Transcript
Page 1: Theoretical Calculation of Atomic Hyperfine Structure Zhao

1

A new method for theoretical calculation of atomic hyperfine structure

Zhao Yukuo1)โ€  Shi Kun2)

1)(School of Mechanical Engineering, Dalian University of Technology, Dalian, 116024,China)

2)(Huazhong University of Science and Technology School of Physics, 430000,China)

Abstract

Schrรถdinger equation is a nonrelativistic wave equation, which does not have Lorentz invariance. Therefore,

this equation has a large theoretical error in the precise calculation of hydrogen-like system. So the commonly used

method is Dirac-Hartree-Fock approximation in the calculation of atomic system. However, we have found a new

eigen equation, whose eigenvalue of the hydrogen-like system approximates the calculation of quantum

electrodynamics. Hence, we propose a new calculation scheme for the atomic hyperfine structure based on the eigen

equation and the basic principle of Hartree-Fock variational method, and come to our conclusion through the

correlation calculation of excited single states of hydrogen atom, U91+ ion, helium atom and lithium atom as well as

the comparison with NIST, that is, our method is a better improved model of the stationary Schrรถdinger equation.

Meanwhile, we list the correlation algorithms of energy functional, two-electron coupling integral and radial

generalized integral in the appendix.

Key words: Schrรถdinger equation; hyperfine structure; magnetic interaction potential; Hartree-Fock method;

variational method;

PACS: 31.15.xt, 31.15.vj, 31.15.Aโ€“

E-mail: [email protected]

1. Introduction

As is known to all, Schrรถdinger equation is the first principle of quantum mechanics[1-4], which is the calculation

basis of system energy and electron cloud density distribution and has been widely studied by many scholars.

Secondly, Schrรถdinger equation is a nonrelativistic wave equation, which does not have Lorentz invariance.

Therefore, this equation has a large theoretical error in the precise calculation of hydrogen-like system. So Klein

and Gordon proposed a new relativistic description equation for the single particle motion state in 1926, namely,

Klein-Gordon equation[5,6].

However, Klein-Gordon equation is only applicable to scalar fields (such as ฯ€ mesons)[7], but not to the

calculation of atomic fine structure, and there are both negative energy and negative probability difficulties.

Therefore, in order to solve this so-called negative probability difficulty, Dirac proposed a new relativistic wave

equation in 1928, namely, Dirac equation[8], and the representation of Dirac equation for the hydrogen-like system

Page 2: Theoretical Calculation of Atomic Hyperfine Structure Zhao

2

is as follows (in atomic unit):

๐ขฤง๐œ•

๐œ•๐‘กฯ† = (๐ถ๐œถ โˆ™ ๐ + ๏ฟฝฬ‡๏ฟฝ๐ถ2 โˆ’

๐‘

๐‘Ÿ)ฯ† (1).

Accordingly, (Dirac energy of hydrogen-like system) can be obtained:

๐ธDH(๐‘›๐‘– , ๐‘™๐‘–) =

1

๐›ผ2(

๐‘›๐‘–โˆ’๐‘™๐‘–โˆ’1+โˆš(๐‘™๐‘–+1)2โˆ’(๐›ผZ)2

โˆš(๐‘›๐‘–โˆ’๐‘™๐‘–โˆ’1)2+(๐‘™๐‘–+1)

2+2(๐‘›๐‘–โˆ’๐‘™๐‘–โˆ’1)โˆš(๐‘™๐‘–+1)2โˆ’(๐›ผZ)2

โˆ’ 1) (2).

Meanwhile, in other atomic systems, the representation of Dirac equation for the multi-electron system and

the correlation calculation method are shown in Reference [9], the calculation result of this method is often referred

to as the fine structure in the quantum electrodynamics.

In addition, Lamb found 1058MHZ energy level difference between S1/22 and P1/2

2 in 1947[10]. In the

same year, Bethe calculated this according the renormalization theory[11], and the result of low-order approximation

was highly consistent with Lambโ€™s experimental value[12]. Then, (QED energy of hydrogen-like system) can be

obtained according to his calculation method of gradual development:

๐ธQEDH (๐‘›๐‘– , ๐‘™๐‘– , ๐‘š๐‘– , ๐ฝ๐‘–) = ๐ธD

H(๐‘›๐‘– , ๐‘™๐‘–) + ๐ธLH(๐‘›๐‘– , ๐‘™๐‘– , ๐ฝ๐‘–) + ๐ธM

H(๐‘›๐‘– , ๐‘™๐‘– , ๐‘š๐‘– , ๐ฝ๐‘–) (3).

