13
Public Economics 20132014 Manon Cuylits 28 Topic 5 : Mitigation options “Reaching 80% to 95% GHG emissions reduction [...] is possible. Nevertheless, reaching this target is very challenging, will imply large reductions in all sectors and a thorough understanding of the various interconnected dimensions is key.” Pestiaux et al. (2013), Scenarios for a low carbon Belgium by 2050, Forthcoming 1. Introduction Objective of this topic: analyse what can be done to reduce GHG emissions and analyse economic impacts of these actions Models are used to: Assess the emission reduction possibilities at the level of a sector/country/region/world Assess the impacts of emission reductions on several indicators such as costs, employment, air pollution, etc... This requires to begin with a clear view on: Possible technological levers Possible behavioural levers Their combination 2. Casestudy on Belgium : OPEERA accounting model 2.1. Overall approach Establish historical GHG emissions per sector (starting point, e.g. 2010) Establish a midterm or longterm “businessasusual” scenario (e.g. up to 2020 or 2050), i.e. under no additional policies/measures/actions, to be used as a benchmark/reference against which the impact of targets/policies/ actions (levers) are to be assessed; In each (sub)sector, identify emission reduction levers and possible ambition levels for each lever: o Possible technologies aimed at reducing GHG emissions, with due attention to the level of deployment (existing, in demonstration phase, in R&D phase, ...) o Activity levels, such as travel demand per person or industrial production Build scenarios, i.e. coherent set of assumptions and levers leading to required level of total emission reductions in 2050 Analyse the impacts of each scenario on e.g. energy security, final energy demand, costs, etc... Source: Pestiaux et al. (2013)

Topic 5 mitigation options

Embed Size (px)

Citation preview

Page 1: Topic 5   mitigation options

Public  Economics  2013-­‐2014     Manon  Cuylits    

28    

Topic  5  :  Mitigation  options    “Reaching  80%  to  95%  GHG  emissions  reduction  [...]  is  possible.  Nevertheless,  reaching  this  target   is   very   challenging,   will   imply   large   reductions   in   all   sectors   and   a   thorough  understanding  of  the  various  interconnected  dimensions  is  key.”    Pestiaux  et  al.  (2013),  Scenarios  for  a  low  carbon  Belgium  by  2050,  Forthcoming    

1.  Introduction    Objective  of  this  topic:  analyse  what  can  be  done  to  reduce  GHG  emissions  and  analyse  economic  impacts  of  these  actions      Models  are  used  to:    

• Assess   the   emission   reduction   possibilities   at   the   level   of   a    sector/country/region/world    

• Assess   the   impacts   of   emission   reductions   on   several   indicators   such   as   costs,  employment,  air  pollution,  etc...    

 This  requires  to  begin  with  a  clear  view  on:    

• Possible  technological  levers    • Possible  behavioural  levers    • Their  combination    

 

2.  Case-­‐study  on  Belgium  :  OPEERA  accounting  model  

2.1.  Overall  approach    

• Establish  historical  GHG  emissions  per  sector  (starting  point,  e.g.  2010)    • Establish  a  mid-­‐term  or  long-­‐term  “business-­‐as-­‐usual”  scenario  (e.g.  up  to  2020  

or   2050),   i.e.   under   no   additional   policies/measures/actions,   to   be   used   as   a  benchmark/reference   against   which   the   impact   of   targets/policies/   actions  (levers)  are  to  be  assessed;    

• In   each   (sub)sector,   identify   emission   reduction   levers   and   possible   ambition  levels  for  each  lever:    

o Possible   technologies   aimed   at   reducing   GHG   emissions,   with   due  attention  to  the  level  of  deployment  (existing,  in  demonstration  phase,  in  R&D  phase,  ...)    

o Activity   levels,   such   as   travel   demand   per   person   or   industrial  production    

• Build  scenarios,   i.e.  coherent  set  of  assumptions  and   levers   leading   to  required  level  of  total  emission  reductions  in  2050  

• Analyse   the   impacts   of   each   scenario   on   e.g.   energy   security,   final   energy  demand,  costs,  etc...  

 Source:  Pestiaux  et  al.  (2013)  

   

Page 2: Topic 5   mitigation options

Public  Economics  2013-­‐2014     Manon  Cuylits    

29    

Main  question:  how  to  reduce  emissions  by  80  to  95%  by  2050  wrt  1990  and  what  are  the  main  impacts  of  such  large  reductions?

