

∈C

λS

c(S) ≥

c(N) fo

r all b

ala

nce

d

Page 11: Alocaton Of Risk Capital

colle

ction

s of w

eig

hts. T

hen

:

| nu

mb

ers λ

S in

[0, 1

] such

Th

eore

m 1

(Bon

dare

va-S

hap

ley, [1

1], [2

9]) A

coalitio

nal g

am

e h

as a

non

-em

pty

core

if an

d o

nly

if it is bala

nce

d.

Pro

of: se

e e

.g. [2

1].

4.2

The S

hap

ley v

alu

e

Th

e S

hap

ley v

alu

e w

as in

trod

uce

d b

y L. S

hap

ley [2

8] a

nd

has e

ver sin

ce re

ceiv

ed

a co

nsid

era

ble

am

ou

nt o

f inte

rest (se

e [2

4]).

We u

se th

e a

bb

revia

tion

∆i(S

)= c(S

∪ i) −

c(S) fo

r an

y se

t S ⊂

N, i

S. Tw

o p

layers i a

nd

j are

inte

rchan

geab

le in

(N, c) if e

ither o

ne

make

s the

sam

e co

ntrib

utio

n to

an

y co

alitio

n S

it may jo

in, th

at

con

tain

s neith

er i n

or j:∆

i(S)=

∆j (S

) for e

ach

S ⊂

N a

nd

i, j ∈ S

. A p

layer i is a

du

mm

y if it

brin

gs th

e co

ntrib

utio

n c(i) to

an

y co

alitio

n S

that d

oes n

ot co

nta

in it a

lread

y: ∆i(S

)= c(i). W

e n

eed

to d

efin

e th

e th

ree p

rop

ertie

s:

Sym

metry

If pla

yers i a

nd

j are

inte

rchan

geab

le, th

en

Φ(N

, c) i =Φ

(N, c) j

Du

mm

y p

layer Fo

r a d

um

my p

layer, Φ

(N, c) i =

c(i)

Ad

ditiv

ity o

ver g

am

es Fo

r two g

am

es (N

, c1) a

nd

(N, c

2), Φ(N

, c1

+ c

2)=

Φ(N

, c1)+

Φ(N

, c2), w

here

the g

am

e (N

, c1+

c2) is d

efin

ed

by (c

1+c

2)(S)=

c1(S

)+ c

2(S) fo

r all S

⊆ N

.

Th

e ra

tionale

of th

ese

pro

pertie

s will b

e d

iscusse

d in

the n

ext se

ction

. Th

e a

xio

matic d

efin

ition

of th

e S

hap

ley v

alu

e is th

en

:

Page 12: Alocaton Of Risk Capital

Defin

ition

7 ([2

8]) T

he

Sh

ap

ley v

alu

e is th

e o

nly

valu

e th

at sa

tisfies th

e p

rop

ertie

s of sy

mm

etry, d

um

my

pla

yer, a

nd

ad

ditiv

ity

over g

am

es.

Let u

s now

brin

g to

geth

er th

e co

re a

nd

the S

hap

ley v

alu

e: w

hen

does th

e S

hap

ley v

alu

e y

ield

allo

catio

ns th

at a

re in

the co

re

of th

e g

am

e ?

Th

e o

nly

perta

inin

g re

sults

to o

ur kn

ow

led

ge

are

that o

f Sh

ap

ley

[30

] an

d A

ub

in [5

]. Th

e fo

rmer in

volv

es th

e

pro

perty

of stro

ng

sub

ad

ditiv

ity:

Defin

ition

8 A

coalitio

nal g

am

e is stro

ng

ly su

bad

ditiv

e if it is b

ase

d o

n a

stron

gly

sub

ad

ditiv

e3

cost fu

nctio

n:

c(S)+

c(T) ≥

c(S ∪

T )+

c(S ∩

T )

for a

ll coalitio

ns S

⊆N

and

T ⊆

N.

Th

eore

m 2

([30

]) If a g

am

e (N

, c) is stron

gly

sub

ad

ditiv

e, its co

re co

nta

ins th

e S

hap

ley v

alu

e.

Th

e se

con

d co

nd

ition

that e

nsu

res th

at th

e S

hap

ley v

alu

e is in

the co

re, is:

Th

eore

m 3

([5]) If fo

r all co

alitio

ns S

, | S|≥

2,

(−1

) | S|−

| T | c(T

) ≤ 0

T ⊆

S

then

the co

re co

nta

ins th

e S

hap

ley v

alu

e.

Th

e im

plica

tion

s of th

ese

two re

sults a

re d

iscusse

d in

the n

ext se

ction

.

Let u

s en

d th

is sectio

n w

ith th

e a

lgeb

raic d

efin

ition

of th

e S

hap

ley v

alu

e, w

hich

pro

vid

es b

oth

an

inte

rpre

tatio

n (se

e [2

8] o

r

[24

]), an

d a

n e

xp

licit com

puta

tion

al a

pp

roach

.

Defin

ition

9 T

he S

hap

ley v

alu

e K

Sh

for th

e g

am

e (N

, c) is defi

ned

as:

Page 13: Alocaton Of Risk Capital

KS

h ( s −

1)!(

n

s )!

,i ∈N

=

i

n! c (S

) −c(S

\i

)

S∈

Ci

where

s = S

, and

Ci re

pre

sents a

ll coalitio

ns o

f N th

at co

nta

in i.

||

Note

that th

is req

uire

s the e

valu

atio

n o

f c fo

r each

of th

e 2

n p

ossib

le co

alitio

ns, u

nle

ss the p

rob

lem

has so

me sp

ecifi

c structu

re.

Dep

en

din

g o

n w

hat c is, th

is task m

ay b

eco

me im

possib

ly lo

ng

, even

for m

od

era

te n

.

3By d

efin

ition, a

strong

ly su

bad

ditiv

e se

t functio

n is su

bad

ditiv

e. W

e fo

llow

Shap

ley [3

0] in

ou

r term

inolo

gy; n

ote

that h

e ca

lls con

vex, a

functio

n sa

tisfyin

g

the re

verse

rela

tion

of stro

ng su

bad

ditiv

ity.

4.3

Risk ca

pita

l allo

catio

ns a

nd g

am

es

Cle

arly

, we

inte

nd

to m

od

el risk

cap

ital a

lloca

tion

pro

ble

ms a

s coalitio

nal g

am

es. W

e ca

n a

ssocia

te th

e p

ortfo

lios o

f a fi

rm w

ith

the p

layers o

f a g

am

e, a

nd

the risk m

easu

re ρ

with

the co

st fun

ction c :

c(S)

ρX

i for S

⊆N

(1)

i∈S

Allo

catio

n p

rincip

les n

atu

rally

beco

me v

alu

es.

Note

that g

iven

(1), ρ

bein

g co

here

nt a

nd

thu

s sub

ad

ditiv

e in

the se

nse

ρ(X

+ Y

) ≤ ρ

(X)+

ρ(Y

) of D

efin

ition

1, im

plie

s that c

is sub

ad

ditiv

e in

the se

nse

c(S ∪

T ) ≤

c(S)+

c(T ) g

iven

ab

ove.

Th

e co

re A

lloca

tion

s satisfy

ing

the “n

o u

nd

ercu

t” pro

perty

lie in

the co

re o

f the g

am

e, a

nd

if non

e d

oes, th

e co

re is e

mp

ty. There

Page 14: Alocaton Of Risk Capital

is only

a in

terp

reta

tion

al d

istinctio

n b

etw

een

the tw

o co

nce

pts: w

hile

a “re

al” p

layer ca

n th

reate

n to

leave th

e fu

ll coalitio

n N

, a

portfo

lio ca

nn

ot w

alk a

way fro

m a

bank. H

ow

ever, if th

e a

lloca

tion

is to b

e fa

ir, un

dercu

tting

shou

ld b

e a

void

ed

. Ag

ain

, this h

old

s

also

for co

alitio

ns o

f ind

ivid

ual p

layers/p

ortfo

lios.

Th

e n

on

-em

ptin

ess

of th

e co

re is

there

fore

crucia

l to th

e e

xiste

nce

of co

here

nt a

lloca

tion

prin

ciple

s. From

Theore

m 1

, we

have:

Th

eore

m 4

If a risk

cap

ital a

lloca

tion

pro

ble

m is m

od

elle

d a

s a co

alitio

nal g

am

e w

hose

cost fu

nctio

n c is d

efi

ned

with

a co

here

nt

risk measu

re ρ

thro

ug

h (1

), then its co

re is n

on

-em

pty.

Pro

of: Le

t 0 ≤

λS

≤1

for S

∈C

, and

λS1

S =

1N. T

hen

S

∈C

λS

c(S)=

ρλ

SXi i∈

S

S∈

C S

∈C

λSX

i

≥ ρ

i∈S

S∈

C

= ρ

λS X

i

i∈N

S∈

C,S

i

= c(N

)

By T

heore

m 1

, the

core

of th

e g

am

e is n

on

-em

pty.

Th

e S

hap

ley v

alu

e W

ith th

e a

lloca

tion

pro

ble

m m

od

elle

d a

s a g

am

e, th

e

Sh

ap

ley v

alu

e y

ield

s a risk

cap

ital a

lloca

tion

prin

ciple

. Much

more

, it is a co

here

nt a

lloca

tion

prin

ciple

, bu

t for th

e “n

o u

nd

ercu

t”

axio

m. S

ym

metry

is satisfi

ed

by d

efin

ition

. Th

e riskle

ss allo

catio

n a

xio

m o

f Definitio

n 3

is imp

lied

by th

e d

um

my p

layer a

xio

m:

Page 15: Alocaton Of Risk Capital

from

ou

r defin

ition

s of se

ction 3

, the re

fere

nce

, riskless in

strum

ent (ca

sh a

nd

eq

uiv

ale

nts) is a

du

mm

y p

layer.

Note

that a

dd

itivity

over g

am

es is a

pro

perty

that th

e S

hap

ley v

alu

e p

osse

sses b

ut th

at is n

ot re

qu

ired

of co

here

nt a

lloca

tion

prin

ciple

. As d

iscusse

d in

sectio

n 5

.3.2

, ad

ditiv

ity co

nflicts w

ith th

e co

here

nce

of th

e risk m

easu

res.

Th

e S

hap

ley

valu

e a

s co

here

nt a

lloca

tion

prin

ciple

From

the

ab

ove, th

e S

hap

ley

valu

e p

rovid

es u

s w

ith a

cohere

nt a

lloca

tion

prin

ciple

if it map

s gam

es to

ele

men

ts of th

e co

re. It is th

e ca

se w

hen

the co

nd

ition

s of e

ither T

heore

ms 2

or 3

are

satisfi

ed

. Th

e

case

of T

heore

m 2

is perh

ap

s disa

pp

oin

ting

, as th

e stro

ng

sub

ad

ditiv

ity o

f c imp

lies a

n o

verly

string

en

t con

ditio

n o

n ρ

:

Th

eore

m 5

Let ρ

be

a p

ositiv

ely

hom

og

eneou

s risk

measu

re, su

ch th

at ρ

(0) =

0. Le

t c b

e d

efi

ned

over th

e se

t of su

bse

ts o

f

ran

dom

varia

ble

s in L

∞, thro

ug

h

c(S)

ρ ( i∈

S X

i). Th

en

if c is stron

gly

sub

ad

ditiv

e, ρ

is linear.