Meanwhile, the calculation result of this method is often referred to as the fine structure in the quantum

electrodynamics, as shown in Reference [13].

Wherein, the reduced Planck constant is denoted by ฤง, the time is denoted by ๐‘ก, the light velocity is denoted

by ๐ถ, Dirac4 ร— 4 matrix is denoted by ๐œถ and ๏ฟฝฬ‡๏ฟฝ, the momentum operator is denoted by ๐, the number of nuclear

charges is denoted by ๐‘, the wave function of the single particle is denoted by ฯ†, the principal quantum number is

denoted by ๐‘›๐‘– = 1,2โ‹ฏ, the azimuthal quantum number is denoted by ๐‘™๐‘– = 0,1โ‹ฏ , (๐‘›๐‘– โˆ’ 1), the magnetic quantum

number is denoted by ๐‘š๐‘– = 0,ยฑ1โ‹ฏ ,ยฑ๐‘™๐‘–, the spin quantum number is denoted by ๐ฝ๐‘– = 0 ๐‘œ๐‘Ÿ 1, the fine structure

constant is denoted by ๐›ผ โ‰ˆ1

137.036, and the intermediate function is denoted by

{

๐ธL

H(๐‘›, ๐‘™, ๐ฝ) โ‰ˆ {4(1โˆ’(โˆ’1)๐ฝ)โˆ†2๐‘†

H Z4

๐‘›3๐‘–๐‘“(๐‘› > 1 ๐‘Ž๐‘›๐‘‘ ๐‘™ = 0)

0 ๐‘’๐‘™๐‘ ๐‘’

๐ธMH(๐‘›, ๐‘™,๐‘š, ๐ฝ) โ‰ˆ {

3โˆ†1๐‘†H ((2๐‘™โˆ’(โˆ’1)๐ฝ+1)(2๐‘™โˆ’(โˆ’1)๐ฝ+3)โˆ’(2๐‘™+1)(2๐‘™+3)โˆ’3)Z3

8(2๐‘™+3)(2๐‘™+1)2๐‘›3๐‘–๐‘“(๐‘™ = 0 ๐‘œ๐‘Ÿ ๐‘š โˆˆ odd number)

3โˆ†1๐‘†H ((2๐‘™โˆ’(โˆ’1)๐ฝโˆ’1)(2๐‘™โˆ’(โˆ’1)๐ฝ+1)โˆ’(2๐‘™โˆ’1)(2๐‘™+1)โˆ’3)Z3

8(2๐‘™โˆ’1)(2๐‘™+1)2๐‘›3๐‘’๐‘™๐‘ ๐‘’

(4).

The ground state Lamb shift of hydrogen atoms is denoted by โˆ†1๐‘†H = 0.5556๐›ผ3, (22S1/2 โ†’ 22P1/2) state Lamb

shift is denoted by โˆ†2๐‘†H = 0.4138๐›ผ3, and the coordinate vector of electron ๐‘’๐‘– is denoted by ๏ฟฝโƒ—๏ฟฝ ๐‘–, as shown in Fig. 1.

Page 3: Theoretical Calculation of Atomic Hyperfine Structure Zhao

3

However, recently, we have discovered a new eigenequation, whose eigenvalue approximates the calculation

result of QED, i.e. (atom):

โˆ‘ (๐ป๐‘– โ‰ก โˆ’1

2โˆ‡๐‘–2 โˆ’

๐‘

๐‘Ÿ๐‘–โˆ’๐›ฟ3(๐‘)

๐‘Ÿ๐‘–2 โˆ’

๐›ฟ2(๐‘)

๐‘Ÿ๐‘–2๐‘๐‘œ๐‘ 2(๐œƒ๐‘–)

+๐›ฟ1(๐‘)

๐‘Ÿ๐‘–2๐‘ ๐‘–๐‘›2(๐œƒ๐‘–)

+ โˆ‘0.5

๐‘Ÿ๐‘–,๐‘—

๐‘๐‘—=1 ๐‘Ž๐‘›๐‘‘ ๐‘—โ‰ ๐‘– )๐‘

๐‘–=1 ๐›น = ๐ธ๐›น (5).

