29
0101011 0000000 1110100 0110001 0 1 Molecular Dynamics v2011.09.20 FI3102 Computational Physics 1 Sparisoma Viridi Nuclear Physics and Biophysics Research Division Institut Teknologi Bandung, Bandung 40132, Indonesia [email protected]

04 molecular dynamics

Embed Size (px)

DESCRIPTION

Short introduction to Molecular Dynamics method and some examples.

Citation preview

Page 1: 04 molecular dynamics

0101011

0000000

1110100

0110001

0

1

Molecular Dynamics

v2011.09.20 FI3102 Computational Physics 1

Sparisoma Viridi

Nuclear Physics and Biophysics Research Division

Institut Teknologi Bandung, Bandung 40132, Indonesia

[email protected]

Page 2: 04 molecular dynamics

0101011

0000000

1110100

0110001

0

1

Outline

• Molecular dynamics

• The use of molecular dynamics

• Experiment using simulation

• Molecular scale, human scale, planetoid

v2011.09.20 FI3102 Computational Physics 2

• Molecular scale, human scale, planetoid

• MD algorithm and example

• Is MD so perfect?

Page 3: 04 molecular dynamics

0101011

0000000

1110100

0110001

0

1

Molecular dynamics

• Molecular dynamics (MD) is a computer

simulation of physical movements of

atoms and molecules (Wikipedia, 2011)

• MD simulation consists of the numerical, • MD simulation consists of the numerical,

step-by-step, solution of classical equation

of motion (Allen, 2004)

v2011.09.20 FI3102 Computational Physics 3

Page 4: 04 molecular dynamics

0101011

0000000

1110100

0110001

0

1

Molecular dynamics (cont.)

• It is a computer simulation technique

where the time evolution of a set of

interacting atoms is followed by integrating

their equations of motion (Ercolessi, 1997)their equations of motion (Ercolessi, 1997)

• MD simulations can provide the ultimate

detail concerning individual motions as a

function of time (Karplus and McCammon,

2002)

v2011.09.20 FI3102 Computational Physics 4

Page 5: 04 molecular dynamics

0101011

0000000

1110100

0110001

0

1

The use of MD

• It can be used from atomic scale until

planetoid scale -- amazing

• To calculate electronic ground state as

function of time of liquid metal (Kresse and function of time of liquid metal (Kresse and

Hafner, 1993)

• Motion of n-Alkanes molecules (Ryckaert,

Ciccotti, and Berendsen, 1977)

v2011.09.20 FI3102 Computational Physics 5

Page 6: 04 molecular dynamics

0101011

0000000

1110100

0110001

0

1

The use of MD (cont.)

• Nanodroplet on a surface (Sedighi, Murad,

and Aggarwal, 2010)

• Grain of in mm and cm size (Gallas,

Herrmann, Pöschel, and Sokolowski, Herrmann, Pöschel, and Sokolowski,

1996)

• Simulation of asteroids movement (Jaffé,

Ross, Lo, Marsden, Farrelly, and Uzer,

2002)

v2011.09.20 FI3102 Computational Physics 6

Page 7: 04 molecular dynamics

0101011

0000000

1110100

0110001

0

1

Experiment using simulation

v2011.09.20 FI3102 Computational Physics 7

(Allen, 2004)

Page 8: 04 molecular dynamics

0101011

0000000

1110100

0110001

0

1

Experiment using .. (cont.)

• It is a bridge between microscopic and

macroscopic

• It is also a bridge between theory and

experimentexperiment

• Do the experiment using simulation is a

smart way to reduce the financial problem

• Even all considered nature laws are input

to the system, it could give the unexpected

v2011.09.20 FI3102 Computational Physics 8

Page 9: 04 molecular dynamics

0101011

0000000

1110100

0110001

0

1

Molecular scale

• Lennard-Jones potential:

• Coulomb potential

v2011.09.20 FI3102 Computational Physics 9

Page 10: 04 molecular dynamics

0101011

0000000

1110100

0110001

0

1

Molecular scale (cont.)