Pro

of: C

on

sider a

ny ra

nd

om

varia

ble

s X, Y, Z

in L

∞. Th

e stro

ng

sub

ad

ditiv

ity o

f c imp

lies

ρ(X

+ Z

)+ ρ

(Y +

Z) ≥

ρ(X

+ Y

+ Z

)+ ρ

(Z) b

ut a

lso

ρ(X

+ Z

)+ ρ

(Y +

Z)=

ρ(X

+(Y

+ Z

) − Y

)+ ρ

(Y +

Z)

ρ(X

+(Y

+ Z

)) + ρ

((Y +

Z) −

Y )

= ρ

(X +

Y +

Z)+

ρ(Z

)

so th

at

ρ(X

+ Z

)+ ρ

(Y +

Z)=

ρ(X

+ Y

+ Z

)+ ρ

(Z)

By ta

king

Z =

0, w

e o

bta

in th

e a

dd

itivity

of ρ

. Th

en

, com

bin

ing

Page 16: Alocaton Of Risk Capital

ρ(−

X)=

ρ(X

− X

) − ρ

(X)=

−ρ

(X)

12

with

the p

ositiv

e h

om

og

en

eity

of ρ

, we o

bta

in th

at ρ

is hom

og

eneou

s, an

d th

us lin

ear.

Th

at risks b

e p

lain

ly a

dd

itive is d

ifficu

lt to a

ccep

t, since

it elim

inate

s all p

ossib

ility o

f div

ersifi

catio

n e

ffects.

Un

fortu

nate

ly, th

e co

nd

ition

of T

heore

m 3

is a

lso a

strong

on

e, a

t least in

no

way

imp

lied

by

the

coh

ere

nce

of th

e risk

measu

re ρ

.

We

thu

s fall sh

ort o

f a co

nvin

cing

pro

of o

f the

existe

nce

of co

here

nt a

lloca

tion

s. How

ever, w

e co

nsid

er n

ext a

n o

ther ty

pe

of

coalitio

nal g

am

es, w

here

an

sligh

tly d

iffere

nt d

efin

ition

of co

here

nce

yie

lds m

uch

stron

ger e

xiste

nce

resu

lts.

5 A

lloca

tion

to fra

ction

al p

layers

In th

e p

revio

us se

ction

, portfo

lios w

ere

mod

elle

d a

s pla

yers o

f a g

am

e, e

ach

of th

em

ind

ivisib

le. T

his in

div

isibility

assu

mp

tion

is

not a

natu

ral o

ne, a

s we co

uld

con

sider fra

ction

s of p

ortfo

lios, a

s well a

s coalitio

ns in

volv

ing

fractio

ns o

f portfo

lios. T

he p

urp

ose

of th

is sectio

n is to

exam

ine a

varia

nt o

f the a

lloca

tion g

am

e w

hich

allo

ws d

ivisib

le p

layers.

Th

is tim

e, w

e d

ispen

se w

ith th

e in

itial se

para

tion

of risk-ca

pita

l allo

catio

n p

rob

lem

s a

nd

gam

es, a

nd

intro

duce

the

two

simulta

neou

sly. As b

efo

re, p

layers a

nd

cost fu

nctio

ns a

re u

sed

to m

od

el re

spectiv

ely

portfo

lios a

nd

risk m

easu

res, a

nd

valu

es

giv

e u

s allo

catio

n p

rincip

les.

5.1

Gam

es w

ith fra

ction

al p

layers

Th

e th

eory

of co

alitio

nal g

am

es h

as b

een

exte

nd

ed

to co

ntin

uou

s pla

yers w

ho n

eed

neith

er b

e in

nor o

ut o

f a co

alitio

n, b

ut w

ho

have

a “sca

lab

le” p

rese

nce

. Th

is poin

t of v

iew

seem

s mu

ch le

ss inco

ng

ruou

s if the

pla

yers in

qu

estio

n re

pre

sen

t portfo

lios: a

Page 17: Alocaton Of Risk Capital

coalitio

n co

uld

con

sist of six

ty p

erce

nt o

f portfo

lio A

, an

d fi

fty p

erce

nt o

f portfo

lio B

. Of co

urse

, this m

eans “x

perce

nt o

f each

instru

men

t in th

e p

ortfo

lio”.

Au

man

n a

nd

Sh

ap

ley’s b

ook “V

alu

es o

f Non

-Ato

mic G

am

es” [7

] was th

e se

min

al w

ork o

n th

e g

am

e co

nce

pts d

iscusse

d in

this

sectio

n. T

here

, the

inte

rval [0

, 1] re

pre

sents th

e se

t of a

ll pla

yers, a

nd

coalitio

ns a

re m

easu

rab

le su

bin

terv

als (in

fact, e

lem

en

ts

of a

σ-a

lgeb

ra). A

ny su

bin

terv

al co

nta

ins o

ne o

f smalle

r measu

re, so

that th

ere

are

no

ato

ms, i.e

. smalle

st en

tities th

at co

uld

be

calle

d p

layers; h

en

ce th

e n

am

e “n

on

-ato

mic g

am

es”.

Som

e o

f the n

on

-ato

mic g

am

e th

eory

was la

ter re

cast in

a m

ore

intu

itive se

tting

: an

n-d

imensio

nal v

ecto

r λ ∈

Rn

+ re

pre

sen

ts the “le

vel o

f pre

sen

ce” o

f the e

ach

of n

pla

yers in

a co

alitio

n. T

he o

rigin

al p

ap

ers

on

the to

pic a

re A

ub

in’s

[5] a

nd

[6], B

illera

an

d R

aan

an

’s [10

], Bille

ra a

nd

Heath

’s [9], a

nd

Mirm

an a

nd

Tau

man

’s [18

].

Au

bin

calle

d su

ch g

am

es fu

zzy; w

e ca

ll them

(coalitio

nal) g

am

es w

ith fra

ction

al p

layers:

Defin

ition

10

A co

alitio

nal g

am

e w

ith fra

ctional p

layers (N

, Λ, r) co

nsists o

f

• a

fin

ite se

t N o

f pla

yers, w

ith | N

= n

;

|

1.

• a

positiv

e v

ecto

r Λ ∈

Rn

2.

+, e

ach

com

pon

en

t rep

rese

ntin

g fo

r on

e o

f the n

pla

yers h

is full in

volv

em

ent.

%• a

real-v

alu

ed

cost fu

nctio

n r : R

n R

, r : λr(λ

) such

that r(0

) = 0

.

Page 18: Alocaton Of Risk Capital

Pla

yers a

re p

ortfo

lios; th

e v

ecto

r Λ re

pre

sents, fo

r each

portfo

lio, th

e “size

” of th

e p

ortfo

lio, in

a re

fere

nce

unit. (T

he Λ

could

also

rep

rese

nt th

e b

usin

ess v

olu

mes o

f the b

usin

ess u

nits). T

he ra

tio λ

i then

den

ote

s a p

rese

nce

or a

ctivity

Λi

level, fo

r pla

yer/p

ortfo

lio i, so

that a

vecto

r λ ∈

Rn

+ ca

n b

e u

sed

to re

pre

sen

t

a “co

alitio

n o

f parts o

f pla

yers”. W

e still d

en

ote

by X

i the ra

nd

om

varia

ble

of th

e n

et w

orth

of p

ortfo

lio i a

t a fu

ture

time

T ), a

nd

Xn

keep

s its riskless in

strum

en

t defin

ition

of se

ction

3, w

ith tim

e T

net w

orth

eq

ual to

αrf , w

ith α

som

e co

nsta

nt. T

hen

the

cost

fun

ction

r can b

e id

en

tified

with

a risk m

easu

re ρ

thro

ug

h

λi r(λ

)

ρ Λ

i Xi

i∈N

so th

at r(Λ

) = ρ

(N ). B

y e

xte

nsio

n, w

e a

lso ca

ll r(λ) a

risk measu

re. T

he e

xp

ressio

n X

i is the p

er-u

nit fu

ture

net w

orth

of p

ortfo

lio i.

Λi

Th

e d

efinitio

n o

f coh

ere

nt risk m

easu

re (D

efin

ition

1) is a

dap

ted

as:

Defin

ition

11

A risk m

easu

re r is co

here

nt if it sa

tisfies th

e fo

ur p

rop

ertie

s: Su

bad

ditiv

ity4

For a

ll λ∗

and

λ∗

∗ in

Rn

, r(λ∗

+ λ

∗∗) ≤

r(λ∗)+

r(λ∗

∗) M

on

oto

nicity

For a

ll λ∗

and

λ∗

∗ in

Rn

,

λ∗

λ∗

Λii X

i i

Λi X

i

≤⇒

i∈

Ni∈

N

r(λ∗) ≥

r(λ∗

∗)

where

the le

ft-han

d sid

e in

eq

uality

is ag

ain

un

dersto

od

as in

footn

ote

2. D

eg

ree o

ne h

om

og

en

eity

For a

ll λ ∈

Rn, a

nd

for a

ll

γ ∈

R+,

Page 19: Alocaton Of Risk Capital

r(γλ)=

γr(λ

)

Transla

tion

invaria

nce

For a

ll λ ∈

Rn

,

r(λ)=

r

λ1

λ2

. . .

λn

−1

0

λn

Λn

α

One ca

n ch

eck th

at r is co

here

nt if a

nd

only

if ρ is.

5.2

Coh

ere

nt co

st allo

catio

n to

fractio

nal p

layers

Page 20: Alocaton Of Risk Capital

Th

e p

ortfo

lio size

s g

iven

by

Λ a

llow

us

to tre

at a

lloca

tion

s o

n a

per-u

nit

basis. W

e th

us

intro

du

ce a

vecto

r k

∈ R

n, each

com

ponen

t of w

hich

rep

rese

nts th

e p

er u

nit a

lloca

tion

of risk

cap

ital to

each

portfo

lio. T

he

cap

ital a

lloca

ted

to e

ach

portfo

lio is

ob

tain

ed

by a

simp

le H

ad

am

ard

(i.e. co

mp

on

en

t-wise

) pro

du

ct

Λ .∗

k = K

(2)

Let u

s also

defin

e, in

a m

an

ner e

qu

ivale

nt to

the co

nce

pts o

f sectio

n 4

:

4Note

that u

nder d

eg

ree o

ne h

om

og

en

eity

, sub

add

itivity

is eq

uiv

ale

nt to

convexity

r(αλ

∗ +

(1 −

α)λ

∗∗) ≤

αr(λ

∗)+

(1 −

α)r(λ

∗∗)

Defin

ition

12

A fu

zzy v

alu

e is a

map

pin

g a

ssign

ing

to e

ach

coalitio

nal g

am

e w

ith fra

ction

al p

layers (N

, Λ, r) a

un

iqu

e p

er-u

nit

allo

catio

n v

ecto

r

φ1(N

, Λ,r) k

1

φ :(N

, Λ,r)

−→

φ2(N

, Λ,r)

. . .

=

Page 21: Alocaton Of Risk Capital

k2

. . .

φn(N

, Λ,r) k

n

with

Λtk =

r(Λ)

(3)

Ag

ain

, we u

se th

e k-n

ota

tion

when

the a

rgu

men

ts are

clear fro

m th

e co

nte

xt.

Cle

arly

, a fu

zzy v

alu

e p

rovid

es u

s with

an

allo

catio

n p

rincip

le, if w

e g

en

era

lize th

e la

tter to

the co

nte

xt o

f div

isible

portfo

lios.

We ca

n n

ow

define th

e co

here

nce

of fu

zzy v

alu

es:

Defin

ition

13

Let r b

e a

coh

ere

nt risk m

easu

re. A

fuzzy

valu

e φ

:(N, Λ

,r) −→

k ∈ R

n

is coh

ere

nt if it sa

tisfies th

e p

rop

ertie

s defi

ned

belo

w, a

nd

if k is an

ele

men

t of th

e fu

zzy co

re:

•A

gg

reg

atio

n in

varia

nce

Su

pp

ose

the risk m

easu

res r a

nd

r¯satisfy

r(λ)=

¯

r(Γλ) fo

r som

e m

× n m

atrix

Γ and

all λ

such

that 0

≤ λ

≤ Λ

then

φ(N

, Λ,r)=

Γtφ

(N, ΓΛ

,r¯)(4

)

1.