Wherein, the number of extranuclear electrons is denoted by ๐‘, the eigenfunction (wave function) is denoted

by ๐›น, the eigenvalue (system energy) is denoted by ๐ธ, the Laplace operator is denoted by

โˆ‡๐‘–2=

๐œ•2

๐œ•๐‘ฅ๐‘–2 +

๐œ•2

๐œ•๐‘ฆ๐‘–2 +

๐œ•2

๐œ•๐‘ง๐‘–2 =

1

๐‘Ÿ๐‘–2

๐œ•

๐œ•๐‘Ÿ๐‘–(๐‘Ÿ๐‘–

2 ๐œ•

๐œ•๐‘Ÿ๐‘–) +

1

๐‘Ÿ๐‘–2 sin(๐œƒ๐‘–)

๐œ•

๐œ•๐œƒ๐‘–(sin(๐œƒ๐‘–)

๐œ•

๐œ•๐œƒ๐‘–) +

1

๐‘Ÿ๐‘–2 sin2(๐œƒ๐‘–)

๐œ•2

๐œ•๐œ™๐‘–2,

and a function related to ๐‘ is denoted by ๐›ฟ๐‘–(๐‘), as shown in Section 2 below.

Finally, the structure of this paper is as follows: in Section 2, we propose a representation of magnetic potential

and ๐›ฟ๐‘–(๐‘) function by analogy of gravitational potential (relativity); in Section 3, we adopt a new trial function

(functional) based on the basic principle of Hartree-Fock variational method[14-17] and propose a new energy

functional minimization model for the atomic system according to the new trial function, and the specific algorithm

is shown in the appendix; the wave equation is a hypothetical theoretical basis in the quantum electrodynamics and

therefore a universal method for theoretical verification compared with the the experimental value, so in Section 4,

we calculated the hyperfine structures of hydrogen atoms, U91+ ions, helium atoms and lithium atoms and

compared with the experimental value of NIST[18] to conclude that Equation (5) and the variational method below

are better calculation schemes for the atomic hyperfine structure.

2. Magnetic potential and ๐œน๐’Š(๐’) function

Suppose that the mass of the stator is denoted by ๐‘€๐‘  , the mass of the rotor is denoted by ๐‘€๐‘Ÿ and the

gravitation constant is denoted by ๐บ , (the gravitational potential) can be obtained according to Schwarzschild

metric[19]:

Fig. 1: Coordinate vector of electron ๐‘’๐‘–

๏ฟฝโƒ—๏ฟฝ ๐‘–

๐‘ฅ

z

๐‘ฆ

O

๐‘’๐‘–

{

๐‘Ÿ๐‘– = โˆš๐‘ฅ๐‘–

2 + ๐‘ฆ๐‘–2 + ๐‘ง๐‘–

2

๐œƒ๐‘– = ๐ด๐‘Ÿ๐‘๐‘๐‘œ๐‘  (๐‘ง๐‘–๐‘Ÿ๐‘–)

๐œ™๐‘– = ๐ด๐‘Ÿ๐‘๐‘๐‘œ๐‘  (๐‘ฅ๐‘–

๐‘Ÿ๐‘–sin(๐œƒ๐‘–))

๐‘Ÿ๐‘–,๐‘— = โˆš(๐‘ฅ๐‘– โˆ’ ๐‘ฅ๐‘—)2+ (๐‘ฆ๐‘– โˆ’ ๐‘ฆ๐‘—)

2+ (๐‘ง๐‘– โˆ’ ๐‘ง๐‘—)

