11
The “Checklist” > 2a. Estimation: Flexible Probabilities > Historical Historical estimation with Flexible Probabilities Topic: non-parametric estimation of the invariants distribution and its features We generalize to the Flexible Probabilities the estimation approach based on the Historical distribution We show how to generalize to the Flexible Probabilities other non-parametric or semi-parametric approaches ARPM - Advanced Risk and Portfolio Management - arpm.co This update: Feb-01-2017 - Last update

ARPM _ The “Checklist” - 2a. Estimation Flexible Probabilities - Historical

Embed Size (px)

Citation preview

The “Checklist” > 2a. Estimation: Flexible Probabilities > Historical

Historical estimation with Flexible Probabilities

• Topic: non-parametric estimation of the invariants distribution and itsfeatures

• We generalize to the Flexible Probabilities the estimation approachbased on the Historical distribution

• We show how to generalize to the Flexible Probabilities othernon-parametric or semi-parametric approaches

ARPM - Advanced Risk and Portfolio Management - arpm.co This update: Feb-01-2017 - Last update

The “Checklist” > 2a. Estimation: Flexible Probabilities > HistoricalFrom historical distribution to Flexible Probabilities

Canonical historical estimationThe historical scenarios with uniform probabilities {εt, pt ≡ 1

t}tt=1 define

the historical distribution, whose pdf and cdf read respectively

• Historical pdf

fHistε (x) ≡ 1

t

∑tt=1δ

(εt)(x) (2a.22)

• Historical cdfFHistε (x) ≡ 1

t

∑tt=1 1εt≤x (2a.27)

Glivenko-Cantelli theorem

“ lim ” t→∞ fHistε = fε (2a.23)

More formally

supx|FHistε (x)− Fε (x) | → 0 almost surely (2a.28)

ARPM - Advanced Risk and Portfolio Management - arpm.co This update: Feb-01-2017 - Last update

The “Checklist” > 2a. Estimation: Flexible Probabilities > HistoricalFrom historical distribution to Flexible Probabilities

Canonical historical estimationThe historical scenarios with uniform probabilities {εt, pt ≡ 1

t}tt=1 define

the historical distribution, whose pdf and cdf read respectively

• Historical pdf

fHistε (x) ≡ 1

t

∑tt=1δ

(εt)(x) (2a.22)

• Historical cdfFHistε (x) ≡ 1

t

∑tt=1 1εt≤x (2a.27)

Glivenko-Cantelli theorem

“ lim ” t→∞ fHistε = fε (2a.23)

More formally

supx|FHistε (x)− Fε (x) | → 0 almost surely (2a.28)

ARPM - Advanced Risk and Portfolio Management - arpm.co This update: Feb-01-2017 - Last update

The “Checklist” > 2a. Estimation: Flexible Probabilities > HistoricalFrom historical distribution to Flexible Probabilities

Example 2a.6. Glivenko Cantelli theorem

• Invariants: εt ∼ LogN (0, 0.25)

• Number of observations: t ≈ 2500

ARPM - Advanced Risk and Portfolio Management - arpm.co This update: Feb-01-2017 - Last update

The “Checklist” > 2a. Estimation: Flexible Probabilities > HistoricalFrom historical distribution to Flexible Probabilities

Generalization with Flexible Probabilities

The historical scenarios with Flexible Probabilities {εt, pt}tt=1 define theHistorical with Flexible Probabilities (HFP) distribution, whose pdf and cdfread respectively

• HFP pdffHFPε (x) ≡

∑tt=1 ptδ

(εt)(x) (2a.24)

• HFP cdfFHFPε (x) ≡

∑tt=1 pt1εt≤x (2a.26)

Generalized Glivenko-Cantelli theorem

“ lim ”ens(p)→∞ fHFPε = fε (2a.25)

where ens(p) is the Effective Number of Scenarios (2a.21).