   Historical  GHG  emissions  Belgium  has  reduced  its  emissions  by  ~8%  since  1990  

 Historical  distribution  of  emissions  Emissions  in  2010  are  relatively  equally  distributed  between  power,  industry,  buildings  and  transport  

 

Page 3: Topic 5   mitigation options

Public  Economics  2013-­‐2014     Manon  Cuylits    

30    

Methodology  Based  on  open  and   transparent   tool  OPE2RA  developed  by  CLIMACT  and  VITO  on   the  basis  of  DECC  (UK)  pathways  calculator    

   

Building  scenarios  

2.2.  Sectoral  analysis  

2.2.1.  Transport  Observations:  

1. Transport   represents   about   a  quarter   of   the   overall   energy   consumption   in  Belgium    

2. The   Belgian   motorized   transport   is   somewhat   less   car-­‐based   than   the  European  average    

3. The  density  of  the  Belgian  highway  network  is  far  above  European  average    4. The   overall   distances   covered   by   passengers   since   1990   increased   by   30%,  

 cars  represent  ~80%    5. Between  1990  and  2008,  cars  lost  some  share  to  buses  and  rail  transport    6. The  CO2  emissions  of  new  vehicles  have  been  decreasing  in  recent  years    

Page 4: Topic 5   mitigation options

Public  Economics  2013-­‐2014     Manon  Cuylits    

31    

7. Urbanization   levels   and   land   planning   play  a   crucial   role   in  GHG  mitigation  policies    

8. The  availability  of  public  transport  influences  the  choice  of  transport  modes    9. The   Belgian  modal   split   for   goods   is   somewhat   less   road-­‐oriented   than   the  

European  average    10. Road   transport   represents   the   bulk   of   energy   consumption   across   passenger  

and  goods,  and  across  transport  modes    

Levers  for  domestic  passenger  transport  (ambition  levels  1  and  4)

   

Page 5: Topic 5   mitigation options

Public  Economics  2013-­‐2014     Manon  Cuylits    

32    

Visualisation  of  the  different  levels  of  technology  distribution  for  cars

 

Costs  :  capital   (CAPEX)  and  operational   (OPEX)  expenditures   in  2010  and  2050  –  Passenger  cars  

   

Page 6: Topic 5   mitigation options

Public  Economics  2013-­‐2014     Manon  Cuylits    

33    

Levers  for  freight  transport  (ambition  levels  1  and  4)  

   

2.2.2.  Buildings    Levers  in  residential  buildings  include:

• for   heating:   compactness   of   buildings   (flats   vs   houses),   heating   comfort   level,  thermal  efficiency,  electrification  level,  innovative  heating  technologies;  

• for  lighting  and  appliances:  demand/efficiency,  electrification    

     

Page 7: Topic 5   mitigation options

Public  Economics  2013-­‐2014     Manon  Cuylits    

34    

2.2.3.  Agriculture    Levers   include:   number   of   animals   and   meat   consumption,   emissions   intensity   per  animal  (enteric  fermentation  +  manure  management),  evolution  of  soil  emissions

 

2.2.4.  Industry  

 

 

     

Page 8: Topic 5   mitigation options

Public  Economics  2013-­‐2014     Manon  Cuylits    

35    

2.2.5.  Energy  production  (Energy  supply)    Levers   include   biomass,   geothermal,   wind   (onshore   and   offshore),   solar   PV,   solar  thermal,  Carbon  capture  and  sequestration  (CCS),  imports  of  electricity

 

2.3.  Scenarios  

GHG  Emissions  

 Main  indicators  in  2050  

 

Page 9: Topic 5   mitigation options

Public  Economics  2013-­‐2014     Manon  Cuylits    

36    

2.4.  Costs  of  mitigation  scenarios    Undiscounted  costs  =>  does  not  assess  ‘private  profitability’  of  investments

 With  discounting  of  10%  (thus  rather  high  rate):  

   More  on  discounting  è  See  topic  8            

Page 10: Topic 5   mitigation options

Public  Economics  2013-­‐2014     Manon  Cuylits    

37    

2.5.  Build  and  assess  your  own  low  carbon  scenario    

• UK:  http://2050-­‐calculator-­‐tool.decc.gov.uk     • BE:  forthcoming  on  www.climatechange.be/2050   • Walloon  region:  http://www.wbc2050.be   • China:  http://2050pathway-­‐en.chinaenergyoutlook.org   • Others  ...  

 

3.  Various  approaches  

3.1.  Modelling  approaches  

Accounting  models  (e.g.  OPE2RA,  SAVER-­‐LEAP,  EPM,  Anonymous  model  of  FPB)    

• Central  modelling  logic:  to  guarantee  consistency  in  energy  accounting.    • Defining   activity   drivers   and   pathways   for   energy   efficiency   or   carbon  

intensity   improvements   at   the   sectoral   levels   are   the   core   elements   of   the  methodology.    

• Technologies   are   implicit   (no   ‘production   function’)   and   costs   are   often  considered  in  an  ex-­‐post  calculation.    

• The  particular  strength  of  accounting  models  is:    o Their  transparency  and  flexibility  in  presenting  energy  analysis  concepts  

whilst  guaranteeing  consistency  in  energy  accounting.    o They   can   be   useful   to   explore   possible   pathways   and   provide   more  

quantitative   analysis   on   the   required   targets   to   be   reached   by   the  underlying  hypothesis  at  sectoral  levels    

o Can  be  useful  to  explore  the  social  acceptance  of  the  transition  as  well  as  its   contours   by   stakeholder   consultation   as   they   provide   powerful  reporting  capabilities.  