2

๐›ฝ๐‘–,๐‘— = ๐ด๐‘Ÿ๐‘๐‘๐‘œ๐‘  แ‰†๐‘Ÿ๐‘–2 + ๐‘Ÿ๐‘—

2 โˆ’ ๐‘Ÿ๐‘–,๐‘—2

2๐‘Ÿ๐‘–๐‘Ÿ๐‘—แ‰‡

๐œ’๐‘–,๐‘— = ๐ด๐‘Ÿ๐‘๐‘๐‘œ๐‘  แ‰†cos(๐œƒ๐‘—) โˆ’ cos(๐œƒ๐‘–)cos(๐›ฝ๐‘–,๐‘—)

sin(๐œƒ๐‘–)sin(๐›ฝ๐‘–,๐‘—)แ‰‡

๏ฟฝโƒ—๏ฟฝ ๐‘—

๐‘Ÿ๐‘–,๐‘— ๐‘’๐‘—

๐›ฝ๐‘–,๐‘—

๐œ’๐‘–,๐‘—

Page 4: Theoretical Calculation of Atomic Hyperfine Structure Zhao

4

๐‘‰๐บ(๐‘Ÿ) โ‰ˆ โˆ’๐บ๐‘€๐‘ ๐‘€๐‘Ÿ

๐‘Ÿโˆ’๐บ2๐‘€๐‘ 

2๐‘€๐‘Ÿ

๐ถ2๐‘Ÿ2 (6).

โˆดSuppose that the carried charge of the stator is denoted by ๐‘„๐‘ , the carried charge of the rotor is denoted by

๐‘„๐‘Ÿ , the wlectrostatic force constant is denoted by ๐พ and a function of ๐‘„๐‘  is denoted by ๐›ฟ(๐‘„๐‘ ) , (the

electromagnetic potential) can be obtained by analogy of Equation (6):

๐‘‰๐ถ(๐‘Ÿ) โ‰ˆ โˆ’๐พ๐‘„๐‘ ๐‘„๐‘Ÿ

๐‘Ÿโˆ’๐›ฟ(๐‘„๐‘ )๐‘„๐‘Ÿ

๐‘Ÿ2 (7).

So the motion of the charged system around the center generates a ๐‘Ÿ๐‘–โˆ’2 related magnetic potential (in the

spherical coordinate system):

๐‘‰๐ฟ๐น(๏ฟฝโƒ—๏ฟฝ ๐‘–) = โˆ’๐›ฟ3(๐‘)

๐‘Ÿ๐‘–2 โˆ’

๐›ฟ2(๐‘)

๐‘Ÿ๐‘–2๐‘๐‘œ๐‘ 2(๐œƒ๐‘–)

+๐›ฟ1(๐‘)

๐‘Ÿ๐‘–2๐‘ ๐‘–๐‘›2(๐œƒ๐‘–)

(8).

Therefore, the eigen equation we discovered is shown in Equation (5) according to Born-Oppenheimer

approximation[20,21], namely, an improved version of stationary Schrรถdinger equation.

โˆดSuppose the stationary eigenequation for the hydrogen-like system to be (improved equation) a ccording to

the variable separation method of Equation (5) and the two-body problem:

{

(

๐‘‘2

๐‘‘๐œ™2+๐‘š๐‘–

2)๐›ทโŸฆ๐‘–โŸง(๐œ™) = 0

แ‰†๐‘‘2

๐‘‘๐œƒ2+cos(๐œƒ)

sin(๐œƒ)

๐‘‘

๐‘‘๐œƒโˆ’๐‘š๐‘–2+2๐›ฟ1(๐‘)

sin2(๐œƒ)+

2๐›ฟ2(๐‘)

cos2(๐œƒ)+ ๐ฟโŸฆ๐‘–โŸง(๐ฟโŸฆ๐‘–โŸง + 1)แ‰‡๐›ฉโŸฆ๐‘–โŸง(๐œƒ) = 0

(๐‘‘2

๐‘‘๐‘Ÿ2+2

๐‘Ÿ

๐‘‘

๐‘‘๐‘Ÿ+2๐‘

๐‘Ÿโˆ’๐ฟโŸฆ๐‘–โŸง(๐ฟโŸฆ๐‘–โŸง+1)โˆ’2๐›ฟ3(๐‘)

๐‘Ÿ2+ 2๐ธโŸฆ๐‘–โŸง

๐ป )๐‘…โŸฆ๐‘–โŸง(๐‘Ÿ) = 0

(9).

