Transcript
Page 1: Uniform Order Eleven of Eight-Step Hybrid Block Backward

2357 Pius Tumba1, IJMCR Volume 09 Issue 08 August 2021

Volume 09 Issue 08 August 2021, Page no. – 2357-2370

Index Copernicus ICV: 57.55, Impact Factor: 7.184

DOI: 10.47191/ijmcr/v9i8.01

Uniform Order Eleven of Eight-Step Hybrid Block Backward Differentiation Formulae for the Solution of Stiff

Ordinary Differential Equations

Pius Tumba1, Sunday Babuba2, A.I. Bakari3 1Department of Mathematics, Federal University, Gashua, Nigeria 2,3Department of Mathematics, Federal University, Dutse, Nigeria

ARTICLE INFO ABSTRACT

Published Online:

07 August 2021

Corresponding Author:

Pius Tumba

In this research, we developed a uniform order eleven of eight step Second derivative hybrid block backward differentiation formula for integration of

stiff systems in ordinary differential equations. The single continuous formulation developed is evaluated at some grid point of π‘₯ = π‘₯𝑛+𝑗 , 𝑗 =

0,1,2,3,4,5 π‘Žπ‘›π‘‘6 and its first derivative was also evaluated at off-grid point π‘₯ = π‘₯𝑛+𝑗 , 𝑗 =15

2 and grid point π‘₯ = π‘₯𝑛+𝑗 , 𝑗 = 8. The method is suitable

for the solution of stiff ordinary differential equations and the accuracy and stability properties of the newly constructed method are investigated and

are shown to be A-stable. Our numerical results obtained are compared with the theoretical solutions as well as ODE23 solver.

KEYWORDS: Backward Differentiation Formula, Second Derivative, off-step points, Stiff ODEs

1. INTRODUCTION

In sciences, researchers are not desired in all solutions to a differential equation, but only in

those extra conditions satisfied solutions. For instance, in the case of Newton’s second law

of motion for a point particle, one could be actually interested only in solutions such that the

particle that specifically position at some initial time. Such condition is called an initial

condition.

A first order ordinary differential equations (ODEs) on the unknown 𝑦 is

𝑦′(𝑑) = 𝑓(𝑑, 𝑦(𝑑)) and 𝑦(𝑑0) = 𝑦0 π‘Ž ≀ 𝑑 ≀ 𝑏 (1)

where f is continuous within the interval of integration. is sufficiently differentiable and

satisfies a Lipschitz condition (1).

Moreover, Awoyemi and Idowu (2005) derived a class of hybrid collocation methods for

third–order ordinary differential equations. Hybrid block scheme were constructed to defeat

the Dahlquist (1956) barrier theorem in accordance with the conventional linear multistep

method was changed to include off-step points of derivation process (see Lambert (1973)

and Gear (1965)).

Similarly, Researchers like Butcher (2003), Zarina et al. (2005), Awoyemi et al. (2007),

Areo etal. (2011), Ibijola et al. (2011) have all constructed linear multistep methods (LMMs)

to generate numerical solution to (1).

Nasir et al. (2011), Zawawi et al. (2012), Akinfenwa et al. (2013), construct Block

Backward Differentiation Formulas for Solving Ordinary Differential Equations. This

Page 2: Uniform Order Eleven of Eight-Step Hybrid Block Backward

β€œUniform Order Eleven of Eight-Step Hybrid Block Backward Differentiation Formulae for the Solution of Stiff Ordinary Differential Equations”

2358 Pius Tumba1, IJMCR Volume 09 Issue 08 August 2021

method possesses the requirement for stiffly stable and suitable to solve stiff problems. The

numerical results were presented to verify the efficiency of this method as compared to the

Classical Backward Differentiation Formula (BDF) method and ode15s in Matlab. The

method outperformed the BDF method and ode15s in terms of maximum error and execution

time.

2. CONSTRUCTION OF UNIFORM ORDER ELEVEN OF EIGHT-STEP

HYBRID

In this research, we constructed eight-step hybrid block backward differentiation formula.

The method will be applied in block form by Onumanyi et al (1994,1999) where π‘˜ βˆ’ 𝑠𝑑𝑒𝑝

multistep collocation method with 𝑑 interpolation points and π‘š collocation points were

obtained as follows:

𝑦(π‘₯) = βˆ‘ 𝛼𝑗(π‘₯)𝑦𝑛+𝑗 + β„Ž βˆ‘ 𝛽𝑗(π‘₯)𝑓𝑛+𝑗

π‘ βˆ’1

𝑗=0

π‘Ÿβˆ’1

𝑗=0

(2)

and its extension it to the second derivative gives the general form of the continuous k –step 2nd derivative linear multistep method as:

𝑦(π‘₯) = βˆ‘ 𝛼𝑗(π‘₯)𝑦𝑛+𝑗 + β„Ž βˆ‘π›½π‘—(π‘₯)𝑓𝑛+𝑗 + β„Ž2 βˆ‘ 𝛾𝑗(π‘₯)𝑔𝑛+𝑗

π‘‘βˆ’1

𝑗=0

π‘ βˆ’1

𝑗=0

π‘Ÿβˆ’1

𝑗=0

(3)

Here the coefficients 𝛼𝑗(π‘₯), 𝛽𝑗(π‘₯) and 𝛾𝑗(π‘₯) are polynomials of degree (𝑝 βˆ’ 1) .

where

𝛼𝑗(π‘₯) = βˆ‘ 𝛼𝑗.𝑖+1π‘₯𝑖

π‘Ÿ+𝑠+π‘‘βˆ’1

𝑖=0

(4)

β„Žπ›½π‘—(π‘₯) = βˆ‘ β„Žπ›½π‘—.𝑖+1π‘₯𝑖

π‘Ÿ+𝑠+π‘‘βˆ’1

𝑖=0

(5)

β„Ž2𝛽𝑗(π‘₯) = βˆ‘ β„Ž2𝛾𝑗.𝑖+1π‘₯𝑖

π‘Ÿ+𝑠+π‘‘βˆ’1

𝑖=0

(6)

2.1. Specification of the Hybrid Block Methods

From equation (2) - (6) we propose continuous k-step of extended block hybrid backward differentiation formula of the form

𝑦(π‘₯) = βˆ‘π›Όπ‘—(π‘₯)𝑦𝑛+𝑗 + β„Žπ›½π‘˜βˆ’1(π‘₯)𝑓𝑛+π‘˜βˆ’1 + β„Žπ›½2π‘˜βˆ’12

𝑓𝑛+

2π‘˜βˆ’12

+ β„Žπ›½π‘˜(π‘₯)𝑓𝑛+π‘˜ + β„Ž2π›Ύπ‘˜βˆ’1(π‘₯)𝑔𝑛+π‘˜βˆ’1 + β„Ž2π›Ύπ‘˜(π‘₯)𝑔𝑛+π‘˜

π‘˜

𝑗

(7)