•C

on

tinu

ity T

he m

ap

pin

g φ

is contin

uou

s over th

e n

orm

ed

vecto

r space

Mn

of co

ntin

uou

sly d

iffere

ntia

ble

fun

ction

s r

: Rn

2.

+ −

→ R

that v

an

ish a

t the o

rigin

.

Page 22: Alocaton Of Risk Capital

%•

Non

-neg

ativ

ity u

nd

er r n

on

-decre

asin

g5

If r is non

-decre

asin

g, in

the se

nse

that r(λ

) ≤ r(λ

∗) w

hen

ever 0

≤ λ

≤ λ

≤ Λ

, then

φ(N

, Λ,r) ≥

0(5

)

5Calle

d m

on

oto

nicity

by so

me a

uth

ors.

• D

um

my p

layer a

lloca

tion

If i is a d

um

my p

layer, in

the se

nse

that

r(λ) −

r(λ∗)=

(λi −

λ∗

i ) ρ(X

i) Λi

when

ever 0

≤ λ

≤ Λ

and

λ∗

= λ

exce

pt in

the i th

com

ponen

t, then

ki =

ρ(X

i) (6)Λ

i

•Fu

zzy co

re T

he a

lloca

tion

φ(N

, Λ,r) b

elo

ng

s to th

e fu

zzy co

re o

f the g

am

e (N

, Λ,r) if fo

r all λ

such

that 0

≤ λ

≤ Λ

,

λtφ

(N, Λ

,r) ≤ r(λ

)(7

)

as w

ell a

s Λtφ

(N, Λ

,r)= r(Λ

).

Th

e p

rop

ertie

s req

uire

d o

f a co

here

nt fu

zzy v

alu

e ca

n b

e ju

stified

esse

ntia

lly in

the sa

me m

ann

er a

s was d

on

e in

Defin

ition

3.

Ag

gre

gatio

n in

varia

nce

is a

kin to

the

sym

metry

pro

perty: e

qu

ivale

nt risks

shou

ld re

ceiv

e e

qu

ivale

nt a

lloca

tion

s. Con

tinu

ity is

desira

ble

to e

nsu

re th

at sim

ilar risk

measu

res y

ield

simila

r allo

catio

ns. N

on-n

eg

ativ

ity u

nd

er n

on-d

ecre

asin

g risk

measu

res is a

natu

ral re

qu

irem

en

t to e

nfo

rce th

at “m

ore

risk” imp

ly “m

ore

allo

catio

n”. Th

e d

um

my

pla

yer p

rop

erty

is the

eq

uiv

ale

nt o

f the

riskless a

lloca

tion

of D

efin

ition

3, a

nd

is nece

ssary

to g

ive “risk

cap

ital” th

e se

nse

we g

ave it in

sectio

n 2

: an

am

ou

nt o

f riskless

instru

men

t nece

ssary

to m

ake

a p

ortfo

lio a

ccep

tab

le, riskw

ise. Fin

ally

, note

that th

e fu

zzy co

re is

a sim

ple

exte

nsio

n o

f the

con

cep

t of co

re: a

lloca

tion

s ob

tain

ed

from

the fu

zzy co

re th

roug

h (2

) allo

w n

o u

nd

ercu

t from

any p

layer, co

alitio

n o

f pla

yers, n

or

Page 23: Alocaton Of Risk Capital

coalitio

n w

ith fra

ction

al p

layers. S

uch

allo

catio

ns a

re fa

ir, in th

e sa

me

sense

that co

re e

lem

en

t were

con

sidere

d fa

ir in se

ction

4.3

. Much

less

is kn

ow

n a

bou

t this

allo

catio

n p

rob

lem

than

is kn

ow

n a

bou

t the

simila

r pro

ble

m d

escrib

ed

in se

ction

4. O

n th

e

oth

er h

an

d, o

ne so

lutio

n co

nce

pt h

as b

een

well in

vestig

ate

d: th

e A

um

an

n-S

hap

ley p

ricing

prin

ciple

.

5.3

The A

um

ann-S

haple

y V

alu

e

Au

man

n a

nd

Sh

ap

ley e

xte

nd

ed

the co

nce

pt o

f Shap

ley v

alu

e to

non

-ato

mic g

am

es, in

their o

rigin

al b

ook [7

]. The re

sult w

as

calle

d th

e A

um

an

n-S

hap

ley v

alu

e, a

nd

was la

ter re

cast in

the co

nte

xt o

f fractio

nal p

layers g

am

es, w

here

it is defin

ed

as:

1

φA

S (N

, Λ,r)=

kA

S =

∂r (γΛ

) dγ (8

)

ii

∂λi fo

r pla

yer i o

f N. T

he p

er-u

nit co

st kA

S is th

us a

n a

vera

ge o

f the m

arg

inal

0

i costs o

f the i th

portfo

lio, a

s the le

vel o

f activ

ity o

r volu

me in

crease

s un

iform

ly fo

r all p

ortfo

lios

from

0 to

Λ. T

he v

alu

e h

as a

simp

ler e

xp

ressio

n, g

iven

ou

r assu

med

coh

ere

nce

of th

e risk m

easu

re r; in

deed

, consid

er th

e re

sult

from

stan

dard

calcu

lus:

Lem

ma 1

If f is a k–h

om

og

en

eous fu

nctio

n, i.e

. f(γx)=

γk f(x

), then

∂f (x)

∂xi

is (k − 1

)-hom

og

eneou

s.

As a

resu

lt, since

r is 1–h

om

og

en

eou

s,

φA

S

Page 24: Alocaton Of Risk Capital

(N, Λ

,r)= k

AS

= ∂r(Λ

) (9)

ii

∂λi a

nd

the p

er-u

nit a

lloca

tion

vecto

r is the g

rad

ient o

f the m

ap

pin

g r e

valu

ate

d a

t the

full p

rese

nce

level Λ

: φ(N

, Λ,r) A

S =

kA

S =

∇r(Λ

) (10

)

We ca

ll this g

rad

ien

t “Au

man

n-S

hap

ley p

er-u

nit a

lloca

tion”, o

r simp

ly “A

u-m

an

n-S

hap

ley p

rices”. T

he a

mou

nt o

f risk cap

ital

allo

cate

d to

each

portfo

lio is th

en g

iven

by th

e co

mp

on

en

ts of th

e v

ecto

r

KA

S =

kA

S .(1

1)

∗ Λ

5.3

.1 A

xio

matic ch

ara

cteriza

tion

s of th

e A

um

an

n-S

hap

ley v

alu

e

As in

the S

hap

ley v

alu

e ca

se, a

chara

cteriza

tion

con

sists of a

set o

f pro

pertie

s, wh

ich u

niq

uely

defin

e th

e A

um

an

n-S

hap

ley

valu

e. M

an

y ch

ara

cteriza

tion

s exist (se

e Ta

um

an

[32

]); we co

nce

ntra

te h

ere

on

that o

f Aub

in [5

] an

d [6

], an

d B

illera

an

d H

eath

[9]. B

oth

chara

cteriza

tions a

re fo

r valu

es o

f gam

es w

ith fra

ction

al p

layers a

s defin

ed

ab

ove; o

nly

their a

ssum

ptio

ns o

n r d

iffer

from

ou

r assu

mp

tion

s: their co

st fun

ctions a

re ta

ken to

van

ish a

t zero

and

to b

e co

ntin

uou

sly d

iffere

ntia

ble

, bu

t are

not a

ssum

ed

coh

ere

nt. A

ub

in a

lso im

plicitly

assu

mes r to

be h

om

og

en

eou

s of d

eg

ree o

ne. Le

t us d

efin

e:

A fu

zzy v

alu

e φ

is linear if fo

r an

y tw

o g

am

es (N

,Λ, r

1) an

d (N

,Λ, r

2) an

d sca

lars

γ1

and

γ2, it is a

dd

itive

an

d 1

-hom

og

en

eou

s in

the risk m

easu

re: φ

(N, Λ

,γ1r

1 +

γ2r

2)= γ

1 φ

(N, Λ

,r1)+

γ2

φ(N

, Λ,r

2)

Th

en

, the fo

llow

ing

pro

pertie

s of a

fuzzy

valu

e a

re su

fficie

nt to

un

iqu

ely

defi

ne th

e A

um

an

n-S

hap

ley v

alu

e (8

):

Au

bin

’s B

illera

& H

eath

’s • lin

earity

• lin

earity

Page 25: Alocaton Of Risk Capital

• a

gg

reg

atio

n

invaria

nce

• a

gg

reg

atio

n in

varia

nce

• co

ntin

uity

• n

on

-neg

ativ

ity u

nd

er r n

on

d

ecre

asin

g

In fa

ct, both

Aubin

, and

Bille

ra a

nd

Heath

pro

ve

that th

e A

um

an

n-S

haple

y v

alu

e sa

tisfies

all fo

ur

pro

pertie

s in th

e ta

ble

above.

So, is th

e A

um

an

n-S

haple

y v

alu

e a

cohere

nt fu

zzy v

alu

e w

hen

r is a co

here

nt risk

measu

re ? N

ote

first

that th

e co

here

nce

of r im

plie

s its hom

ogeneity

, as w

ell a

s r(0) =

0. B

ein

g co

ntin

uously

diff

ere

ntia

ble

is not

auto

matic

how

ever;

let u

s a

ssum

e fo

r n

ow

that

r d

oes

have

contin

uou

s d

eriv

ativ

es. T

he

eventu

al

nond

iffere

ntia

bility

will b

e d

iscusse

d la

ter.

Cle

arly

, two

pro

pertie

s are

missin

g fro

m th

e se

t ab

ove

for φ

to q

ualify

as co

here

nt: th

e d

um

my

pla

yer

pro

perty

and

the

fuzzy

core

pro

perty. T

he

form

er ca

use

s n

o p

roble

m: g

iven

(9), th

e v

ery

meanin

g o

f a

du

mm

y p

layer in

Definitio

n 1

3 im

plie

s:

Lem

ma

2 W

hen

the

allo

catio

n p

roce

ss is base

d o

n a

coh

ere

nt risk

measu

re r, th

e A

um

ann

-Shaple

y p

rices

(9) sa

tisfy th

e d

um

my p

layer p

rop

erty.

Con

cern

ing th

e fu

zzy co

re p

rop

erty

, one v

ery

inte

restin

g re

sult o

f Aub

in is th

e fo

llow

ing:

Theore

m 6

([5]) T

he

fuzzy

core

(7) o

f a fu

zzy g

am

e (N

, r, Λ) w

ith p

ositiv

ely

hom

ogeneou

s r is equal to

the

sub

diff

ere

ntia

l ∂r(Λ) o

f r at Λ

.

As A

ubin

note

d, th

e th

eore

m h

as tw

o v

ery

importa

nt co

nse

quen

ces:

Theore

m 7

([5]) If th

e co

st functio

n r is co

nvex (a

s well a

s positiv

ely

hom

ogeneous), th

en

the fu

zzy co

re is

non-e

mp

ty, convex, a

nd

com

pact.

If furth

erm

ore

r is diff

ere

ntia

ble

at Λ

, then th

e co

re co

nsists o

f a sin

gle

vecto

r, the g

rad

ient ∇

r(Λ).