ARPM - Advanced Risk and Portfolio Management - arpm.co This update: Feb-01-2017 - Last update

The “Checklist” > 2a. Estimation: Flexible Probabilities > HistoricalFrom historical distribution to Flexible Probabilities

Generalization with Flexible Probabilities

The historical scenarios with Flexible Probabilities {εt, pt}tt=1 define theHistorical with Flexible Probabilities (HFP) distribution, whose pdf and cdfread respectively

• HFP pdffHFPε (x) ≡

∑tt=1 ptδ

(εt)(x) (2a.24)

• HFP cdfFHFPε (x) ≡

∑tt=1 pt1εt≤x (2a.26)

Generalized Glivenko-Cantelli theorem

“ lim ”ens(p)→∞ fHFPε = fε (2a.25)

where ens(p) is the Effective Number of Scenarios (2a.21).

ARPM - Advanced Risk and Portfolio Management - arpm.co This update: Feb-01-2017 - Last update

The “Checklist” > 2a. Estimation: Flexible Probabilities > HistoricalFrom historical distribution to Flexible Probabilities

Example 2a.7. Generalized Glivenko Cantelli theorem

• Invariants: εt ∼ Gamma (1, 2)

• FP: time exponential decay probabilities, τHL ≡ t/2, target time t∗ ≡ t• Effective Number of Scenarios: ens(p) ≈ 2316

• Number of observations: t ≈ 2500

ARPM - Advanced Risk and Portfolio Management - arpm.co This update: Feb-01-2017 - Last update

The “Checklist” > 2a. Estimation: Flexible Probabilities > HistoricalFrom historical distribution to Flexible Probabilities

Extracting Properties

A generic property θε ≡ S{εt} reads

θε = gS[fε] (2a.29)

for some functional gS.

How to estimate the properties of fε?

Historical with Flexible Probabilities (HFP) estimate

θHFP

ε ≡ SHFP{ε} (2a.33)

fHFPε ≈

ens(p)→∞fε

gS

y ygS

θHFP

ε ≈ens(p)→∞

θε

(2a.35)

ARPM - Advanced Risk and Portfolio Management - arpm.co This update: Feb-01-2017 - Last update

The “Checklist” > 2a. Estimation: Flexible Probabilities > HistoricalFrom historical distribution to Flexible Probabilities

Extracting Properties

A generic property θε ≡ S{εt} reads

θε = gS[fε] (2a.29)

for some functional gS.

How to estimate the properties of fε?

Historical with Flexible Probabilities (HFP) estimate

θHFP

ε ≡ SHFP{ε} (2a.33)

fHFPε ≈

ens(p)→∞fε

gS

y ygS

θHFP

ε ≈ens(p)→∞

θε

(2a.35)

ARPM - Advanced Risk and Portfolio Management - arpm.co This update: Feb-01-2017 - Last update

The “Checklist” > 2a. Estimation: Flexible Probabilities > HistoricalKernel estimation with Flexible Probabilities

Kernel estimation with Flexible Probabilities

• Consider any technique that gives pt ≡ 1/t to all the observations;• Replace the equal-weight probabilities with general FlexibleProbabilities {pt}tt=1.

• Consider the kernel density estimate

fKerε (x) ≡ 1

t

∑tt=1δ

(εt)

h2 (x) (2a.55)

• Extend to the Kernel with Flexible Probabilities (KFP)pdf

fKFPε (x) ≡

∑tt=1ptδ

(εt)

h2 (x) (2a.57)

Example: KFP generalized mean

ARPM - Advanced Risk and Portfolio Management - arpm.co This update: Feb-01-2017 - Last update

The “Checklist” > 2a. Estimation: Flexible Probabilities > HistoricalKernel estimation with Flexible Probabilities

Kernel estimation with Flexible Probabilities

• Consider any technique that gives pt ≡ 1/t to all the observations;• Replace the equal-weight probabilities with general FlexibleProbabilities {pt}tt=1.

• Consider the kernel density estimate

fKerε (x) ≡ 1

t

∑tt=1δ

(εt)

h2 (x) (2a.55)

• Extend to the Kernel with Flexible Probabilities (KFP)pdf

fKFPε (x) ≡

∑tt=1ptδ

(εt)

h2 (x) (2a.57)

Example: KFP generalized mean

ARPM - Advanced Risk and Portfolio Management - arpm.co This update: Feb-01-2017 - Last update