2.1 .2 Eight Step Method with One Off-Step Point

In this case = 8 , 𝑆 = 8, 𝑑 = 8 and (7) becomes

𝑦(π‘₯) = 𝛼0(π‘₯)𝑦𝑛 + 𝛼1(π‘₯)𝑦𝑛+1 + 𝛼2(π‘₯)𝑦𝑛+2 + 𝛼3(π‘₯)𝑦𝑛+3 + 𝛼4(π‘₯)𝑦𝑛+4 + 𝛼5(π‘₯)𝑦𝑛+5 + 𝛼6(π‘₯)𝑓𝑛+6 + 𝛼7(π‘₯)𝑦𝑛+7 = β„Ž[𝛽0(π‘₯)𝑓𝑛 + 𝛽1(π‘₯)𝑓𝑛+1 + 𝛽2(π‘₯)𝑓𝑛+2 + 𝛽3(π‘₯)𝑓𝑛+3 + 𝛽4(π‘₯)𝑓𝑛+4 +

𝛽5(π‘₯)𝑓𝑛+5 + 𝛽6(π‘₯)𝑓𝑛+6 + 𝛽7(π‘₯)𝑓𝑛+7 + 𝛽15

2

(π‘₯)𝑓𝑛+

15

2

+ 𝛽8(π‘₯)𝑓𝑛+8] + β„Ž2[𝛾0(π‘₯)𝑔𝑛 + 𝛾1(π‘₯)𝑔𝑛+1 + 𝛾2(π‘₯)𝑔𝑛+2 + 𝛾3(π‘₯)𝑔𝑛+3 + 𝛾4(π‘₯)𝑔𝑛+4 + 𝛾5(π‘₯)𝑔𝑛+5 + 𝛾6(π‘₯)𝑔𝑛+6 + 𝛾7(π‘₯)𝑔𝑛+7 +

𝛾8(π‘₯)𝑔𝑛+8] (8)

and interpolating (4)at π‘₯ = π‘₯𝑛 , π‘₯𝑛+1, π‘₯𝑛+2 , π‘₯𝑛+3, π‘₯𝑛+4, π‘₯𝑛+5, π‘₯𝑛+6, π‘₯𝑛+7 and collocating (5) at π‘₯ = π‘₯𝑛+7, π‘₯𝑛+15

2,π‘₯𝑛+8 to give the systems of equation.

Page 3: Uniform Order Eleven of Eight-Step Hybrid Block Backward

β€œUniform Order Eleven of Eight-Step Hybrid Block Backward Differentiation Formulae for the Solution of Stiff Ordinary Differential Equations”

2359 Pius Tumba1, IJMCR Volume 09 Issue 08 August 2021

𝑦(π‘₯) = βˆ‘π‘Žπ‘—π‘₯𝑗 = 𝑦𝑛 (9)

6

𝑗=0

𝑦′(π‘₯) = βˆ‘π‘—π‘Žπ‘—π‘₯π‘—βˆ’1 = 𝑓𝑛+𝑗 (10)

6

𝑗=1

𝑦′′(π‘₯) = βˆ‘π‘—(𝑗 βˆ’ 1)π‘Žπ‘—π‘₯π‘—βˆ’2 = 𝑓𝑛+𝑗 (11)

6

𝑗=2

Expressing the system of equations (9) -(11) in the form 𝐴𝑋 = π‘Œ as:

A=

[ 1 π‘₯𝑛 π‘₯𝑛

2 π‘₯𝑛3 π‘₯𝑛

4 π‘₯𝑛5 π‘₯𝑛

6 π‘₯𝑛7 π‘₯𝑛

8 π‘₯𝑛9 π‘₯𝑛

10 π‘₯𝑛11 π‘₯𝑛

12

1 π‘₯𝑛+1 π‘₯𝑛+12 π‘₯𝑛+1

3 π‘₯𝑛+14 π‘₯𝑛+1

5 π‘₯𝑛+16 π‘₯𝑛+1

7 π‘₯𝑛+18 π‘₯𝑛+1

9 π‘₯𝑛+110 π‘₯𝑛+1

11 π‘₯𝑛+112

1 π‘₯𝑛+2 π‘₯𝑛+22 π‘₯𝑛+2

3 π‘₯𝑛+24 π‘₯𝑛+2

5 π‘₯𝑛+26 π‘₯𝑛+2

7 π‘₯𝑛+28 π‘₯𝑛+2

9 π‘₯𝑛+210 π‘₯𝑛+2

11 π‘₯𝑛+212

1 π‘₯𝑛+3 π‘₯𝑛+32 π‘₯𝑛+3

3 π‘₯𝑛+34 π‘₯𝑛+3

5 π‘₯𝑛+36 π‘₯𝑛+3

7 π‘₯𝑛+38 π‘₯𝑛+3

9 π‘₯𝑛+310 π‘₯𝑛+3

11 π‘₯𝑛+312

1 π‘₯𝑛+4 π‘₯𝑛+42 π‘₯𝑛+4

3 π‘₯𝑛+44 π‘₯𝑛+4

5 π‘₯𝑛+46 π‘₯𝑛+4

7 π‘₯𝑛+48 π‘₯𝑛+4

9 π‘₯𝑛+410 π‘₯𝑛+4

11 π‘₯𝑛+412

1 π‘₯𝑛+5 π‘₯𝑛+52 π‘₯𝑛+5

3 π‘₯𝑛+54 π‘₯𝑛+5

5 π‘₯𝑛+56 π‘₯𝑛+5

7 π‘₯𝑛+58 π‘₯𝑛+5

9 π‘₯𝑛+510 π‘₯𝑛+5

11 π‘₯𝑛+512

1 π‘₯𝑛+6 π‘₯𝑛+62 π‘₯𝑛+6

3 π‘₯𝑛+64 π‘₯𝑛+6

5 π‘₯𝑛+66 π‘₯𝑛+6

7 π‘₯𝑛+68 π‘₯𝑛+6

9 π‘₯𝑛+610 π‘₯𝑛+6

11 π‘₯𝑛+612

1 π‘₯𝑛+7 π‘₯𝑛+72 π‘₯𝑛+7

3 π‘₯𝑛+74 π‘₯𝑛+7

5 π‘₯𝑛+76 π‘₯𝑛+7

7 π‘₯𝑛+78 π‘₯𝑛+7

9 π‘₯𝑛+710 π‘₯𝑛+7

11 π‘₯𝑛+712

0 1 2π‘₯𝑛+7 3π‘₯𝑛+72 4π‘₯𝑛+7

3 5π‘₯𝑛+74 6π‘₯𝑛+7

5 7π‘₯𝑛+76 8π‘₯𝑛+7

7 9π‘₯𝑛+78 10π‘₯𝑛+7

9 11π‘₯𝑛+710 12π‘₯𝑛+7

11

0 1 2π‘₯𝑛+

15

2

3π‘₯𝑛+

15

2

2 4π‘₯𝑛+

15

2

3 5π‘₯𝑛+

15

2

3 6π‘₯𝑛+

15

2

5 7π‘₯𝑛+

15

2

6 8π‘₯𝑛+

15

2

7 9π‘₯𝑛+

15

2

8 10π‘₯𝑛+

15

2

9 11π‘₯𝑛+

15

2

10 12π‘₯𝑛+

15

2

11

0 1 2π‘₯𝑛+8 3π‘₯𝑛+82 4π‘₯𝑛+8

3 5π‘₯𝑛+83 6π‘₯𝑛+8

5 7π‘₯𝑛+86 8π‘₯𝑛+8

7 9π‘₯𝑛+88 10π‘₯𝑛+8

9 11π‘₯𝑛+810 12π‘₯𝑛+8

11

0 0 2 6π‘₯𝑛+7 12π‘₯𝑛+72 15π‘₯𝑛+7

3 30π‘₯𝑛+73 42π‘₯𝑛+7

5 56π‘₯𝑛+76 72π‘₯𝑛+7

7 90π‘₯𝑛+78 110π‘₯𝑛+7

9 132π‘₯𝑛+710

0 0 2 6π‘₯𝑛+8 12π‘₯𝑛+82 15π‘₯𝑛+8

3 30π‘₯𝑛+83 42π‘₯𝑛+8

5 56π‘₯𝑛+87 72π‘₯𝑛+8

7 90π‘₯𝑛+86 110π‘₯𝑛+8

9 132π‘₯𝑛+810

]