The d

irect co

nse

qu

ence

of th

is is the A

um

ann-S

hap

ley v

alu

e is in

deed a

cohere

nt fu

zzy v

alu

e, g

iven th

at

Page 26: Alocaton Of Risk Capital

5.3

.3 O

n th

e d

iffere

ntia

bility

req

uire

men

t

Con

cern

ing

the d

iffere

ntia

bility

of th

e risk

measu

res/co

st fun

ction

s, rece

nt re

sults a

re e

nco

ura

gin

g. Ta

sche [3

1] a

nd

Sca

illet [2

6]

giv

e co

nd

ition

s un

der w

hich

a co

here

nt risk

measu

re, th

e e

xp

ecte

d sh

ortfa

ll, is diff

ere

ntia

ble

. Th

e co

nd

ition

s are

rela

tively

mild

,

esp

ecia

lly in

com

pariso

n w

ith th

e te

mera

riou

s assu

mp

tion

s com

mon

in th

e a

rea

of risk

man

ag

em

en

t. Exp

licit first d

eriv

ativ

es

are

pro

vid

ed

, wh

ich h

ave

the

follo

win

g in

terp

reta

tion: th

ey

are

exp

ecta

tion

s o

f the

risk fa

cto

rs, cond

ition

ed

on

the

portfo

lio

valu

e b

ein

g b

elo

w a

certa

in q

uan

tile o

f its d

istribu

tion

. Th

is is

very

inte

restin

g: it sh

ow

s th

at w

hen

Au

man

n-S

hap

ley

valu

e is

use

d w

ith a

shortfa

ll risk measu

re, th

e re

sultin

g (co

here

nt) a

lloca

tion

is ag

ain

of a

shortfa

ll typ

e:

Ki =

E −

Xi | i X

i ≤ q

α

21

w

here

is a q

uantile

of th

e d

istribu

tion

of X

i.

i

Even

when

r is not d

iffere

ntia

ble

, som

eth

ing

can

ofte

n b

e sa

ved

. Ind

eed

, sup

pose

that r is n

ot d

iffere

ntia

ble

at Λ

, bu

t is the

sup

rem

um

of a

set o

f para

mete

rized

fun

ctions th

at a

re th

em

selv

es co

nvex, p

ositiv

ely

hom

og

en

eou

s an

d d

iffere

ntia

ble

at Λ

:

r(λ) =

sup

w(λ

,p) (1

2)

p∈

P

where

P is a

com

pact se

t of p

ara

mete

rs of th

e fu

nctio

ns w

, and

w(λ

,p) is u

pp

er se

mico

ntin

uou

s in p

. Th

en

Au

bin

[5] p

roved

:

Th

e fu

zzy co

re is th

e clo

sed

con

vex h

ull o

f all th

e v

alu

es φ

AS

(N,Λ

,w(Λ

,p)) o

f the fu

nctio

ns w

that a

re “a

ctive” a

t Λ, i.e

. that a

re

eq

ual to

r(Λ).

Th

us, sh

ou

ld (1

2) a

rise, —

wh

ich is n

ot u

nlike

ly, th

ink o

f Lag

ran

gia

n re

laxatio

n w

hen

r is defin

ed

by a

n o

ptim

izatio

n p

rob

lem

—, th

e a

bove re

sult p

rovid

es a

set o

f cohere

nt v

alu

es to

choose

from

.

Page 27: Alocaton Of Risk Capital

5.3

.4 A

ltern

ativ

e p

ath

s to th

e A

um

an

n-S

hap

ley v

alu

e

It is v

ery

inte

restin

g th

at th

e re

cen

t rep

ort o

f Tasch

e [3

1] co

mes fu

nd

am

enta

lly to

the

sam

e re

sult o

bta

ined

in th

is se

ction

,

nam

ely

that g

iven

som

e d

iffere

ntia

bility

con

ditio

ns o

n th

e risk

measu

re ρ

, the

corre

ct way

of a

lloca

ting

risk ca

pita

l is thro

ug

h

the A

um

an

n-S

hap

ley p

rices (9

). Tasch

e’s ju

stifica

tion

of th

is con

tentio

n is h

ow

ever co

mp

lete

ly d

iffere

nt; h

e d

efin

es a

s “suita

ble

”,

cap

ital a

lloca

tion

s su

ch th

at if th

e risk-a

dju

sted

retu

rn o

f a p

ortfo

lio is

“ab

ove

avera

ge”, th

en

, at le

ast lo

cally

, incre

asin

g th

e

share

of th

is portfo

lio im

pro

ves th

e o

vera

ll retu

rn o

f the fi

rm. N

ote

that th

e w

ork o

f Sch

mock a

nd

Stra

um

ann

[27

] poin

ts ag

ain

to

the

sam

e co

nclu

sion

. In th

e a

pp

roach

of [3

1] a

nd

[27

], the

Au

man

n-S

hap

ley p

rices a

re in

fact th

e u

niq

ue

satisfa

ctory

allo

catio

n

prin

ciple

.

Oth

ers im

porta

nt re

sults o

n th

e to

pic

inclu

de

that o

f Artzn

er a

nd

Ostro

y [4

], wh

o, w

orkin

g in

a n

on

-ato

mic

measu

re se

tting

,

pro

vid

e a

ltern

ativ

e ch

ara

cteriza

tion

s o

f diff

ere

ntia

bility

an

d su

bd

iffere

ntia

bility

, with

the

goal o

f esta

blish

ing

the

existe

nce

of

allo

catio

ns th

rou

gh, b

asica

lly, E

ule

r’s theore

m. S

ee a

lso th

e fo

rthco

min

g D

elb

aen

[13

].

On

Eu

ler’s

theore

m6, n

ote

also

that th

e fe

asib

ility (3

) of th

e a

lloca

tion

vecto

r follo

ws

dire

ctly fro

m it, a

nd

that o

ut o

f

con

sidera

tion

for th

is, som

e a

uth

ors h

ave

calle

d th

e a

lloca

tion

prin

ciple

(9) th

e E

ule

r prin

ciple

. See

for e

xam

ple

the

atta

chm

ent

to th

e re

port o

f Patrik, B

ern

eg

ger, a

nd

ueg

g [2

3], w

hich

pro

vid

es so

me p

rop

ertie

s of th

is prin

ciple

.

We

shall e

nd

this se

ction

by

dra

win

g th

e a

tten

tion

of th

e re

ad

er to

the

imp

orta

nce

of th

e co

here

nce

of th

e risk

measu

re ρ

(and

the r d

eriv

ed

from

it) for th

e a

lloca

tion

.

Th

e su

bad

ditiv

ity o

f the

risk m

easu

re: is a

nece

ssary

con

ditio

n fo

r the

existe

nce

of a

n a

lloca

tion

with

no

un

dercu

t, in b

oth

the

ato

mic a

nd

fractio

nal p

layers co

nte

xts.

Th

e h

om

og

en

eity

of th

e risk m

easu

re: e

nsu

res th

e sim

ple

form

(9) o

f the A

um

an

n-S

hap

ley p

rices.

Both

sub

ad

ditiv

ity a

nd

hom

og

en

eity: a

re u

sed

to p

rove

that th

e co

re in

non

-em

pty

(Th

eore

m 4

), in th

e a

tom

ic gam

e se

tting

. In

the

fuzzy

gam

e se

tting

, the

two

pro

pertie

s are

use

d to

show

that th

e A

um

ann

-Sh

ap

ley

valu

e is in

the

fuzzy

core

(un

der

Page 28: Alocaton Of Risk Capital

diff

ere

ntia

bility

). Th

ey a

re a

lso u

sed

in th

e n

on

-neg

ativ

ity p

roof o

f the a

pp

en

dix

.

Th

e riskle

ss pro

perty: is ce

ntra

l to th

e d

efin

ition

of th

e riskle

ss allo

catio

n (d

um

my p

layer) p

rop

erty.

Th

e n

on-n

eg

ativ

ity o

f the a

lloca

tion

Giv

en

our d

efin

ition

of risk

measu

re, a

portfo

lio m

ay w

ell h

ave a

neg

ativ

e risk

measu

re, w

ith th

e in

terp

reta

tion

that th

e p

ortfo

lio

is then sa

fer th

an

deem

ed

nece

ssary.

Sim

ilarly

, there

is no

justifi

catio

n p

er se

to e

nfo

rce th

at th

e risk

cap

ital a

lloca

ted

to a

portfo

lio b

e n

on

-neg

ativ

e; th

at is, th

e

allo

catio

n o

f a n

eg

ativ

e a

mou

nt d

oes n

ot p

ose

a co

nce

ptu

al p

rob

lem

. Un

fortu

nate

ly, in

the a

pp

licatio

n

6Wh

ich sta

tes th

at if F is a

real, n

–varia

ble

s, hom

og

en

eous fu

nctio

n o

f degre

e k, th

en

∂F ( x ) ∂F ( x ) ∂F ( x )

++

xn ∂x

n =

kF (x)

x1 ∂x

1 +

x2 ∂x

2

··· w

e w

ou

ld like

to m

ake

of th

e a

lloca

ted

cap

ital, n

on

-neg

ativ

ity is a

pro

ble

m. If

retu

rn

the a

moun

t is to b

e u

sed

in a

RA

PM

-typ

e q

uotie

nt

allo

cate

d ca

pita

l , n

eg

ativ

ity h

as

a ra

ther n

asty

dra

wb

ack, a

s a

portfo

lio w

ith a

n

allo

cate

d ca

pita

l slightly

belo

w ze

ro e

nd

s up

with

a n

eg

ativ

e risk-a

dju

sted

measu

re o

f larg

e m

ag

nitu

de, w

hose

inte

rpre

tatio

n is

less th

an

ob

vio

us. A

neg

ativ

e a

lloca

tion

is there

fore

not so

mu

ch a

con

cern

with

the a

lloca

tion

itself, th

an

with

the u

se w

e w

ou

ld

like to

make

of it.

A cro

ssed

-fin

gers, a

nd

perh

ap

s m

ost p

rag

matic

ap

pro

ach

, is to

assu

me

that th

e co

here

nt a

lloca

tion

is in

here

ntly

non-

neg

ativ

e. In

fact, o

ne

cou

ld re

aso

nab

ly e

xp

ect n

on

-neg

ativ

e a

lloca

tions to

be

the

norm

in re

al-life

situatio

ns. Fo

r ex

am

ple

,

Page 29: Alocaton Of Risk Capital

pro

vid

ed

no p

ortfo

lio o

f the fi

rm e

ver d

ecre

ase

s the risk m

easu

re w

hen

ad

ded

to a

ny su

bse

t of p

ortfo

lios o

f the fi

rm:

c(S ∪

i

) ≥c(S

) ∀S

⊆N

, ∀i ∈

N \ S

then

the

Shap

ley

valu

e is n

ece

ssarily

non

-neg

ativ

e. T

he

eq

uiv

ale

nt co

nd

ition

for th

e A

um

an

n-S

hap

ley p

rices is th

e p

rop

erty

of

non

-neg

ativ

ity u

nd

er n

on

-decre

asin

g r (e

qu

atio

n (5

)): if the a

nte

ced

en

t alw

ays h

old

s, the p

er-u

nit a

lloca

tion

s are

non

-neg

ativ

e.