Macro-­‐economic   models:   General   equilibrium   macro-­‐economic   model,   econometric  macro-­‐economic  models  (e.g.  GEM-­‐E3,  HERMES,  NEMESIS)    

• Macroeconomic  models   represent   the  whole   economy   and   include   feedback  mechanisms  from  and  to  the  energy  system.    

• These  models   are   based   on   the   same   type   of   behavioural   assumptions   for   the  economic  agents  but  they  differ  regarding    

o the  market  equilibrium  assumptions  and    o the  dynamic  path  modelling.    

• Econometric  models  are  more  oriented  towards  the  adjustment  path  in  the  short  to  medium  term  allowing  market  disequilibrium;  basis  is  :  Y  =  C  +I+G+X-­‐M    

• General   equilibrium   model   are   medium   to   long   term   oriented   evaluating   the  impact  of  a  policy  when  the  full  effect  are  accounted  for;  based  on  maximisation  of  Utility  functions.    

Partial  equilibrium  models  of  the  energy  system  (e.g.  TIMES  and  PRIMES)  

• Have  a  detailed  representation  of  technologies  in  a  consistent  framework    • Partial   equilibrium  means   that   the   energy   demand   (curve)   is   fixed   (which    is  

NOT  the  case  in  macroeconomic  models)    • PRIMES  and  TIMES  differ  in  their  mathematical  formulations:    

Page 11: Topic 5   mitigation options

Public  Economics  2013-­‐2014     Manon  Cuylits    

38    

o PRIMES  models  the  economic  agent’s  behaviour  (describing  what  would  happen   if);   this   takes   place   through,   a.o.   high   discount   rates   for  consumers  reflecting  some  form  of  information  failure  (private  discount  rate  =>  see  topic  8)    

o TIMES  is  more  normative  from  the  point  of  view  of  the  public  authority  (prescribing  what   optimally   should   happen)   through,   a.o.   low   discount  rates  (close  to  social  discount  rate  =>  see  topic  8)    

• Example:  on  blackboard    

Trade-­‐offs  

 

3.2.  What  do  we  mean  by  «  costs  »  ?    Macroeconomic  models:  GDP  and/or  welfare:    

• Macroeconom(étr)ic   models   and   some   CGE   models,   i.e.   required   feedback   of,  typically,   changes   in   energy   system   on   the   whole   economy,   including   public  sector  (taxes,  revenues,  ...)    

• Thus   level   of   economic   activity   (GDP),   also   per   sector,   employment   effects,  possibly  competitiveness,  ...    

• Computable  general  equilibrium  (CGE)  models,  i.e.  based  on  utility  function,  thus  relative  change  in  Utility  (%)  is  computed    

 Partial  equilibrium  models:  energy  system  including  loss  of  consumer  surplus:    

• Costs  of  technologies    • Possibly,  loss  of  consumer  surplus    

 Accounting  models:  energy  system  costs:  Capex  –  Opex  –  Fuel      Other   important   costs   (or   benefits)   are   usually   not   included   in   models   and   must   be  computed   separately:   health   effects   of   changes   in   emissions,   energy   security,   traffic  congestion,  ...        

Page 12: Topic 5   mitigation options

Public  Economics  2013-­‐2014     Manon  Cuylits    

39    

4.  Appendix  

A.1  Global  GHG  emissions  and  their  distribution    

GHG  emissions  by  sector  in  2010  (cfr.  Topic  1)  

 

Shares  of  GHG  emissions  per  sector  in  2010  (selection  of  countries)  

     

Page 13: Topic 5   mitigation options

Public  Economics  2013-­‐2014     Manon  Cuylits    

40    

A.2  What  are  negative  emissions?

Negative  emissions    IPCC  scenarios  to  keep  temperature  rise  below  2°C  indicate  that  it  might  be  required  to  reduce  emissions  below  0  (i.e.  net  absorption  of  carbon  dioxide).  What  are  negative  emissions?  IEA  (2013),  Box  1.1,  p.17:

 

 

Readings    

• Pestiaux,  J.,  Cornet,  M.,  Duerinck,  J.,  Laes,  E.,  Lodewijks,  P.,  Meynaerts,  E.,  Renders,  N.  and  Vermeulen,  P.  (2013),  Scenarios  for  a  low  carbon  Belgium  by  2050,  Final  Report,  Study  performed   for   the   Climate   Change   Section   of   the   Federal   Public   Service   Health,   Food  Chain  Saftey  and  Environment,  forthcoming  (www.climatechange.be/2050)    

• IEA  (2013),  Redrawing  the  energy-­‐climate  map,  World  Energy  Outlook  Special  Report.    • Duerinck,  J.  (2012),  Transition  towards  a  low  carbon  society  in  2050:  Status  of  long  term  

modelling  in  Belgium,  Mimeo  (forthcoming  on  www.climatechange.be/2050)