[ π‘Ž0

π‘Ž1

π‘Ž2

π‘Ž3

π‘Ž4

π‘Ž5

π‘Ž6

π‘Ž7

π‘Ž8

π‘Ž9

π‘Ž10

π‘Ž11

π‘Ž12]

=

[

𝑦𝑛

𝑦𝑛+1

𝑦𝑛+2

𝑦𝑛+3

𝑦𝑛+4

𝑦𝑛+5

𝑦𝑛+6

𝑦𝑛+7

𝑓𝑛+7

𝑓𝑛+

15

2

𝑓𝑛+8

𝑔𝑛+7

𝑔𝑛+8 ]

(12)

Using Maple software and inverting the matrix in (12) is yields the elements of the matrix π΄βˆ’1`.

The columns of π΄βˆ’1` give the continuous coefficients of (4)-(6) as:

Page 4: Uniform Order Eleven of Eight-Step Hybrid Block Backward

β€œUniform Order Eleven of Eight-Step Hybrid Block Backward Differentiation Formulae for the Solution of Stiff Ordinary Differential Equations”

2360 Pius Tumba1, IJMCR Volume 09 Issue 08 August 2021

𝛼0(π‘₯) = 1 βˆ’95958313819129π‘₯

29479449569430β„Ž+

111379502927091629π‘₯

24762737638321200β„Ž2

2

βˆ’14752082604856619623π‘₯

4160139923237961600β„Ž3

3

+5978817275676899711π‘₯

3328111938590369280β„Ž4

4

βˆ’ 607983743988885997π‘₯

978856452526579200β„Ž5

5

+ 10064346687661109357π‘₯

66562238771807385600π‘†β„Ž6

6

βˆ’ 8316257821028201π‘₯

316963041770511360β„Ž7

7

+ 10247925246994591π‘₯

3169630417705113600β„Ž8

8

βˆ’ 1151437056841919π‘₯

4160139923237961600β„Ž9

9

+ 1042639590961571π‘₯

66562238771807385600β„Ž10

10

βˆ’17550288818501π‘₯11

33281119385903692800β„Ž11+

31325547497π‘₯12

3915425810106316800β„Ž12

𝛼1(π‘₯) =5999869653050π‘₯

421134993849β„Žβˆ’

162362039569331π‘₯

5053619926188β„Ž2

2

+19376892463308499π‘₯

606434391142560β„Ž3

3

βˆ’135118095989390719π‘₯

7277212693710720β„Ž4

4

+ 1002553554614321π‘₯

142690444974720β„Ž5

5

βˆ’ 53054436242457737π‘₯

29108850774842880β„Ž6

6

+ 11911219801561π‘₯

35936852808448β„Ž7

7

βˆ’ 82149948379561π‘₯

1940590051656192β„Ž8

8

+ 4520601070249π‘₯

1212868782285120β„Ž9

9

βˆ’ 6280178983223 π‘₯

29108850774842880β„Ž10

10

+35892089683π‘₯11

4851475129140480β„Ž11

βˆ’195148837π‘₯12

1712285339696640β„Ž12

𝛼2(π‘₯) = βˆ’6875640670346π‘₯

140378331283β„Ž+

5682835861917011π‘₯

42113499384900β„Ž2

2

βˆ’77232977678555219π‘₯

5053619926188000β„Ž3

3

+5898372469497008023π‘₯

60643439114256000β„Ž4

4

βˆ’ 140381714892468973π‘₯

3567261124368000β„Ž5

5

+ 2606002022753332429π‘₯

242573756457024000β„Ž6

6

βˆ’ 3288459697500179π‘₯

1617158376380160β„Ž7

7

+ 289136258920171π‘₯

1078105584253440β„Ž8

8

βˆ’ 122500746419197π‘₯

5053619926188000β„Ž9

9

+ 347843988763331π‘₯

242573756457024000β„Ž10

10

βˆ’6073810272629π‘₯11

121286878228512000β„Ž11

+11180057209π‘₯12

14269044497472000β„Ž12

𝛼3(π‘₯) =124156819047625π‘₯

842269987698β„Žβˆ’

8705963111552455π‘₯

20214479704752β„Ž2

2

+84000083720233513π‘₯

161715837638016β„Ž3

3

βˆ’75366803439211717π‘₯

215621116850688β„Ž4

4

+ 5641881259818595π‘₯

38050785326592β„Ž5

5

βˆ’ 108983688887548537π‘₯

2587453402208256β„Ž6

6

+ 3555263960924639π‘₯

431242233701376β„Ž7

7

βˆ’ 2894393499959887π‘₯

2587453402208256β„Ž8

8

+ 33503499322231π‘₯

324331675276032β„Ž9

9

βˆ’ 5396554991149 π‘₯

862484467402752β„Ž10

10

+287842984985π‘₯11

1293726701104128β„Ž11

βˆ’538239565π‘₯12

152203141306368β„Ž12

𝛼4(π‘₯) = βˆ’324847870920125π‘₯

842269987698β„Ž+

23427907792376395π‘₯

20214479704752β„Ž2

2

βˆ’70097644067670879π‘₯

485147512914048β„Ž3

3

+5858213737831411585π‘₯

5821770154968576β„Ž4

4

βˆ’ 50360748668263645π‘₯

114152355979776β„Ž5

5

+ 3008740914626408279π‘₯

23287080619874304β„Ž6

6

βˆ’ 33633230900175019π‘₯

1293726701104128β„Ž7

7

+ 28069177569117659π‘₯

7762360206624768β„Ž8

8

βˆ’ 166103439749567π‘₯

485147512914048β„Ž9

9

+ 491256957909977π‘₯

23287080619874304β„Ž10

10

βˆ’2963717454581π‘₯11

3881180103312384β„Ž11

+16893432587π‘₯12

1369828271757312β„Ž12

Page 5: Uniform Order Eleven of Eight-Step Hybrid Block Backward

β€œUniform Order Eleven of Eight-Step Hybrid Block Backward Differentiation Formulae for the Solution of Stiff Ordinary Differential Equations”

2361 Pius Tumba1, IJMCR Volume 09 Issue 08 August 2021

𝛼5(π‘₯) =698233548697762π‘₯

701891656415β„Žβˆ’