An

oth

er a

pp

roach

wou

ld b

e to

en

force

non

-neg

ativ

ity b

y re

qu

iring

more

of th

e risk

measu

re. Fo

r exam

ple

, the

core

an

d th

e

non

-neg

ativ

ity o

f the

Ki’s fo

rm a

set o

f linear in

eq

ualitie

s (an

d o

ne

linear e

qu

ality

), so th

at th

e e

xiste

nce

of a

non-n

eg

ativ

e co

re

solu

tion

is eq

uiv

ale

nt to

the

existe

nce

of a

solu

tion

to a

linear sy

stem

. Sp

ecifi

cally

, a h

yp

erp

lan

e se

para

tion

arg

um

ent p

roves

that su

ch a

solu

tion

will e

xist if th

e fo

llow

ing

cond

ition

on

ρ h

old

s:

+,ρ

Xi m

in λ

iXi (1

3)∀

λ ∈

Rn

i∈N

λ

i≤

ρ i∈

N

i∈N

Th

e p

roof is g

iven

in a

dd

end

um

. Th

e co

nd

ition co

uld

be in

terp

rete

d a

s fol

low

s. First assu

me th

at ρ

i∈N

Xi >

0, w

hich

is reaso

nab

le, if w

e a

re in

deed

to a

lloca

te so

me risk

cap

ital. T

hen

(13

) says th

at th

ere

is no

positiv

e lin

ear co

mb

inatio

n o

f (each

an

d e

very

) portfo

lios, th

at ru

ns n

o risk. In

oth

er w

ord

s, a p

erfe

ctly h

ed

ged

portfo

lio

cann

ot b

e a

ttain

ed

by sim

ply

re-w

eig

htin

g th

e p

ortfo

lios, if a

ll portfo

lios a

re to

have

a p

ositiv

e w

eig

ht. H

ow

ever, u

nle

ss on

e is

willin

g to

imp

ose

such

a co

nd

ition

on

the

risk m

easu

re, th

e fa

ct is that th

e issu

e o

f the

non

-neg

ativ

ity re

main

s un

satisfa

ctorily

reso

lved

for th

e m

om

en

t.

Allo

catio

n w

ith a

n S

EC

-like risk m

easu

re

In th

is sectio

n, w

e p

rovid

e so

me e

xam

ple

s of a

pp

licatio

ns o

f the S

hap

ley a

nd

Au

man

n-S

hap

ley co

nce

pts to

a p

rob

lem

of m

arg

in

(i.e. risk ca

pita

l) allo

catio

n.

Page 30: Alocaton Of Risk Capital

Th

e risk

measu

re w

e u

se is

deriv

ed

from

the

Secu

rities a

nd

Exch

an

ge

Com

missio

n (S

EC

) rule

s fo

r marg

in re

quire

ments

(Reg

ula

tion

T), a

s describ

ed

in th

e N

atio

nal A

ssocia

tion

of S

ecu

rities D

eale

rs (NA

SD

) docu

men

t [19

]. Th

ese

rule

s are

use

d b

y

stock

exch

an

ges to

esta

blish

the m

arg

ins re

qu

ired

of th

eir m

em

bers, a

s gu

ara

nte

e a

gain

st the risk

that th

e m

em

bers’ p

ortfo

lios

involv

e (th

e C

hica

go B

oard

of O

ptio

ns E

xchan

ge

is one

such

exch

an

ge). T

he

rule

s them

selv

es a

re n

ot co

nstru

ctive, in

that th

ey

do n

ot sp

ecify

how

the m

arg

in sh

ould

be co

mp

ute

d; th

is com

pu

tatio

n is le

ft to e

ach

mem

ber o

f the e

xchan

ge, w

ho m

ust fi

nd

the

smalle

st marg

in co

mp

lyin

g w

ith th

e ru

les. R

ud

d a

nd

Sch

roed

er [2

5] p

roved

in 1

98

2 th

at a

linear o

ptim

izatio

n p

rob

lem

(L.P.)

mod

elle

d th

e ru

les a

deq

uate

ly, a

nd

was su

fficie

nt to

esta

blish

the

min

imu

m m

arg

in o

f a p

ortfo

lio, th

at is, to

evalu

ate

its risk

measu

re. It is

worth

men

tion

ing

that g

iven

this

L.P.-base

d risk

measu

re, th

e co

rresp

on

din

g co

alitio

nal g

am

e h

as b

een

calle

d

linear p

rod

uctio

n g

am

e b

y O

wen

[22

], see a

lso [1

0].

For th

e p

urp

ose

of th

e a

rticle, w

e re

strict the

risk m

easu

re to

simp

listic portfo

lios o

f calls o

n th

e sa

me

und

erly

ing

stock, a

nd

with

the sa

me e

xp

iratio

n d

ate

. This re

striction

of th

e S

EC

rule

s is take

n fro

m A

rtzner, D

elb

aen, E

ber a

nd

Heath

[3] w

ho u

se it a

s

an

exam

ple

of a

non

-cohere

nt risk

measu

re. In

the ca

se o

f a p

ortfo

lio o

f calls, th

e m

arg

in is ca

lcula

ted

thro

ug

h a

rep

rese

nta

tion

of th

e ca

lls by

a se

t of sp

read

op

tion

s, each

of w

hich

carry

ing

a fi

xed

marg

in. To

ob

tain

a co

here

nt m

easu

re o

f risk, we

pro

ve

late

r that it is su

fficie

nt to

rep

rese

nt th

e ca

lls by a

set o

f spre

ad

s and

bu

tterfl

y o

ptio

ns. N

ote

that su

ch a

chan

ge to

the m

arg

ins

rule

s was p

rop

ose

d b

y th

e N

AS

D a

nd

very

rece

ntly

acce

pte

d b

y th

e S

EC

, see [2

0].

7.1

Coh

ere

nt, S

EC

-like m

arg

in ca

lcula

tion

We co

nsid

er a

portfo

lio co

nsistin

g o

f CP ca

lls at strike

price

P, w

here

P b

elo

ng

s to a

set o

f strike p

rices P

=

Pm

in,Pm

in +

10

,...,Pm

ax

−1

0,P

max

. Th

is assu

mp

tion

ab

ou

t the fo

rmat o

f the strike

price

s set P

, inclu

din

g th

e in

terv

als o

f 10

, make

s the n

ota

tion

more

pala

tab

le, w

ithou

t loss o

f gen

era

lity. For co

nven

ien

ce, w

e d

en

ote

the se

t P\

Pm

in,Pm

ax

by P

−. W

e a

lso m

ake

the sim

plify

ing

assu

mp

tion

that th

ere

are

as m

an

y lo

ng

calls a

s short ca

lls in th

e p

ortfo

lio, i.e

. C

P =

0. B

oth

assu

mp

tion

s rem

ain

valid

thro

ug

hou

t sectio

n 7

.P ∈

P

We w

ill den

ote

by C

P th

e v

ecto

r of th

e C

P p

ara

mete

rs, P ∈

P. W

hile

CP fu

lly d

escrib

es th

e p

ortfo

lio, it ce

rtain

ly d

oes n

ot

describ

e th

e fu

ture

valu

e o

f the p

ortfo

lio, w

hich

dep

en

ds o

n th

e p

rice o

f the u

nd

erly

ing

stock a

t a fu

ture

date

. Alth

oug

h risk

Page 31: Alocaton Of Risk Capital

measu

res w

ere

defin

ed

as a

map

pin

gs o

n ra

nd

om

varia

ble

s, we n

everth

ele

ss write

ρ(C

P ) sin

ce th

e ρ

con

sidere

d h

ere

can

be

defin

ed

by u

sing

on

ly C

P . O

n th

e o

ther h

an

d, th

ere

is a sim

ple

linear re

latio

nsh

ip b

etw

een C

P a

nd

the fu

ture

worth

s (un

der a

n

ap

pro

pria

te d

iscretiza

tion

of th

e sto

ck price

sp

ace

), so th

at a

n e

xp

ressio

n su

ch a

s ρ C

∗ +

C∗

∗ is a

lso ju

stified

. On

ly in

the

PP

case

of th

e p

rop

erty

“mon

oto

nicity

” need

we tre

at w

ith m

ore

care

the d

istinctio

n b

etw

een

nu

mb

er o

f calls a

nd

futu

re w

orth

.

We ca

n n

ow

define o

ur S

EC

-like m

arg

in re

qu

irem

en

t. To e

valu

ate

the m

arg

in (o

r risk measu

re) ρ

of th

e p

ortfo

lio C

P , w

e fi

rst

rep

licate

its calls w

ith sp

read

s and

bu

tterfl

ies, d

efin

ed

as fo

llow

s:

Varia

ble

Instru

men

t Calls e

qu

ivale

nt

SH

,K

Sp

read

, lon

g in

H, sh

ort in

K

O

ne lo

ng

call a

t price

H

, one

short ca

ll at strike

K

Blo

ng

H

Lon

g b

utte

rfly, ce

nte

red

at

H

One lo

ng

call a

t H−

10

, two

short ca

lls at H

, on

e lo

ng

ca

ll at H

+1

0

Bsh

ort

H

Sh

ort b

utte

rfly, ce

nte

red

at

H

One sh

ort ca

ll at H

−1

0, tw

o

lon

g ca

lls at H

, on

e sh

ort

call a

t H +

1

0

The

varia

ble

s shall re

pre

sent th

e n

um

ber o

f each

specifi

c in

strum

ent. A

ll H a

nd

K a

re u

ndersto

od

to b

e in

P,o

r P−

for th

e b

utte

rflie

s; H =

K fo

r the sp

read

s.

As

in th

e S

EC

rule

s, fixe

d m

arg

ins

are

attrib

ute

d to

the

instru

men

ts u

sed

for th

e re

plica

ting

portfo

lio, i.e

. spre

ad

s a

nd

bu

tterfl

ies in

ou

r case

. Sp

read

s carry

a m

arg

in o

f (H−

K) +

= m

ax(0

,H−

K); sh

ort b

utte

rflie

s are

giv

en

a m

arg

in o

f 10

, wh

ile lo

ng

bu

tterfl

ies re

qu

ire n

o m

arg

in. In

simp

le la

ng

uag

e, e

ach

instru

men

t req

uire

s a

marg

in e

qu

al to

the

worst p

ote

ntia

l loss, o

r

neg

ativ

e p

ayoff

, it cou

ld y

ield

.

Page 32: Alocaton Of Risk Capital

By d

efin

ition

, the m

arg

in o

f a p

ortfo

lio o

f spre

ad

s an

d b

utte

rflie

s is the su

m o

f the m

arg

ins o

f its com

pon

en

ts.

On th

e b

asis o

f [25

], the m

arg

in ρ

(CP ) o

f the p

ortfo

lio ca

n b

e e

valu

ate

d w

ith th

e lin

ear o

ptim

izatio

n p

rob

lem

(SEC

-LP):

min

imize

f tY

subje

ct to

AY =

CP

(SEC

−LP

)

Y

≥ 0

S

where

: Y sta

nd

s for Y

=

Blo

ng

w

here

S is a

colu

mn

vecto

r of a

ll spre

ad

s

Bsh

ort

varia

ble

s co

nsid

ere

d (a

pp

rop

riate

ly o

rdere

d: b

ull sp

read

s, then

bear sp

read

s), an

d B

long

and

Bsh

ort

are

ap

pro

pria

tely

ord

ere

d

colu

mn v

ecto

rs of b

utte

rflie

s varia

ble

s; f tY is sh

orth

and

nota

tion

for

10

Bsh

ort

f tY =

(H −

K) +

SH

,K +

;

H

H,K

∈P

H∈

P−

and

A is

Page 33: Alocaton Of Risk Capital

11 0

···

00

−1

···

0

0 −

1

···

00 0

···

−1

1

1 0

··· ···

0 0 0

1

··· 0

0

0···

0

1

0···

0

−2

1

1

−2

0

1

··· ··· ···

0 0 0

00

Page 34: Alocaton Of Risk Capital

−1

···

0

2 −

1 ···

20

−1

···

0

0 −

1 ···

A =

. .

.

. .

.

. .

.

0 0

··· 0

0 0

··· 1

0 0

···

−1

Page 35: Alocaton Of Risk Capital

. .

. .

. .

. .

. .

. .

. .

. .

. .

0 0

··· 0

0

0

··· 1

0 0

0 0

··· ···

−1

1

0

0

0 0

··· ···

−2 1

. .

.

. .

.

. .

.