Obtain:

{

๐ธโŸฆ๐‘–โŸง

๐ป = โˆ’1

2๐œ‰โŸฆ๐‘–โŸง2 ๐‘Ž๐‘›๐‘‘ ๐œ‰โŸฆ๐‘–โŸง =

๐‘

๐‘›๐‘–โˆ’๐‘™๐‘–โˆ’1

2+โˆš(๐ฟโŸฆ๐‘–โŸง+

1

2)2โˆ’2๐›ฟ3(๐‘)

ฮฆโŸฆ๐‘–โŸง(๐œ™) = {cos(๐‘š๐‘–๐œ™) ๐‘–๐‘“(๐‘š๐‘– โ‰ฅ 0)

sin(|๐‘š๐‘–|๐œ™) ๐‘’๐‘™๐‘ ๐‘’

๐›ฉโŸฆ๐‘–โŸง(๐œƒ) = ๐‘ ๐‘–๐‘›(โˆ’1)๐‘ƒ๐‘–+1โˆš๐‘š๐‘–

2+2๐›ฟ1(๐‘)(๐œƒ)โˆ‘ ๐‘ŽโŸฆ๐‘–โŸง,๐‘˜๐‘๐‘œ๐‘ ๐‘‡โŸฆ๐‘–โŸงโˆ’2๐‘˜(๐œƒ)

[๐‘™๐‘–โˆ’|๐‘š๐‘–|

2]

๐‘˜=0 (unnormalized)

๐‘…โŸฆ๐‘–โŸง(๐‘Ÿ) = โˆ‘ ๐‘โŸฆ๐‘–โŸง,๐‘˜๐‘Ÿ๐‘˜โˆ’

1

2+โˆš(๐ฟโŸฆ๐‘–โŸง+

1

2)2โˆ’2๐›ฟ3(๐‘)๐‘’โˆ’๐œ‰โŸฆ๐‘–โŸง๐‘Ÿ

๐‘›๐‘–โˆ’๐‘™๐‘–โˆ’1๐‘˜=0

(10).

Wherein, the atomic orbital is denoted by โŸฆ๐‘–โŸง = (๐‘›๐‘– , ๐‘™๐‘– , ๐‘š๐‘– , ๐ฝ๐‘– , ๐‘ƒ๐‘–; ๐œ‰โŸฆ๐‘–โŸง), the parity quantum number is denoted

by ๐‘ƒ๐‘– = {0 ๐‘œ๐‘Ÿ 1 ๐‘–๐‘“(๐‘š๐‘– = 0)

1 ๐‘’๐‘™๐‘ ๐‘’ , and the multinomial coefficient is denoted by

{

๐‘ŽโŸฆ๐‘–โŸง,๐‘˜ = {

1 ๐‘–๐‘“(๐‘˜ = 0)

โˆ’(๐‘‡โŸฆ๐‘–โŸงโˆ’2๐‘˜+2)(๐‘‡โŸฆ๐‘–โŸงโˆ’2๐‘˜+1)+2๐›ฟ2(๐‘)

2๐‘˜(2๐ฟโŸฆ๐‘–โŸง+1โˆ’2๐‘˜)๐‘ŽโŸฆ๐‘–โŸง,๐‘˜โˆ’1 ๐‘’๐‘™๐‘ ๐‘’

๐‘โŸฆ๐‘–โŸง,๐‘˜ = {

1 ๐‘–๐‘“(๐‘˜ = 0)

โˆ’2๐œ‰โŸฆ๐‘–โŸง(๐‘›๐‘–โˆ’๐‘™๐‘–โˆ’๐‘˜)

๐‘˜แ‰†๐‘˜+โˆš(2๐ฟโŸฆ๐‘–โŸง+1)2โˆ’8๐›ฟ3(๐‘)แ‰‡

๐‘โŸฆ๐‘–โŸง,๐‘˜โˆ’1 ๐‘’๐‘™๐‘ ๐‘’

(11).