127982190512855483π‘₯

42113499348900β„Ž2

2

+3907504681261828703π‘₯

1010723985237600β„Ž3

3

βˆ’6679512172825498303π‘₯

2425737564570240β„Ž4

4

+ 881694260693648351π‘₯

713452224873600β„Ž5

5

βˆ’ 17972507404872403181π‘₯

48514751291404800β„Ž6

6

+ 123294391180745231π‘₯

1617158376380160β„Ž7

7

βˆ’ 58404991154460107π‘₯

5390527921267200β„Ž8

8

+ 2115964283425693π‘₯

2021447970475200β„Ž9

9

βˆ’ 3188461778077843 π‘₯

48514751291404800β„Ž10

10

+58725123939133π‘₯11

24257375645702400β„Ž11βˆ’

π‘₯

2853808899494400β„Ž12

𝛼6(π‘₯) = βˆ’1591448100803050π‘₯

421134993849β„Ž+

58973616807690011π‘₯

5053619926188β„Ž2

2

βˆ’9125523287132968219π‘₯

606434391142560β„Ž3

3

+26407945574782487893π‘₯

2425737564570240β„Ž4

4

βˆ’ 709173203422711231π‘₯

142690444974720β„Ž5

5

+ 14717766075275137199π‘₯

9702950258280960β„Ž6

6

βˆ’ 102837002696707733π‘₯

323431675276032β„Ž7

7

+ 3307845701319711π‘₯

71873705616896β„Ž8

8

βˆ’ 2745685566667217π‘₯

606434391142560β„Ž9

9

+ 280733838723136π‘₯

9702950258280960β„Ž10

10

βˆ’52594481758343π‘₯11

4851475129140480β„Ž11+

103239426419π‘₯12

570761779898880β„Ž12

𝛼7(π‘₯) =18043919361064657π‘₯

5895889913886β„Žβˆ’

234408889565975928593π‘₯

24762737638321200β„Ž2

2

+254426896842248963872279π‘₯

20800699616189808000β„Ž3

3

βˆ’2214071776927267887465043π‘₯

249608395394277696000β„Ž4

4

+ 2207889379530816131509π‘₯

543809140292544000β„Ž5

5

βˆ’ 1240587114881513356098389π‘₯

998433581577110784000β„Ž6

6

+ 82789381930492078319π‘₯

316963041770511360β„Ž7

7

βˆ’ 72105563826067360439π‘₯

1901778250623068160β„Ž8

8

+ 155606351177055440329π‘₯

41601399232379616000β„Ž9

9

βˆ’ 239203987064516185771 π‘₯

998433581577110784000β„Ž10

10

+499457292157396621π‘₯11

55468532309839488000β„Ž11βˆ’

8845925643617369π‘₯12

58731387151594752000β„Ž12

𝛽7(π‘₯) = βˆ’30797607491730π‘₯

140378331283+

12252449651037159π‘₯

19652966379620β„Ž

2

βˆ’3924857667428473659π‘₯

5502830586293600β„Ž2

3

+28805166480229703303π‘₯

66033967035523200β„Ž3

4

βˆ’ 1824665680566703409π‘₯

11653053006268800β„Ž4

5

+ 26167954478105592707π‘₯

792407604426278400β„Ž5

6

βˆ’ 2623989574274443π‘₯

754673908977408β„Ž6

7

+ 64286272312943π‘₯

1509347817954816β„Ž7

8

βˆ’ 2052021323393473π‘₯

33016983517761600β„Ž8

9

+ 697442591071403π‘₯

88045289380697600β„Ž9

10

βˆ’179476384395293π‘₯11

396203802213139200β„Ž10+

479316757153π‘₯12

46612212025075200β„Ž11

𝛽152

(π‘₯) = βˆ’428190539055104π‘₯

140378331283+

6685811626819584π‘₯

701891656415β„Ž

2

βˆ’78708148640651264π‘₯

6317024907735β„Ž2

3

+11583149024190976π‘₯

1263404981547β„Ž3

4

βˆ’ 1585503861215744π‘₯

371589700455β„Ž4

5

+ 8402119605809536π‘₯

6317024907735β„Ž5

6

βˆ’ 120118667889920π‘₯

421134993849β„Ž6

7

+ 89048602174336π‘₯

2105674969245β„Ž7

8

βˆ’ 26946704038912π‘₯

6317024907735β„Ž8

9

+ 1766885496448π‘₯

63170249907735β„Ž9

10

βˆ’67963410176π‘₯11

6317024907735β„Ž10

+68496256π‘₯12

371589700455β„Ž11

𝛽8(π‘₯) =102709446821625π‘₯

140378331283βˆ’

1285663550076535π‘₯

561513325132β„Ž

2

+40470004012999603π‘₯

13476319803168β„Ž2

3

βˆ’358511358722606365π‘₯

1617158337638016β„Ž3

4

+ 9851655119649403π‘₯

9512696331648β„Ž4

5

βˆ’ 209718963335245531π‘₯

646863350552064β„Ž5

6

+ 7530890237766749π‘₯

107810558425344β„Ž6

7

βˆ’ 748235136449605π‘₯

71873705616896β„Ž7

8

+ 14230248199867π‘₯

13476319803168β„Ž8

9

βˆ’ 45054856385429π‘₯

646863350552064β„Ž9

10

+872012211011π‘₯11

323431675276032β„Ž10

βˆ’1769443135π‘₯12

38050785326592β„Ž11

Page 6: Uniform Order Eleven of Eight-Step Hybrid Block Backward

β€œUniform Order Eleven of Eight-Step Hybrid Block Backward Differentiation Formulae for the Solution of Stiff Ordinary Differential Equations”

2362 Pius Tumba1, IJMCR Volume 09 Issue 08 August 2021

𝛾7(π‘₯) =252474550097700π‘₯β„Ž

140378331283βˆ’

1570774572740333 π‘₯

280756662566

2

+1717354357900665499π‘₯

235835596555440β„Ž

3

βˆ’15074283296663869543π‘₯

2830027158665280β„Ž2

4

+ 45540634791210947π‘₯

18496909533760β„Ž3

5

βˆ’ 8622045232427895329π‘₯

11320108634661120β„Ž4

6

+ 2910438299459199π‘₯

17968426404224β„Ž5

7

βˆ’ 2565992829113863π‘₯

107810558425344β„Ž6

8

+ 1121624842813669π‘₯

471671193110880β„Ž7

9

βˆ’ 1747468970243231π‘₯

11320108634661120β„Ž8

10

+3695515319961π‘₯11

628894924147840β„Ž9βˆ’

66323138549π‘₯12

665888743215360β„Ž10

𝛾8(π‘₯) = βˆ’16888540189500π‘₯β„Ž

140378331283+

52898108169060 π‘₯

140378331283

2

βˆ’1111375015828707π‘₯

2246053300528β„Ž

3

βˆ’3286416400864111π‘₯

8984213202112β„Ž2

4

+ 904578847981169π‘₯

528483129536β„Ž3

5

βˆ’ 1929273942531457π‘₯

35936852808448β„Ž4

6

+ 208278204400469π‘₯

17968426404224β„Ž5

7

βˆ’ 62226870194839π‘₯

35936852808448β„Ž6

8

+ 395507042623π‘₯

2246053300528β„Ž7

9

βˆ’ 418590251343π‘₯

35936852808448β„Ž8

10

+8126500505π‘₯11

17968426404224β„Ž9βˆ’

16544781π‘₯12

2113932518144β„Ž10

Evaluating (8) at the following points at

π‘₯𝑛 , π‘₯𝑛+1, π‘₯𝑛+2, π‘₯𝑛+3, π‘₯𝑛+4, π‘₯𝑛+5, π‘₯𝑛+6, π‘₯𝑛+15/3 π‘Žπ‘›π‘‘ π‘₯𝑛+8 yields the following discrete methods which constitute the new eight step block method.