0 0

0 0

··· ···

−1 2 0

0···

−1

Th

e o

bje

ctive

fun

ction

rep

rese

nt th

e m

arg

in; th

e e

qu

ality

con

strain

ts en

sure

that th

e p

ortfo

lio is e

xactly

rep

licate

d. T

he

risk

measu

re th

us d

efined

is coh

ere

nt; th

e p

roof is g

iven

next.

Page 36: Alocaton Of Risk Capital

7.2

Pro

of o

f the co

here

nce

of th

e m

easu

re

We p

rove h

ere

that th

e risk

measu

re ρ

ob

tain

ed

thro

ug

h (S

EC

-LP) is co

here

nt, in

the se

nse

of D

efinitio

n 1

. We p

rove e

ach

of th

e

fou

r pro

perty

in tu

rn, b

elo

w.

1) S

ub

ad

ditiv

ity:

and

∗∗C

P

For a

ny tw

o p

ortfo

lios ∗

CP

, ρ

∗∗

+ C

P

Page 37: Alocaton Of Risk Capital

∗C

P

)+( ∗

ρC

P( ∗

ρC

P

) Pro

of:

If solv

ing

(SEC

-LP) w

ith ∗

CP

as rig

ht-h

an

d sid

e o

f the e

qu

ality

Page 38: Alocaton Of Risk Capital

con

strain

ts yie

lds a

solu

tion

, and

solv

ing

with

∗∗

S

CP

yie

lds a

solu

tion

S∗

∗,

∗∗

+ C

P

Page 39: Alocaton Of Risk Capital

then

is a fe

asib

le so

lutio

n fo

r the (S

EC

-LP) w

ith ∗

∗∗

+S

S

CP

as rig

ht-

han

d sid

e. S

ub

ad

ditiv

ity fo

llow

s dire

ctly, g

iven

the lin

earity

of th

e o

bje

ctive fu

nctio

n.

2) D

eg

ree o

ne h

om

og

en

eity: Fo

r an

y γ

≥ 0

an

d a

ny p

ortfo

lio C

P ,

ρ(γ

CP )=

γρ

(CP )

Pro

of: T

his is a

gain

a d

irect co

nse

qu

en

ce o

f the

linear o

ptim

izatio

n n

atu

re o

f ρ,a

s γS

is a so

lutio

n o

f the

(SEC

-LP) w

ith γ

CP

as

righ

t-hand

side

of th

e co

nstra

ints, w

hen

S is a

solu

tion

of th

e (S

EC

-LP) w

ith C

P a

s righ

t-han

d sid

e. O

f cou

rse, th

e v

ery

defin

ition

Page 40: Alocaton Of Risk Capital

of h

om

og

eneity

imp

lies th

at w

e a

llow

fractio

ns o

f calls to

be so

ld a

nd

boug

ht.

3) Tra

nsla

tion

invaria

nce

: 7 A

dd

ing

to a

ny

portfo

lio o

f calls

CP

an

am

oun

t of riskle

ss in

strum

en

t worth

α to

day, d

ecre

ase

s th

e

marg

in o

f CP b

y α

.

Pro

of: T

here

is little to

pro

ve

here

; we

rath

er n

eed

to d

efin

e th

e b

eh

avio

ur o

f ρ in

the

pre

sen

ce o

f a riskle

ss instru

men

t, an

d

natu

rally

choose

the tra

nsla

tion

invaria

nce

pro

perty

to d

o so

. Th

is pro

perty

simp

ly a

nch

ors th

e m

ean

ing

of “m

arg

in”.

4) M

onoto

nicity:

and

∗∗C

P

For a

ny tw

o p

ortfo

lios ∗

CP

such

that th

e fu

ture

Page 41: Alocaton Of Risk Capital

worth

of ∗

CP

is alw

ays le

ss than

or e

qu

al to

that o

f ∗∗C

P

,

) ( ∗∗

ρC

P

( ∗ρ

CP

)

7Note

that in

the in

tere

st of a

tidie

r nota

tion, w

e d

eparte

d fro

m o

ur p

revio

us u

sag

e a

nd

did

not u

se th

e la

st com

pon

en

t of C

P to

den

ote

the riskle

ss instru

ment

Page 42: Alocaton Of Risk Capital

Befo

re p

rovin

g m

on

oto

nicity

, let u

s first in

trod

uce

the

valu

es V

P , fo

r P ∈

P

min

+1

0,...,P

max,P

max

+1

0

, which

rep

rese

nt th

e

futu

re p

ayoff

s, or w

orth

s, of th

e p

ortfo

lio fo

r the fu

ture

price

s P o

f the u

nd

erly

ing

. (Ob

vio

usly

, the la

tter se

t of p

rices m

ay b

e to

o

coarse

a re

pre

senta

tion

of p

ossib

le fu

ture

price

s, and

is use

d to

keep

the n

ota

tion

com

pact; sta

rting

with

a fi

ner P

wou

ld re

lieve

this

pro

ble

m) A

gain

, we

write

VP

to d

en

ote

the

vecto

r of a

ll VP

’s. Th

e co

mp

on

ents

of V

P a

re co

mp

lete

ly d

ete

rmin

ed

by

the

nu

mb

er o

f calls in

the p

ortfo

lio:

P −

10V

P =

Cp(P

−p

) ∀P ∈

P

min

+1

0,...,P

max,P

max +

10

p

=P

min

which

is alte

rnativ

ely

writte

n V

P

MC

P , w

ith th

e sq

uare

, invertib

le m

atrix

M:

M =

10

0 0

···

20

10

0

···

30

20

10

···

. . ..

....

... .

Page 43: Alocaton Of Risk Capital

Th

e a

nte

ced

en

t of th

e m

on

oto

nicity

pro

perty

is, of co

urse

, the co

mp

on

en

twise

V ∗

≤ V

∗∗.

PP W

e w

ill also

use

the fo

llow

ing

lem

ma:

Lem

ma 3

Un

der su

bad

ditiv

ity, two e

qu

ivale

nt fo

rmu

latio

ns o

f mon

oto

nicity

are

, for a

ny th

ree p

ortfo

lios C

P , C

∗ a

nd

C∗

∗:

PP

V ∗

≤ V

∗∗

= ⇒

ρ(M

−1V

P ∗

) ≥ ρ

(M−

1V ∗

∗)

PP P

and

0 ≤

VP

= ⇒ ρ

(M−

1VP ) ≤

0

Pro

of: T

he u

pp

er co

nd

ition

is suffi

cien

t, as it im

plie

s

ρ(0

) ≥ ρ

(M−

1VP ),

and

ρ(0

) = 0

from

the v

ery

structu

re o

f (SE

C-LP

). Th

e u

pp

er co

nd

ition

is nece

ssary

, as

ρ(M

−1V

∗∗

P

)= M

−1(V

P ∗

+(V

∗∗

−V

P ∗

)

ρ P

Page 44: Alocaton Of Risk Capital

ρ(M

−1V

P ∗

)+ ρ

M−

1(V ∗

P

−V

P ∗

)

≤ ρ

(M−

1VP ∗

). 29

Pro

of o

f mon

oto

nicity

: As a

con

seq

uen

ce o

f the

ab

ove

lem

ma, it is su

fficie

nt to

pro

ve

that if a

portfo

lio o

f calls

alw

ays h

as

non

-neg

ativ

e fu

ture

payoff

, then its a

ssocia

ted

marg

in is n

on

-positiv

e.

A lo

ok

at (S

EC

-LP) sh

ow

s that th

e m

arg

in a

ssigned

to th

e p

ortfo

lio w

ill be

non

-positiv

e (in

fact, ze

ro), if a

nd

on

ly if a

non

-

neg

ativ

e, fe

asib

le so

lutio

n o

f (SEC

-LP) e

xists in

wh

ich a

ll spre

ad

s varia

ble

s SH

,K w

ith H

>K

and

all sh

ort b

utte

rflie

s varia

ble

s Bsh

ort

have v

alu

e ze

ro. T

his m

ean

s that th

ere

exists a

solu

tion

to th

e lin

ear sy

stem

:

AY

= C

P 0

(1

4)

Y

(15

)

where

Ais m

ad

e o

f the fi

rst an

d th

ird p

arts o

f the A

that w

as d

efined

for (S

EC

-LP):

Page 45: Alocaton Of Risk Capital

A =

11 0

10

0

··· ···

00 −

21 0

−1

··· ···

0 −

1 0

1 −

20

··· ···

00 0

01

0

··· ···

.. ... .

.. ... .

.. ... . 00

00

0 1

··· ···

00 1

00

−2

··· ···

00 −

100

1

··· ···

,

and

Y is th

e a

pp

rop

riate

vecto

r of sp

read

s and

bu

tterfl

ies v

aria

ble

s. We o

bta

in a

new

, eq

uiv

ale

nt sy

stem

of e

qu

atio

ns M

Page 46: Alocaton Of Risk Capital

AY =

MC

P =

VP b

y p

re-m

ultip

lyin

g b

y th

e in

vertib

le m

atrix

Min

trod

uce

d a

bove. R

eca

ll now

that

we h

ave m

ad

e th

e a

ssum

ptio

n th

at th

e p

ortfo

lio co

nta

ins a

s man

y sh

ort ca

lls as lo

ng

calls,

i.e. C

P =

0. T

hu

s, we n

eed

on

ly p

rove th

at th

ere

exists a

non

-neg

ativ

e

P ∈

P

solu

tion

to th

e sy

stem

M

AY =

VP w

hen

ever V

P ≥

0 a

nd

e tM

−1V

P =

0 (e

is a ro

w v

ecto

r of 1

’s). A sim

ple

ob

serv

atio

n o

f M

t Ash

ow

s that its co

lum

ns sp

an

the sa

me su

bsp

ace

as th

e se

t of co

lum

ns

10 0

0

0

0 . . . 0

0

,

1

0 . .

Page 47: Alocaton Of Risk Capital

. 0

0

, ··· ,

0

0 . . . 1

0

,

0

0 . . . 0

1

00 0

1

30

O

bse

rvin

g fu

rtherm

ore

that

t

0 0

.

. . 0

Page 48: Alocaton Of Risk Capital

−1

1

e tM

−1

=

so th

at a

ny V

P sa

tisfyin

g e

tM−

1VP =

0 h

as id

en

tical la

st two co

mp

on

en

ts, the rig

ht-h

an

d sid

e o

f M

A Y

= V

P ca

n a

lways b

e e

xp

resse

d a

s a n

on

-neg

ativ

e lin

ear co

mb

inatio

n o

f the co

lum

ns o

f M

A.

7.3

Com

puta

tion o

f the a

lloca

tions

Giv

en

this

risk m

easu

re a

s a

linear o

ptim

izatio

n p

rob

lem

, the

Sh

ap

ley

valu

e is

easy

to co

mp

ute

wh

en

the

“tota

l portfo

lio” is

div

ided

in a

small n

um

ber o

f sub

portfo

lios. First, th

e m

arg

in o

f every

possib

le co

alitio

n o

f sub

portfo

lios is ca

lcula

ted

. Th

en

, the

marg

in a

lloca

ted

to e

ach

sub

portfo

lio is co

mp

ute

d, u

sing

the fo

rmu

la o

f the S

hap

ley v

alu

e g

iven

in D

efin

ition

9.