• Can you derive the expression for the

forces from both potential?

• MD simulation need expression in term of

force instead of potentialforce instead of potential

• Use the relation

v2011.09.20 FI3102 Computational Physics 10

VF ∇−=rr

Page 11: 04 molecular dynamics

0101011

0000000

1110100

0110001

0

1

Molecular scale (cont.)

• And the results?

=LJFr

v2011.09.20 FI3102 Computational Physics 11

=LJF

=CFr

Page 12: 04 molecular dynamics

0101011

0000000

1110100

0110001

0

1

Human scale

• Near on earth surface: gravitational force

Fg = -mg

• Friction force : Ff = -bv

• Magnetic force : FB = qv ×B

v2011.09.20 FI3102 Computational Physics 12

Page 13: 04 molecular dynamics

0101011

0000000

1110100

0110001

0

1

Planetoid scale

• Newton’s law of universtal gravitation

rmm

GFG ˆ21−=r

v2011.09.20 FI3102 Computational Physics 13

rr

GFG ˆ2

21−=

(Wikipedia, 2011)

Page 14: 04 molecular dynamics

0101011

0000000

1110100

0110001

0

1

MD algorithm

• It is uses Newton’s second law of motion

to get the acceleration a

• It using numerical integration to get the

equation of motion, use the simple method equation of motion, use the simple method

i.e. original Euler method

• New motion parameters will cause new

value of all forces

• Calculate the new forces to get new a

v2011.09.20 FI3102 Computational Physics 14

Page 15: 04 molecular dynamics

0101011

0000000

1110100

0110001

0

1

MD algorithm (cont.)

amFrr

=∑

..++++=∑ FFFFFrrrrr

v2011.09.20 FI3102 Computational Physics 15

..++++=∑ LJfBG FFFFF

Page 16: 04 molecular dynamics

0101011

0000000

1110100

0110001

0

1

MD algorithm (cont.)

• Euler method:

tavv iii ∆+=+

rrr

1

v2011.09.20 FI3102 Computational Physics 16

tvrr iii ∆+=+

rrr

1

ttt ii ∆+=+1

Page 17: 04 molecular dynamics

0101011

0000000

1110100

0110001

0

1

MD algorithm (cont.)

• You must pay attention to the outside

influence that changes with order of

magnitude of chosen ∆t

• Normally it is chose that ∆t must be 100 • Normally it is chose that ∆t must be 100

times smaller than that change

v2011.09.20 FI3102 Computational Physics 17

Page 18: 04 molecular dynamics

0101011

0000000

1110100

0110001

0

1

Example

• Write the numerical expression for a

parabolic motion when air friction is

considered

• g = - g j• g = - g j

• r0, v0

• b is for Ff = - bv

v2011.09.20 FI3102 Computational Physics 18

Page 19: 04 molecular dynamics

0101011

0000000

1110100

0110001

0

1

Example (cont.)

• Write the numerical expression for a

charged particle that moves perpendicular

to external magnetic field B, initial velocity

is v0at r

0is v

0at r

0

v2011.09.20 FI3102 Computational Physics 19

Page 20: 04 molecular dynamics

0101011

0000000

1110100

0110001

0

1

Is MD so perfect?

• Unfortunately not

• It has problem even all forces are already

considered

• It can produce unreported results or • It can produce unreported results or

unexpected (wrong) results

• It has problem in time stamp

v2011.09.20 FI3102 Computational Physics 20

Page 21: 04 molecular dynamics

0101011

0000000

1110100

0110001

0

1

Time stamp problem

• Nanodroplet (Sedighi, Murad, and

Aggarwal, 2010):

v2011.09.20 FI3102 Computational Physics 21

Page 22: 04 molecular dynamics

0101011

0000000

1110100

0110001

0

1

Time stamp problem (cont.)

• continue from previous

v2011.09.20 FI3102 Computational Physics 22

Page 23: 04 molecular dynamics

0101011

0000000

1110100

0110001

0

1

Time stamp problem (cont.)