𝑦𝑛 βˆ’795573993889721900

111379502927091629𝑦𝑛+1 +

3341507486807202468

111379502927091629𝑦𝑛+2 βˆ’

10664804811651757375

111379502927091629𝑦𝑛+3 +

28699187045661083875

111379502927091629𝑦𝑛+4 βˆ’

75253528021559024004

111379502927091629𝑦𝑛+5

+288970722357681053900

111379502927091629𝑦𝑛+6 βˆ’

234408889565975928593

111379502927091629𝑦𝑛+7

=1260β„Ž

111379502927091629[12252449651037159𝑓𝑛+7 + 187202725550948352𝑓

𝑛+152

βˆ’ 44998224252678725𝑓𝑛+8] +88200β„Ž2

111379502927091629[140378331283𝑔𝑛

+ 1570774572740333𝑔𝑛+7 βˆ’ 105796216338120𝑔𝑛+8]

𝑦𝑛 +25231414254947640

4965391873495939𝑦𝑛+1 βˆ’

918591857070157676

24826959367479695𝑦𝑛+2 +

585503967350684025

4965391873495939𝑦𝑛+3 βˆ’

4482510795788159225

14896175620487817𝑦𝑛+4 +

3773303822956282636

4965391873495939𝑦𝑛+5

βˆ’14112172589850215860

4965391873495939𝑦𝑛+6 +

171015849451373356153

74480878102439085𝑦𝑛+7

=28β„Ž

4965391873495939[32832731120396717𝑓𝑛+7 + 399847878563266560𝑓

𝑛+152

βˆ’ 95591127585482025𝑓𝑛+8] +1960β„Ž2

496539187349 5939[5615133251320𝑔𝑛+1

βˆ’ 3388606915725319𝑔𝑛+7 + 224219376062145𝑔𝑛+8]

𝑦𝑛 βˆ’7222751481023540

206294902600341𝑦𝑛+1 +

8110158627648812

5157372565008525𝑦𝑛+2 +

19088416297961325

68764967533447𝑦𝑛+3 βˆ’

172698241297211525

206294902600341𝑦𝑛+4 +

423413680921142884

206294902600341𝑦𝑛+5

βˆ’512403409953341620

68764967533447𝑦𝑛+6 +

30898039789388169313

5157372565008525𝑦𝑛+7

=28β„Ž

343824837667235[7185554611961157𝑓𝑛+7 + 70180046374502400𝑓

𝑛+152

βˆ’ 16669945678353625𝑓𝑛+8] βˆ’392β„Ž2

68764967533447[7861186551848𝑔𝑛+2

+ 601842327156471𝑔𝑛+7 βˆ’ 38993163236825𝑔𝑛+8]

Page 7: Uniform Order Eleven of Eight-Step Hybrid Block Backward

β€œUniform Order Eleven of Eight-Step Hybrid Block Backward Differentiation Formulae for the Solution of Stiff Ordinary Differential Equations”

2363 Pius Tumba1, IJMCR Volume 09 Issue 08 August 2021

𝑦𝑛 βˆ’2070320941916780

88165482138851𝑦𝑛+1 +

180752455135885332

440827410694255𝑦𝑛+2 βˆ’

41538978652452925

88165482138851𝑦𝑛+3 βˆ’

85609840632881075

88165482138851𝑦𝑛+4 +

333063784390344924

88165482138851𝑦𝑛+5

βˆ’1210325056048167220

88165482138851𝑦𝑛+6 +

4851208776878785793

440827410694255𝑦𝑛+7

=252β„Ž

88165482138851[440062565156559𝑓𝑛+7 + 3569446989660160𝑓

𝑛+152

βˆ’ 841909412290625𝑓𝑛+8] +17640β„Ž2

88165482138851[1965296637962𝑔𝑛+3

βˆ’ 30992386067543𝑔𝑛+7 + 1963324978713𝑔𝑛+8]

𝑦𝑛 βˆ’535551344432860

26631670316133𝑦𝑛+1 +

10225338751074412

44386117193555𝑦𝑛+2 βˆ’

827110478267325

306111153059𝑦𝑛+3 +

1210127800927725

306111153059𝑦𝑛+4 +

21449184720713764

8877223438711𝑦𝑛+5 βˆ’

190583150657241580

8877223438711 𝑦𝑛+6

+2342265532264503639

133158351580665𝑦𝑛+7

=28β„Ž

8877223438711[667521725849171𝑓𝑛+7 + 5151530052157440𝑓

𝑛+152

βˆ’ 1207191039323325𝑓𝑛+8] βˆ’1960β„Ž2

8877223438711[9826483189810𝑔𝑛+4

+ 45078599072657𝑔𝑛+7 βˆ’ 2806256440575𝑔𝑛+8]

𝑦𝑛 βˆ’28732889416700

1558701718659𝑦𝑛+1 +

14647518007276

82036932561𝑦𝑛+2 βˆ’

231791360980375

173189079851𝑦𝑛+3 +

18773267530814125

1558701718659𝑦𝑛+4 βˆ’

3928035699532

219938157𝑦𝑛+5 βˆ’

3126320160999700

173189079851 𝑦𝑛+6

+39036596515149631

1558701718659𝑦𝑛+7

=140β„Ž

519567239553[7012323610059𝑓𝑛+7 + 98186615783424𝑓

𝑛+152

βˆ’ 22800086843975𝑓𝑛+8] +9800β„Ž2

519567239553[462422738344𝑔𝑛+5 βˆ’ 855181579233𝑔𝑛+7

+ 52722651695𝑔𝑛+8]

𝑦𝑛 βˆ’393848612015180

22694743922483𝑦𝑛+1 +

17002139804752068

113473719612415𝑦𝑛+2 βˆ’

21584615528729575

22694743922483𝑦𝑛+3 +

120848531925713725

22694743922483𝑦𝑛+4 βˆ’

931785054474996708

22694743922483𝑦𝑛+5

+669436923774516380

22694743922483𝑦𝑛+6 +

799974701053192307

113473719612415𝑦𝑛+7

βˆ’252β„Ž

22694743922483[415729917509259𝑓𝑛+7 βˆ’ 5120456609300480𝑓

𝑛+152

+ 1122075341897825𝑓𝑛+8] βˆ’17640β„Ž2

22694743922483[39305932759240𝑔𝑛+6

+ 47323702151687𝑔𝑛+7 βˆ’ 256515380385𝑔𝑛+8]

𝑦𝑛+

152

+1385420343021

8243051549790568448𝑦𝑛 βˆ’

816784820775

294394698206806016𝑦𝑛+1 +

6675149415753

294394698206806016𝑦𝑛+2 βˆ’

148545520998875

1177578792827224064𝑦𝑛+3 +

675021185821125

1177578792827224064𝑦𝑛+4

βˆ’779956749745173

294394698206806016𝑦𝑛+5 +

6268503501535275

294394698206806016𝑦𝑛+6 βˆ’