Th

e co

mp

uta

tion

of th

e A

um

an

n-S

hap

ley v

alu

e is e

ven

simp

ler. N

ote

that b

y w

orkin

g in

the fra

ction

al p

layers fra

mew

ork, w

e

imp

licitly a

ssum

e th

at fra

ction

s of p

ortfo

lios a

re se

nsib

le in

strum

ents. W

e ch

oose

the

vecto

r of fu

ll pre

sen

ce o

f all p

layers Λ

to

be th

e v

ecto

r of o

nes e

. Reca

ll that th

e A

um

an

n-S

hap

ley p

er u

nit m

arg

in a

lloca

ted

to th

e i th

sub

portfo

lio is

∂r ( e )

kA

S =

(16

)

i

∂λi

where

r(λ) is th

e m

arg

in re

qu

ired

of th

e su

m o

f all th

e su

bp

ortfo

lios i, e

ach

scale

d b

y a

scala

r λi, so

that r(e

)= ρ

(CP

). In v

ecto

r

Page 49: Alocaton Of Risk Capital

nota

tion, k

AS

= ∇

r(e).

Let u

s first d

efin

e th

e lin

ear o

pera

tor L w

hich

map

s the le

vel o

f pre

sen

ce o

f the su

bp

ortfo

lios to

nu

mb

ers o

f calls in

the g

lob

al

portfo

lio. If th

ere

are

|P

| d

iffere

nt ca

lls (e

qu

ivale

ntly

here

, |P

strike p

rices), a

nd

n

sub

portfo

lios, th

en

| L is an

|P

× n m

atrix

, such

that Le

= C

P . E

xam

ple

s are

the th

ree-b

y-five

| m

atrice

s at th

e to

p o

f the ta

ble

s giv

en

in se

ction 7

.4.

Now

, the o

ptim

al d

ual so

lutio

n δ

∗ o

f the

linear p

rog

ram

(SEC

-LP), o

bta

ined

auto

matica

lly w

hen

com

putin

g th

e m

arg

in o

f the

tota

l portfo

lio, p

rovid

es th

e ra

tes o

f

chan

ge o

f the m

arg

in, w

hen

the p

rese

nce

of e

ach

specifi

c call v

arie

s. How

ever, u

sing

the co

mp

lem

enta

rity co

nd

ition

satisfi

ed

at

the o

ptim

al so

lutio

n p

air (Y

∗,δ

∗), w

e ca

n w

rite

f tY ∗

= −

(δ∗) tC

P (1

7)

=(−

(δ∗) tL)e

(18

)

so th

at th

e co

mp

on

en

ts of L

tδ∗

giv

e th

e m

arg

inal ra

tes o

f chan

ge o

f the o

bje

ctive v

alu

e o

f (SE

C-LP

), as a

fun

ction

of su

bp

ortfo

lio

pre

sen

ce, e

valu

ate

d a

t the p

oin

t of fu

ll pre

sen

ce o

f all su

bp

ortfo

lios.

Pu

t in o

ne se

nte

nce

, the m

ost in

tere

sting

resu

lt of th

is sectio

n is th

at th

e A

um

an

n-S

hap

ley a

lloca

tion

is on

ly a

matrix

pro

du

ct

aw

ay fro

m th

e lo

ne e

valu

atio

n o

f the m

arg

in fo

r the to

tal p

ortfo

lio.

Finally

, con

cern

ing

the

un

iqu

en

ess o

f the

allo

catio

n a

nd

the

diff

ere

ntia

bility

of th

e risk

measu

re, w

e ca

n o

nly

say

that th

ey

dep

en

d d

irectly

on

the

un

iqu

en

ess o

f the

op

timal so

lutio

n o

f the

du

al p

rob

lem

of (S

EC

-LP). A

lthou

gh

there

is not sp

ecia

l reaso

n

for m

ultip

le o

ptim

al d

ual so

lutio

ns to

occu

r here

, it can

well h

ap

pen

, in w

hich

case

we

have

ob

tain

ed

on

e o

f man

y a

ccep

tab

le

allo

catio

ns, p

er se

ction

5.3

.3.

Page 50: Alocaton Of Risk Capital

7.4

Num

erica

l exam

ple

s of co

here

nt a

lloca

tion

We ca

n o

bta

in a

som

ew

hat m

ore

pra

ctical fe

elin

g o

f Sh

ap

ley a

nd

Aum

an

n-S

hap

ley a

lloca

tion

s by lo

okin

g a

t exam

ple

s.

For a

ll allo

catio

n e

xam

ple

s belo

w, th

e re

fere

nce

“tota

l” portfo

lio is th

e sa

me; its v

alu

es o

f CP ,P

10

,20

,30

,40

,50

are

:

C1

0 C

20

C3

0 C

40

C5

0

Tota

l

−1

−2

8 −

72

mean

ing

on

e sh

ort ca

ll at strike

10

, two sh

ort ca

lls at strike

20

, eig

ht lo

ng

calls a

t strike 3

0, e

tc. It carrie

s a m

arg

in o

f 40

: ρ(C

P )

= 4

0.

In e

ach

of th

e ta

ble

s belo

w, w

e g

ive

the

div

ision

of th

e to

tal p

ortfo

lio in

thre

e su

bp

ortfo

lios su

ch th

at C

P1

+ C

P2

+ C

P3

= C

P ,

follo

wed

by th

e S

hap

ley a

lloca

tion

an

d th

e A

um

an

n-S

hap

ley a

lloca

tion

. Th

e ta

ble

s are

follo

wed

by so

me

ob

serv

atio

ns. C

on

sider fi

rst the d

ivisio

n:

C10

C20

C30

C40

C50

Sh

ap

ley

Au

man

n −

S

hap

ley

CP

1

−1

0

6

−6

1

15

2

0

CP

2

0

−2

2

0

0

20

2

0

CP

3

0

0

0

−1

1

5

0

Total

−1

−2

8

−7

2

40

4

0

In th

is exam

ple

, coalitio

ns o

f subportfo

lios in

cur m

arg

ins a

s follo

ws: ρ

(CP

1 +

CP

2 )=

40

ρ(C

P1

+ C

P3

)= 2

0 ρ

(CP

2

+ C

P3

)= 3

0 ρ

(CP

1 )=

20

ρ(C

P2

)= 2

0 ρ

(CP

3 )=

10

Con

sider a

seco

nd

exam

ple

:

C10

C20

C30

C40

C50

Sh

ap

ley

Au

man

n −

S

hap

ley

Page 51: Alocaton Of Risk Capital

CP

1

−1

0

2

−2

1

20

2

0

CP

2

0

−1

6

−5

0

0

10

CP

3

0

−1

0

0

1

20

1

0

Total

−1

−2

8

−7

2

40

4

0

Here

, coalitio

ns o

f subp

ortfo

lios p

ortfo

lios in

cur th

e m

arg

ins:

ρ(C

P1

+

CP

2 )=

30

ρ

(CP

1 +

CP

3 )=

50

ρ(C

P2

+ C

P3

)= 2

0

ρ(C

P1

)= 2

0

ρ(C

P2

)= 1

0

ρ(C

P3

)= 3

0

Finally

, the th

ird e

xam

ple

is:

C10

C20

C30

C40

C50

Sh

ap

ley

Au

man

n −

S

hap

ley

CP

1

−1

−1

4

−2

0

26

.66

3

0

CP

2

0

−1

4

−3

0

6.6

6

10

CP

3

0

0

0

−2

2

6.6

6

0

Total

−1

−2

8

−7

2

40

4

0

wh

ere

the co

alitio

ns o

f subp

ortfo

lios in

cur:

ρ(C

P1

+ C

P2

)= 4

0 ρ

(CP

1 +

CP

3 )=

30

ρ(C

P2

+ C

P3

)= 1

0 ρ

(CP

1 )=

30

ρ(C

P2

)= 1

0 ρ

(CP

3 )=

20

On th

ese

exam

ple

s, we n

ote

that:

%•

Th

e S

hap

ley a

nd

Au

man

n-S

hap

ley a

lloca

tion

s do n

ot a

gre

e. A

n e

qu

al a

lloca

tion

in th

is settin

g w

ou

ld h

ave b

een

fortu

itous.

%•

Nu

ll allo

catio

ns d

o o

ccur. N

ull (o

r neg

ativ

e) a

lloca

tion

s can

not b

e ru

led

ou

t, and

do h

ap

pen

here

, both

for th

e

Page 52: Alocaton Of Risk Capital

Conclu

sion

In th

is article

, we

have

discu

ssed

the

allo

catio

n o

f risk ca

pita

l from

an

axio

matic

persp

ectiv

e, d

efinin

g in

the

pro

cess w

hat w

e

call co

here

nt a

lloca

tion

prin

ciple

s.

Our o

rigin

al g

oal is

to e

stab

lish a

fram

ew

ork

with

in w

hich

fin

an

cial risk

allo

catio

n p

rincip

les

cou

ld b

e co

mp

are

d a

s

mean

ing

fully

as p

ossib

le. O

ur sta

nd

is th

at th

is ca

n b

e a

chie

ved

by

bin

din

g th

e co

nce

pt o

f coh

ere

nt risk

measu

res

to th

e

existin

g g

am

e th

eory

resu

lts on

allo

catio

n.

We

sug

gest tw

o se

ts o

f axio

ms, e

ach

definin

g th

e co

here

nce

of risk

cap

ital a

lloca

tion

in a

specifi

c se

tting

: eith

er th

e

con

stituen

ts o

f the

firm

are

con

sidere

d in

div

isible

en

tities

(in th

e co

alitio

nal g

am

e se

tting

), or, to

the

con

trary

, they

are

con

sidere

d to

be d

ivisib

le (in

the co

nte

xt o

f gam

es w

ith fra

ctional p

layers). In

the fo

rmer ca

se, w

e fi

nd

that th

e S

hap

ley v

alu

e is

a co

here

nt a

lloca

tion p

rincip

le, th

ou

gh

only

und

er ra

ther re

strictive co

nd

ition

s on th

e risk m

easu

re u

sed

.

In th

e fra

ctional p

layers

settin

g, th

e A

um

an

n-S

hap

ley

valu

e is

a co

here

nt a

lloca

tion

prin

ciple

, un

der a

mu

ch la

xer

diff

ere

ntia

bility

con

ditio

n o

n th

e risk

measu

re; u

nd

er lin

earity

, it is a

lso th

e u

niq

ue

coh

ere

nt p

rincip

le. In

fact, g

iven

that th

e

allo

catio

n p

roce

ss starts w

ith a

coh

ere

nt risk

measu

re, th

is coh

ere

nt a

lloca

tion

simp

ly co

rresp

on

ds to

the

gra

die

nt o

f the

risk

measu

re w

ith re

spect to

the

pre

sen

ce le

vel o

f the

con

stituents o

f the

firm

. As a

con

seq

uen

ce, th

e A

um

an

n-S

hap

ley

ap

pro

ach

,

beyon

d its th

eore

tical so

un

dn

ess, fu

rther h

as a

com

pu

tatio

nal fe

, in th

at it is a

s easy

to e

valu

ate

, as th

e risk itse

lf is.

Refe

rence

s

[1] P

h. A

rtzner, “A

pp

licatio

n o

f Coh

ere

nt R

isk M

easu

res to

Cap

ital R

eq

uire

men

ts in In

sura

nce

”, North

Am

erica

n A

ctuaria

l Jou

rnal

(19

99

)

[2] P

h. A

rtzner, F. D

elb

aen

, J.-M. E

ber, D

. Heath

, “Th

inkin

g co

here

ntly

”, RIS

K, v

ol. 1

0, n

o. 1

1 (1

99

7).

Page 53: Alocaton Of Risk Capital

[3] P

h. A

rtzner, F. D

elb

aen

, J.-M. E

ber, D

. Heath

, “Cohere

nt m

easu

res o

f risk”, Math

em

atica

l Finan

ce, v

ol. 9

, no. 3

(19

99

), 20

3–

22

8.

[4] P

h. A

rtzner, J. M

. Ostro

y, “G

rad

ien

ts, Su

bg

rad

ien

ts a

nd

Eco

nom

ic E

qu

ilibria

”, Ad

van

ces in

Ap

plie

d M

ath

em

atics, v

ol. 4

(19

83

), 24

5–2

59

.