• Granular oscillation (Chen, Lin, Li, and Li,

2009):

v2011.09.20 FI3102 Computational Physics 23

Page 24: 04 molecular dynamics

0101011

0000000

1110100

0110001

0

1

Time stamp problem (cont.)

v2011.09.20 FI3102 Computational Physics 24

Page 25: 04 molecular dynamics

0101011

0000000

1110100

0110001

0

1

References

1. Wikipedia contributors, “Molecular dynamics”, Wikipe-

dia, The Free Encyclopedia, 5 September 2011, 15:49

UTC, oldid:448597141 [2011.09.21 09.34+07]

2. Michael P. Allen, “Introduction to Molecular Dynamics

Simulation”, in Computational Soft Matter: From

v2011.09.20 FI3102 Computational Physics 25

Simulation”, in Computational Soft Matter: From

Synthetic Polymers to Proteins, Lecture Notes, Norberg

Attig, Kurt Binder, Helmut Grubmüller, Kurt Kremer

(Eds.), John von Nuemann Institut for Computing,

Jülich, NIC Series, Vol. 23, pp. 1-28, 2004

Page 26: 04 molecular dynamics

0101011

0000000

1110100

0110001

0

1

References (cont.)

3. Furio Ercolessi, “A Molecular Dynamics Primer”, Spring

College in Computational Physics, ICTP, Trieste,

9/10/1997 URI http://www.fisica.uniud.it/~ercolessi/md

/md/node6.html [2011.09.21 09.51+07]

4. Martin Karplus and J. Andrew McCammon, “Molecular 4. Martin Karplus and J. Andrew McCammon, “Molecular

Dynamics Simulations of Biomolecules”, Nature

Structural Biology 9 (9), 646-653 (2002)

5. G. Kresse and J. Hafner, “Ab Initio Molecular Dynamics

for Liquid Metals”, Physical Review B 47 (1), 558-561

(1993)

v2011.09.20 FI3102 Computational Physics 26

Page 27: 04 molecular dynamics

0101011

0000000

1110100

0110001

0

1

References (cont.)

6. Jean Paul Ryckaert, Giovanni Ciccotti, and Herman J.

C. Berendsen, “”Numerical Integration of the Cartesian

Equations of Motion of a System with Constraints:

Molecular Dynamics of n-Alkanes”, Journal of

Computational Physics 23 (3), 327-341 (1977)Computational Physics 23 (3), 327-341 (1977)

7. Jason A. C. Gallas, Hans J. Herrmann, Thorsten

Pöschel, and Stefan Sokolowski, “Molecular Dynamics

Simulation of Size Segregation in Three Dimensions”,

Journal of Statistical Physics 82 (1-2), 443-450 (1996)

v2011.09.20 FI3102 Computational Physics 27

Page 28: 04 molecular dynamics

0101011

0000000

1110100

0110001

0

1

References (cont.)

8. Charles Jaffé, Shane D. Ross, Martin. W. Lo, Jerrold

Marsden, David Farrelly, and T. Uzer, “Statistical

Theory of Asteroid Escape Rates”, Physical Review

Letters 89 (1), 011101 (2002)

9. Nahid Sedighi, Sohail Murad, and Suresh K. Aggarwal, 9. Nahid Sedighi, Sohail Murad, and Suresh K. Aggarwal,

“Molecular Dynamics Simulations of Nanodroplet

Spreading on Solid Surfaces, Effect of Droplet Size”,

Fluid Dynamics Research 42 (3), 035501 (2010)

10. Kuo-Ching Chen, Chi-Hao Lin, Chia-Chieh Li, and Jian-

Jhih Li, “Dual Granular Temperature Oscillation of a

Compartmentalized Bidisperse Granular Gas”, Journal

of the Physical Society of Japan 78 (4), 044401 (2009)v2011.09.20 FI3102 Computational Physics 28

Page 29: 04 molecular dynamics

0101011

0000000

1110100

0110001

0

1

Thank you (for your patience)

v2011.09.20 FI3102 Computational Physics 29

(for your patience)