8400581608123449459

8243051549790568448𝑦𝑛+7

=6435β„Ž

294394698206806016[14072591027781𝑓𝑛+7 + 8522418946048𝑓

𝑛+152

βˆ’ 512303316525𝑓𝑛+8] +289864575β„Ž2

147197349103403008[24728719𝑔𝑛+7 + 768915𝑔𝑛+8]

𝑦𝑛+8 βˆ’40335

140378331283𝑦𝑛 +

654800

140378331283𝑦𝑛+1 βˆ’

5230064

140378331283𝑦𝑛+2 +

281410092

140378331283𝑦𝑛+3 βˆ’

121250500

140378331283𝑦𝑛+4 +

507886960

140378331283𝑦𝑛+5 βˆ’

3191134800

140378331283𝑦𝑛+6 βˆ’

137597358436

140378331283𝑦𝑛+7 =

2520β„Ž

140378331283[12281666𝑓𝑛+7 + 32112640𝑓

𝑛+15

2

+ 12283227𝑓𝑛+8] βˆ’352800β„Ž2

140378331283[491𝑔𝑛+7 + 5692𝑔𝑛+8] (13)

3. CONVERGENCE AND STABILITY ANALYSIS OF THE METHOD

In this section the analysis of the newly constructed methods is carried by analyzing the order, error constant consistency, convergence and plotting the regions of absolute stability.

Page 8: Uniform Order Eleven of Eight-Step Hybrid Block Backward

β€œUniform Order Eleven of Eight-Step Hybrid Block Backward Differentiation Formulae for the Solution of Stiff Ordinary Differential Equations”

2364 Pius Tumba1, IJMCR Volume 09 Issue 08 August 2021

The new method in equation (3) is expressed in the form:

βˆ‘(𝛼𝑗𝑦𝑛+𝑗 βˆ’ β„Žπ›½π‘—π‘“π‘›+𝑗 βˆ’ β„Ž2πœ†π‘—π‘“π‘›+𝑗) = 0

π‘˜

𝑗=0

( 14)

Which is written symbolically as:

𝜌(𝐸)𝑦𝑛 βˆ’ β„Ž2𝜎(𝐸) = 0 (15)

𝐸 being the shift operator and is defined as 𝐸𝑖𝑦𝑛 = 𝑦𝑛+𝑗 , 𝜌(𝐸)and 𝜎(𝐸) are respectively the first and second characteristics polynomial of the LMM such that

𝜌(𝐸) = βˆ‘ π›Όπ‘—πΈπ‘—π‘˜

𝑗=0 , 𝜎 (𝐸) = βˆ‘ π›½π‘—πΈπ‘—π‘˜

𝑗=0 (16)

Following (Fatunla, 1991) and (Lambert,1973) we defined the local truncation error associated with (3) to be linear difference operator

[𝑦(π‘₯); β„Ž] = βˆ‘ 𝛼𝑗𝑦𝑛+𝑗 βˆ’ β„Žπ›½π‘˜π‘“π‘›+π‘˜π‘˜π‘—=0 βˆ’ β„Ž2π›Ύπ‘˜π‘”π‘›+π‘˜ . (17)

Assuming that 𝑦(π‘₯) is sufficiently differentiable, we can we expand the terms in (17) as a Taylor series and comparing the coefficients of β„Ž gives

𝐿[𝑦(π‘₯); β„Ž] = 𝑐0𝑦(π‘₯) + 𝑐1β„Žπ‘¦β€²(π‘₯) + 𝑐2β„Ž2𝑦′′(π‘₯) + β‹― + π‘π‘β„Žπ‘π‘¦π‘(π‘₯) + β‹― (18)

Where the constants 𝐢𝑝, 𝑝 = 0, 1,2… . , 𝑗 = 1,2, … π‘˜.

Using the concept above, the hybrid block method are obtained with the help of MAPLE 18 SOFTWARE have the following uniform order and error constants.

3.1 Table 1 Order and Error Constants of the Eight -Step

𝑦𝑛 11 11097820685016920015

764508908091556941456

𝑦𝑛+1 11 βˆ’

1412674980352712279

102247349459028375888

𝑦𝑛+2 11 βˆ’

14601896648447213

472002737149580208

𝑦𝑛+3 11 βˆ’

29213909016714541

605167869401073264

𝑦𝑛+4 11 βˆ’

12085140283692917

182799785049936912

𝑦𝑛+5 11 βˆ’

922206057457405

10698928596875376

𝑦𝑛+6 11 βˆ’

1575458937383051

14161520207629392

𝑦𝑛+

152

11 βˆ’

463663785585

18841260685235585024

𝑦𝑛+8 11 11276615

240889216481628

Page 9: Uniform Order Eleven of Eight-Step Hybrid Block Backward

β€œUniform Order Eleven of Eight-Step Hybrid Block Backward Differentiation Formulae for the Solution of Stiff Ordinary Differential Equations”

2365 Pius Tumba1, IJMCR Volume 09 Issue 08 August 2021

3.2 Zero Stability of the Eight -Step Method

The zero stability of the eight-step new method is determined using the approach of Ehigie et al. (2014) in which Maple18 software was used to yields the stability polynomial of the method as

𝜌(π‘Ÿ) = det (π‘Ÿπ΄ βˆ’ 𝐡) (19)

=det

[

π‘Ÿ

[ 795573993889721900

111379502927091629

3341507486807202468

111379502927091629

10664804811651757375

111379502927091629

282699187045661083875

111379502927091629

βˆ’75253528021559024004

111379502927091629

288970722357681053900

111379502927091629

2344088895659759289593

1113795029270916290 0

25231414254947460

4965391873495939

βˆ’918591857070157676

24826959367479695

585503967350684025

4965391873495939

βˆ’4482510795788159225

14896175620487817

3773303822956282636

4965391873495939

βˆ’14112172589850215860

4965391873495939

171015849451373356153

744808781024390850 0

βˆ’7222751481023540

206294902600341

8110158627648812

5157372565008525

19088416297961325

68764967533447

βˆ’172698241297211525

206294902600341

423413680921142884

2062949𝐴02600341

βˆ’512403409953341620

68764967533447

30898039789388169313

51573725650085250 0

βˆ’2070320941916780

88165482138851

180752455135885332

440827410694255

βˆ’41538978652452925

88165482138851

85609840632881075

88165482138851

333063784390344924

88165482138851

βˆ’1210325056048167220

88165482138851

4851208776878785793

4408274106942550 0

535551344432860

26631670316133

10225338751074412

44386117193555

827110478267325

306111153059

1210127809027725

306111153059

21449184720713764

8877223438711

βˆ’190583150657241580

306111153059

2342265532284503639

1331583515806650 0

βˆ’28732889416700

1558701718659

14647518007276

82036932561

βˆ’231791360980375

173189079851

18773267530814125

1558701718659

3928035699532

219938157

βˆ’3126320160999700

173189079851

39036596515149631

15587017186590 0

βˆ’393848612015180

22694743922483

17302139804752068

113473719612415

βˆ’21584615528729575

22694743922483

120848531925713725

22694743922483

βˆ’931785054474996708

22694743922483

669436923774516380

22694743922483

799974701053192307

1134737196124150 0

816784820775

294394698206806016

6675149415753

294394698206806016

βˆ’148545520998875

1177578792827224064

675021185821125

1177578792827224064

βˆ’779956749745173

294394698206806016

6268503501535275

294394698206806016

8400581608123449459

82430515497905684481 0

654800

140378331283

βˆ’5230064

140378331283

28141092

140378331283

βˆ’121250500

140378331283

507886960

140378331283

βˆ’3191134800

140378331283

βˆ’137597358436

1403783312830 1]