[5] J.-P. A

ub

in, “M

ath

em

atica

l Meth

od

s of G

am

e a

nd

Eco

nom

ic Th

eory

” (19

79

), North

-Holla

nd

Pu

blish

ing

Co., A

mste

rdam

.

[6] J.-P. A

ub

in, “C

oop

era

tive fu

zzy g

am

es”, M

ath

em

atics o

f Op

era

tion

s Rese

arch

, vol. 6

, no. 1

(19

81

), 1–1

3.

[7] R

. Au

man

n, L. S

hap

ley, “V

alu

es o

f Non

-Ato

mic G

am

es” (1

97

4), P

rince

ton

Univ

ersity

Pre

ss, Prin

ceto

n, N

ew

Jerse

y.

[8] L. J. B

illera

, D. C

. Heath

, J. Raan

an

, “Inte

rnal Te

lep

hon

e B

illing

Rate

s—A

Novel A

pp

licatio

n o

f Non

-Ato

mic

Gam

e T

heory

”,

Op

era

tions R

ese

arch

vol. 2

6, n

o. 6

(19

78

), 95

6–9

65

.

[9]

L. J. Bille

ra, D

. C. H

eath

, “Allo

catio

n o

f share

d co

sts: a se

t of a

xio

ms

yie

ldin

g a

un

iqu

e p

roce

dure

”, M

ath

em

atics

of

Op

era

tions R

ese

arch

vol. 7

, no. 1

(19

82

) 32

–39

.

[10

] L. J. Bille

ra, J. R

aan

an

, “Core

s o

f non

ato

mic

linear p

rod

uctio

n g

am

es”, M

ath

em

atics

of O

pera

tion

s R

ese

arch

vol. 6

, no. 3

(19

81

) 42

0–4

23

.

[11

] O

.N. B

on

dare

va, “S

om

e a

pp

licatio

ns

of th

e m

eth

od

s o

f linear p

rog

ram

min

g to

the

theory

of co

op

era

tive

gam

es”

(in

Ru

ssian

), Pro

ble

my K

ibern

etiki, n

o. 1

0 (1

96

3), 1

19

–13

9.

[12

] F. Delb

aen

, “Cohere

nt risk m

easu

res o

n g

en

era

l pro

bab

ility sp

ace

s´´, rese

arch

pap

er, D

ep

artm

en

t of m

ath

em

atics, E

TH

-Z¨

urich

, 19

98

.

[13

] F. Delb

aen

, forth

com

ing

note

s of th

e tu

toria

l at th

e S

cuola

Norm

ale

Su

perio

re, Pisa

, 20

00

.

[14

] C. G

ou

ri´ero

ux, J.-P. La

ure

nt, O

. Sca

illet, “S

en

sitivity

an

aly

sis o

f valu

es a

t risk” (19

99

), forth

com

ing

in Jo

urn

al o

f Em

pirica

l

Page 54: Alocaton Of Risk Capital

Finan

ce, S

pecia

l Issue o

n R

isk Man

ag

em

ent.

[15

] R.D

. Lucce

, H. R

aiff

a, “G

am

es a

nd

Decisio

ns”, Jo

hn

Wile

y a

nd

Son

s, 19

57

.

[16

] P. M

arco

tte “In

´eq

uatio

ns

varia

tion

nelle

s: Motiv

atio

n, a

lgorith

mes

de

r´eso

lutio

n e

t quelq

ues

ap

plica

tion

s”, Cen

tre d

e

Rech

erch

e su

r les Tra

nsp

orts, P

ub

licatio

n C

RT-9

7-0

2, (1

99

7).

[17

] P. Marco

tte, G

. Savard

, En

try “B

ilevel p

rog

ram

min

g” in

“Th

e E

ncy

clop

ed

ia o

f Op

timiza

tion”, Flo

ud

as a

nd

Pard

alo

s, ed

s. To

ap

pear.

[18

] L. J. Mirm

an, Y. Ta

um

an

, “Dem

an

d co

mp

atib

le e

qu

itab

le co

st sharin

g p

rices”, M

ath

em

atics o

f Op

era

tion

s Rese

arch

vol. 7

, no.

1 (1

98

2) 4

0–5

6.

[19

] Natio

nal A

ssocia

tion

of S

ecu

rities D

eale

rs, “Rep

rint o

f the M

an

ual”, Ju

ly 1

99

6, C

.C.R

., Ch

icag

o.

[20

] Natio

nal A

ssocia

tion

of S

ecu

rities D

eale

rs, “Notice

to m

em

bers” N

o. 0

1-1

1, N

ovem

ber 2

00

0. A

vaila

ble

at w

ww

.nasd

r.com

.

[21

] M. O

sborn

e, A

. Ru

bin

stein

, “A co

urse

in g

am

e th

eory

” (19

94

), MIT

Pre

ss, Massa

chu

setts.

[22

] G. O

wen

, “On

the co

re o

f linear p

rod

uctio

n g

am

es”, M

ath

em

atics o

f Op

era

tion

s Rese

arch

vol. 9

, (19

75

) 35

8–3

70

.

[23

] G.S

. Patrik, S

. Bern

eg

ger, M

. B. R

¨ ueg

g, “T

he

Use

of R

isk A

dju

sted

Cap

ital to

Su

pp

ort B

usin

ess

Decisio

n-M

akin

g”, in

the

“Casu

alty

Actu

aria

l Socie

ty Fo

rum

, Sp

ring

19

99

Ed

ition”, p

p. 2

43

-33

4.

[24

] A. R

oth

, ed

itor, “T

he S

hap

ley v

alu

e. E

ssays in

hon

or o

f Lloyd

S. S

hap

ley” (1

98

8), C

am

brid

ge U

niv

ersity

Pre

ss, Cam

brid

ge.

[25

] A. R

ud

d, M

. Sch

roed

er, “T

he ca

lcula

tion

of m

inim

um

marg

in”, Man

ag

em

en

t Scie

nce

, 28

–12

, 19

82

.

[26

] O. S

caille

t, “Non

para

metric e

stimatio

n a

nd

sen

sitivity

analy

sis of e

xp

ecte

d sh

ortfa

ll”, availa

ble

at:

ww

w.e

con

.ucl.a

c.be/IR

ES

/CS

SS

P/h

om

e p

a p

ers/sca

illet/sca

ill.htm

[27

] U. S

chm

ock, D

. Stra

um

ann

, priv

ate

com

mun

icatio

n.

Page 55: Alocaton Of Risk Capital

[28

] L. Shap

ley, “A

valu

e fo

r n-p

erso

n g

am

es”, C

on

tribu

tion

s to th

e th

eory

of g

am

es, v

olu

me

II (An

nals o

f math

em

atics stu

die

s,

28

, Tucke

r an

d Lu

ce, e

ds.) (1

95

3), P

rince

ton

Un

iversity

Pre

ss, Prin

ceto

n, N

ew

Jerse

y

[29

] L. Shap

ley, “O

n b

ala

nce

d se

ts an

d co

res”, N

aval R

ese

arch

Log

istics Qu

arte

rly 1

4, (1

96

7), p

p. 4

53

–46

0.

[30

] L. Shap

ley, “C

ore

s of co

nvex g

am

es”, In

tern

atio

nal Jo

urn

al o

f Gam

e T

heory

vol. 1

, issue 1

(19

71

-19

72

), pp

. 11

–26

.

[31

] D. Ta

sche, “R

isk con

tribu

tion

s an

d p

erfo

rman

ce m

easu

rem

ent”, R

ep

ort o

f the Le

hrstu

hl f¨u

nch

en

, 19

99

. Availa

ble

ur m

ath

em

atisch

e S

tatistik, T.U

. M¨a

t: ww

w-m

4.m

ath

em

atik.tu

-muen

chen

.de/m

4/Pa

pers/Ta

sche/riskco

n.p

df

[32

] Y. Tau

man

, “Th

e A

um

an

n-S

hap

ley p

rices: a

surv

ey”, ch

ap

ter 1

8 o

f “Th

e S

hap

ley v

alu

e. E

ssays in

honor o

f Lloyd

S. S

hap

ley”

(19

88

), A. R

oth

(ed

.) Cam

brid

ge U

niv

ersity

Pre

ss, Cam

brid

ge.

[33

] H

.P. You

ng

, “Cost a

lloca

tion”, ch

ap

ter 3

4 o

f “Han

db

ook

of G

am

e T

heory

, Volu

me

2”, R

.J. Au

man

n a

nd

S. H

art, e

dito

rs,

Else

vie

r Scie

nce

, 19

94

.

Ap

pend

ix

A P

roof o

f the n

on

-neg

ativ

ity co

nd

ition

Th

e fo

llow

ing

resu

lt from

sectio

n 6

is pro

ved

here

.

Th

eore

m 8

A su

fficie

nt co

nd

ition fo

r a n

on

-neg

ativ

e, “n

o u

nd

ercu

t” allo

catio

n

to e

xist is:

+,ρ

Xi m

in λ

iXi∀

λ ∈

Rn

i∈N

λ

i≤

ρ i∈

N

i∈N

Page 56: Alocaton Of Risk Capital

Pro

of: Le

t us re

call th

at w

e d

en

ote

d b

y 1

S ∈

Rn

the ch

ara

cteristic v

ecto

r of

the co

alitio

n S

:

(1S

)i =1

if i ∈S

0 o

therw

ise

A n

on-n

eg

ativ

e, “n

o u

nd

ercu

t” allo

catio

n K

exists w

hen

∃K

∈R

nsuch

that

Kt1

S ≤

ρX

i ∀S

N

i∈S

(19

)

Kt1

N =

ρX

i

i∈N

K ≥

0

Usin

g Fa

rkas’s le

mm

a, th

is is eq

uiv

ale

nt to

1N

yN

+1

S y

S ≥

0, ∀

yN

∈R

, ∀y

S ∈

R+,S

N

S

N

= ⇒

ρX

i yN

+ ρ

Xi y

S +

≥ 0

(20

) i∈N

S

Ni∈

S

which

in tu

rn is e

quiv

ale

nt to

yS

, ∀y

S ≥

0,S

N, a

nd

∀i ∈

N,

yN

≥−

Si

= ⇒

ρ( X

i)yS

≥−

ρX

i yN

(21

) S

Ni∈

Si∈

N

Now

, usin

g th

e h

om

og

eneity

an

d th

e su

bad

ditiv

ity o

f ρ,

ρX

i yS

= ρ

yS

Xi

S

Ni∈

SS

Ni∈

S

Page 57: Alocaton Of Risk Capital

≥ ρ

y

S X

i

S

Ni∈

S

= ρ

Xi y

S

i∈N

Si

Th

ere

fore

, a su

fficie

nt co

nd

ition

for (1

9) (o

r (20

) or (2

1)) to

hold

, is

yS

, ∀y

S ≥

0,S

N

, ∀i ∈

N,

yN

≥−

S

i

= ρ

Xi y

S ≥

ρX

i (−y

N )

i∈N

Sii∈

N

Finally

, usin

g th

e d

efin

ition

λi

Si y

S , w

e ca

n w

rite th

e su

fficie

nt co

nd

ition

for (1

9)

∀λ

i ≥0

,i ∈N

,ρ λ

iXi ≥

ρX

i min

λi i∈

Ni∈

Ni∈

N

Note

that in

the la

st step

, we a

lso u

sed

ρ i∈

N X

i ≥0

, a n

ece

ssary

con

ditio

n fo

r the e

xiste

nce

of a

non

-neg

ativ

e, “n

o u

nd

ercu

t” allo

catio

n; ch

eckin

g

yN

=1

,yS

=0

∀S

N in

(20

) show

s this p

oin

t.