βˆ’

[ 0 0 0 0 0 0 0 0 βˆ’1

0 0 0 0 0 0 0 0 βˆ’1

0 0 0 0 0 0 0 0 βˆ’1

0 0 0 0 0 0 0 0 βˆ’1

0 0 0 0 0 0 0 0 βˆ’1

0 0 0 0 0 0 0 0 βˆ’1

0 0 0 0 0 0 0 0 βˆ’1

0 0 0 0 0 0 0 0βˆ’1385420343021

8243051549790568448

0 0 0 0 0 0 0 040335

140378331283 ]

]

Page 10: Uniform Order Eleven of Eight-Step Hybrid Block Backward

β€œUniform Order Eleven of Eight-Step Hybrid Block Backward Differentiation Formulae for the Solution of Stiff Ordinary Differential Equations”

2366 Pius Tumba1, IJMCR Volume 09 Issue 08 August 2021

= 𝑑𝑒𝑑

[ 795573993889721900

111379502927091629π‘Ÿ

3341507486807202468

111379502927091629π‘Ÿ

10664804811651757375

111379502927091629π‘Ÿ

282699187045661083875

111379502927091629π‘Ÿ

βˆ’75253528021559024004

111379502927091629π‘Ÿ

288970722357681053900

111379502927091629π‘Ÿ

2344088895659759289593

111379502927091629π‘Ÿ 0 1

25231414254947460

4965391873495939π‘Ÿ

βˆ’918591857070157676

24826959367479695π‘Ÿ

585503967350684025

4965391873495939π‘Ÿ

βˆ’4482510795788159225

14896175620487817π‘Ÿ

3773303822956282636

4965391873495939π‘Ÿ

βˆ’14112172589850215860

4965391873495939π‘Ÿ

171015849451373356153

74480878102439085π‘Ÿ 0 1

βˆ’7222751481023540

206294902600341π‘Ÿ

8110158627648812

5157372565008525π‘Ÿ

19088416297961325

68764967533447π‘Ÿ

βˆ’172698241297211525

206294902600341π‘Ÿ

423413680921142884

206294902600341π‘Ÿ

βˆ’512403409953341620

68764967533447π‘Ÿ

30898039789388169313

5157372565008525π‘Ÿ 0 1

βˆ’2070320941916780

88165482138851π‘Ÿ

180752455135885332

440827410694255π‘Ÿ

βˆ’41538978652452925

88165482138851π‘Ÿ

85609840632881075

88165482138851π‘Ÿ

333063784390344924

88165482138851π‘Ÿ

βˆ’1210325056048167220

88165482138851π‘Ÿ

4851208776878785793

440827410694255π‘Ÿ 0 1

535551344432860

26631670316133π‘Ÿ

10225338751074412

44386117193555π‘Ÿ

827110478267325

306111153059π‘Ÿ

1210127809027725

306111153059π‘Ÿ

21449184720713764

8877223438711π‘Ÿ

βˆ’190583150657241580

306111153059π‘Ÿ

2342265532284503639

133158351580665π‘Ÿ 0 1

βˆ’28732889416700

1558701718659π‘Ÿ

14647518007276

82036932561π‘Ÿ

βˆ’231791360980375

173189079851π‘Ÿ

18773267530814125

1558701718659π‘Ÿ

3928035699532

219938157π‘Ÿ

βˆ’3126320160999700

173189079851π‘Ÿ

39036596515149631

1558701718659π‘Ÿ 0 1

βˆ’393848612015180

22694743922483π‘Ÿ

17302139804752068

113473719612415π‘Ÿ

βˆ’21584615528729575

22694743922483π‘Ÿ

120848531925713725

22694743922483π‘Ÿ

βˆ’931785054474996708

22694743922483π‘Ÿ

669436923774516380

22694743922483π‘Ÿ

799974701053192307

113473719612415π‘Ÿ 0 1

816784820775

294394698206806016π‘Ÿ

6675149415753

294394698206806016π‘Ÿ

βˆ’148545520998875

1177578792827224064π‘Ÿ

675021185821125

1177578792827224064π‘Ÿ

βˆ’779956749745173

294394698206806016π‘Ÿ

6268503501535275

294394698206806016π‘Ÿ

8400581608123449459

8243051549790568448π‘Ÿ π‘Ÿ

βˆ’1385420343021

8243051549790568448654800

140378331283π‘Ÿ

βˆ’5230064

140378331283π‘Ÿ

28141092

140378331283π‘Ÿ

βˆ’121250500

140378331283π‘Ÿ

507886960

140378331283π‘Ÿ

βˆ’3191134800

140378331283π‘Ÿ

βˆ’137597358436

140378331283π‘Ÿ 0 π‘Ÿ βˆ’

40335

140378331283 ]

= π‘Ÿ9 βˆ’ π‘Ÿ8 = 0

π‘Ÿ1 = 1, π‘Ÿ2 = π‘Ÿ3 = π‘Ÿ4 = π‘Ÿ5 = π‘Ÿ6 = π‘Ÿ7 = π‘Ÿ8 = π‘Ÿ9 = 0 < 1

Hence, the block method (13) is zero stable and is of order 𝑃 = 11 and hence by Henrici (1962) it is convergent.

3.3 Absolute Stability Region of the Eight-Step Method

The coefficient of the block method (13) expressed in the form

𝐴(1)π‘Œπ‘€+1 = 𝐡(0)π‘Œπ‘€ + β„ŽπΆ(1)𝐹𝑀 + β„Ž2𝐷(1)𝐺𝑀 (20)

Where

𝑦𝑀+1 = (𝑦𝑛+1,𝑦𝑛+2,𝑦𝑛+3, … . . π‘¦π‘›βˆ’π‘˜βˆ’1,, 𝑦𝑛+π‘˜)𝑇

𝑦𝑀 = (π‘¦π‘›βˆ’π‘˜+1,π‘¦π‘›βˆ’π‘˜+2,π‘¦π‘›βˆ’π‘˜+3, … . . π‘¦π‘›βˆ’1,, 𝑦𝑛)𝑇

𝐹𝑀 = (𝑓𝑛+1,𝑓𝑛+2,𝑦𝑛+3, … . . π‘“π‘›βˆ’π‘˜βˆ’1,, 𝑓𝑛+π‘˜)𝑇

For 𝑀 = 0,…. and 𝑛 = 0, π‘˜,…𝑁 βˆ’ π‘˜.

Applying the test problem

𝑦′ = πœ†π‘¦, πœ† < 0 to yield

π‘Œπ‘€+1 = 𝐷(𝑧)π‘Œπ‘€, 𝑧 = πœ†β„Ž

Where the matrix 𝐷(𝑧) = (π‘Ÿ(𝐴 βˆ’ 𝐢𝑧 βˆ’ 𝐷1𝑧2) βˆ’ 𝐡) (21)

The matrix 𝐷(𝑧) has eigenvalues {πœ†1, πœ†2, πœ†3, …… … . . , πœ†π‘˜} = {0,0,0, …… … . . πœ†π‘˜}

Where the dominant eigenvalue πœ†π‘˜ is the stability function 𝑅(𝑧): β„‚ β†’ β„‚ which is the rational function with real coefficients.

Page 11: Uniform Order Eleven of Eight-Step Hybrid Block Backward

β€œUniform Order Eleven of Eight-Step Hybrid Block Backward Differentiation Formulae for the Solution of Stiff Ordinary Differential Equations”

2367 Pius Tumba1, IJMCR Volume 09 Issue 08 August 2021

Figure 1. Region of absolute stability of newly constructed method for k=8

4. NUMERICAL EXPERIMENT

The Solution curves of stiff system plotted were compared with those of MATLAB ODE solver

Ode 23.

Problem 1

𝑦1β€² = 0.01𝑦1 βˆ’ 𝑦2 + 𝑦3

𝑦2β€² = 𝑦1 βˆ’ 100.005𝑦2 + 99.995𝑦3

𝑦3β€² = 2𝑦1 + 99.995𝑦2 βˆ’ 100.005𝑦3

Exact 𝑦1(π‘₯) = π‘’βˆ’0.01π‘₯(π‘π‘œπ‘ 2π‘₯ + 𝑠𝑖𝑛2π‘₯) 𝑦1(0) = 1

𝑦2(π‘₯) = π‘’βˆ’0.01π‘₯(π‘π‘œπ‘ 2π‘₯ + 𝑠𝑖𝑛2π‘₯) +π‘’βˆ’200π‘₯ 𝑦2(0) = 1

𝑦2(π‘₯) = π‘’βˆ’0.01π‘₯(π‘π‘œπ‘ 2π‘₯ + 𝑠𝑖𝑛2π‘₯) -π‘’βˆ’200π‘₯ 𝑦3(0) = 1

π‘€π‘–π‘‘β„Ž β„Ž = 0.1

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

Re(z)

Im

(z)

Page 12: Uniform Order Eleven of Eight-Step Hybrid Block Backward

β€œUniform Order Eleven of Eight-Step Hybrid Block Backward Differentiation Formulae for the Solution of Stiff Ordinary Differential Equations”

2368 Pius Tumba1, IJMCR Volume 09 Issue 08 August 2021

Figure 2: Solution Curve of Problem 1 Solved with eight-step

Problem 2

Robertson's Equations

𝑦1β€² = βˆ’0.04𝑦1 + 10000𝑦2𝑦3 𝑦1(0) = 1

𝑦2β€² = 0.04𝑦1 βˆ’ 10000𝑦2𝑦3 βˆ’ 3000 0000𝑦2

2 𝑦2(0) = 0

𝑦3β€² = 3000 0000𝑦2

2 𝑦3(0) = 0

0 ≀ π‘₯ ≀ 70 and β„Ž = 0.1

Page 13: Uniform Order Eleven of Eight-Step Hybrid Block Backward

β€œUniform Order Eleven of Eight-Step Hybrid Block Backward Differentiation Formulae for the Solution of Stiff Ordinary Differential Equations”

2369 Pius Tumba1, IJMCR Volume 09 Issue 08 August 2021

Figure 3: Solution Curve of Problem 2 Solved with eight-step

5. CONCLUSION

In this research, the uniform order eleven of eight-step hybrid block backward differentiation formulae for the solution of stiff ordinary differential equations was proposed and the scheme with

one off-step point were analyzed and to be consistent and zero-stable and convergence. The newly constructed was tested on both linear and nonlinear stiff systems and the results obtained

performed favorably compared to exact and ODE23 Solver.

REFERENCES

1. Awoyemi, D.O and Idowu, O. (2005) A class of hybrid collocation methods for third-order ordinary differential equations, Int. J. Comput. Math. 82: 1287-1293.

2. Dahlquist, G. (1956). Convergence and stability in the numerical integration of ordinary differential equations, Mathematical Scandinavia 4, 33-53.

3. Lambert, J.D. (1973). Computational Methods in ODEs, John Wiley & Sons New York.

Page 14: Uniform Order Eleven of Eight-Step Hybrid Block Backward

β€œUniform Order Eleven of Eight-Step Hybrid Block Backward Differentiation Formulae for the Solution of Stiff Ordinary Differential Equations”

2370 Pius Tumba1, IJMCR Volume 09 Issue 08 August 2021

4. Gear C. W. (1965). Hybrid methods for initial value problems in ordinary differential equations, SIAM J. Numer. Anal., 2, pp. 69-86.

5. Butcher, J. c. (2003). Numerical methods for initial value problems in ordinary Differential, West Sussex: John Wiley & Sons Ltd.

6. Zarina, B.I., Mohammed, S., Kharil, I. and Zanariah, M. (2005). Block method for generalized multistep Adams method and backward differentiation formula insolving first-order

ODEs Mathematika, pp 25-33.

7. Awoyemi, D.O., Ademiluyi, R.A. and Amuseghan, E. (2007). Off-grids exploitation In the development of more accurate method for solution of ODEs Journal of Mathematical Physics,

12: 379-386.

8. Areo, E.A., Ademiluyi, R.A. and Babatola, P.O. (2011). Three steps hybrid linear multistep method for the solution of first- order initial value problem inordinary differential equations,

Journal of Mathematical Physics, 19: 261-266.

9. Ibijola, E.A., Bamisile,O.O. and Sunday, J. (2011). On the Derivation and Applications Of new One-Step Method based on the Combination of two interpolating Functions, American

Journal of Scientific and Industrial Research, 2:422- 427.

10. Nasir, N. A. A. M., Ibrahim, Z. B., & Suleiman, M. B. (2011). Fifth Order Two-point Block Backward Differentiation Formulas for Solving Ordinary Differential Equations. Applied

Mathematical Sciences 5(71), 3505–3518.

11. Zawawi, I.S.M., Ibrahim, Z.B., Ismail F, & Majid, Z. A. (2012). Diagonally Implicit Block Backward Differentiation Formulas for Solving Ordinary Differential Equations. International

Journal of Mathematics and Mathematical Sciences, 1155(22), 426–443.

12. Akinfenwa, O. A., Jator, S. N., & Yao, N. M. (2013). Continuous block backward differentiation formula for solving stiff ordinary differential equations. Computers and Mathematics

with Applications, 65(7), 996–1005.

13. Onumanyi, P., Awoyemi, D.O., Jator, S.N.& Sirisena, U. W. (1994). New Linear Multistep Methods with continuous coefficients for first order IVPs. Journal of NMS, 31(1), 37–51.

14. Onumanyi, P., Sirisena, U.W. & Jator, S. N. (1999). Continuous finite difference approximations for solving differential equations. International Journal of Computer and Mathematics,

72(1), 15–27.

15. Fatunla, S. O. (1991). Block Methods for Second Order Differential Equations. International Journal of Computer Mathematics, 41(1), 55–66.

16. Lambert, J.D. (1973). Computational Methods in ODEs, John Wiley & Sons New York

17. Ehigie, J.O. & Okunuga, S. A. (2014). L(Ξ±)-Stable Second Derivative Block Multistep Formula for Stiff Initial Value Problems. International Journal of Applied Mathematics, 44(3),7–

13.

18. Henrici, P.(1962). Discrete variable methods in Ordinary Differential Equations. John Willey and sons Inc. New York-London Sydney.


Recommended