The intermediate function is denoted by

{

๐‘‡โŸฆ๐‘–โŸง = ๐‘™๐‘– โˆ’ |๐‘š๐‘–| +1

2โˆ’ (โˆ’1)๐ฝ๐‘–โˆš

1

4โˆ’ 2๐›ฟ2(๐‘)

๐ฟโŸฆ๐‘–โŸง = ๐‘‡โŸฆ๐‘–โŸง โˆ’ (โˆ’1)๐‘ƒ๐‘–โˆš๐‘š๐‘–

2 + 2๐›ฟ1(๐‘)

(12).

Page 5: Theoretical Calculation of Atomic Hyperfine Structure Zhao

5

โˆดSuppose

{

๐ธ๏ฟฝฬ‡๏ฟฝ,0,0,0,0

H = โˆ’1

๐›ผ2+

1

๐›ผ2โˆš1โˆ’ (

๐›ผ๐‘

๏ฟฝฬ‡๏ฟฝ)2โˆ’3โˆ†1๐‘†

H ๐‘3

4๏ฟฝฬ‡๏ฟฝ3

๐ธ๏ฟฝฬ‡๏ฟฝ,0,0,0,1H = โˆ’

1

๐›ผ2+

1

๐›ผ2โˆš1โˆ’ (

๐›ผ๐‘

๏ฟฝฬ‡๏ฟฝ)2+โˆ†1๐‘†H ๐‘3

4๏ฟฝฬ‡๏ฟฝ3

๐ธ๏ฟฝฬ‡๏ฟฝ,0,0,1,0H โˆ’ ๐ธ๏ฟฝฬ‡๏ฟฝ+1,0,0,0,0

H =16โˆ†2๐‘†

H ๐‘4

(๏ฟฝฬ‡๏ฟฝ+1)4

๐‘Ž๐‘›๐‘‘ ๏ฟฝฬ‡๏ฟฝ = [๐›ผ๐‘ + 1], can be obtained according to

๐ธโŸฆ๐‘–โŸง๐ป = โˆ’

1

2๐œ‰โŸฆ๐‘–โŸง2 in Equation (10)๏ผš

{

๐›ฟ1(๐‘) =

(ฮ›2(๐‘)โˆ’ฮ›3(๐‘)+16โˆ’โˆš(ฮ›2(๐‘)โˆ’ฮ›3(๐‘)+16)2โˆ’64ฮ›2(๐‘)+64ฮ›1(๐‘))

2

2048

๐›ฟ2(๐‘) =1

8โˆ’(16โˆš2๐›ฟ1(๐‘)โˆ’ฮ›2(๐‘)+ฮ›1(๐‘))

2

1024๐›ฟ1(๐‘)

๐›ฟ3(๐‘) =1

8(2 โˆ’ โˆš1 โˆ’ 8๐›ฟ2(๐‘) โˆ’ 2โˆš2๐›ฟ1(๐‘))

2โˆ’ฮ›1(๐‘)

8

(13).

Wherein, the intermediate function is denoted by

{

ฮ›1(๐‘) =

แ‰†2๐›ผ๐‘โˆ’(2๏ฟฝฬ‡๏ฟฝโˆ’1)โˆš2+1.5โˆ†1๐‘†H ๐›ผ2๐‘3๏ฟฝฬ‡๏ฟฝโˆ’3โˆ’2โˆš1โˆ’(๐›ผ๐‘)2๏ฟฝฬ‡๏ฟฝโˆ’2แ‰‡

2

2+1.5โˆ†1๐‘†H ๐›ผ2๐‘3๏ฟฝฬ‡๏ฟฝโˆ’3โˆ’2โˆš1โˆ’(๐›ผ๐‘)2๏ฟฝฬ‡๏ฟฝโˆ’2

ฮ›2(๐‘) =แ‰†2๐›ผ๐‘โˆ’(2๏ฟฝฬ‡๏ฟฝโˆ’1)โˆš2โˆ’0.5โˆ†1๐‘†

H ๐›ผ2๐‘3๏ฟฝฬ‡๏ฟฝโˆ’3โˆ’2โˆš1โˆ’(๐›ผ๐‘)2๏ฟฝฬ‡๏ฟฝโˆ’2แ‰‡

2

2โˆ’0.5โˆ†1๐‘†H ๐›ผ2๐‘3๏ฟฝฬ‡๏ฟฝโˆ’3โˆ’2โˆš1โˆ’(๐›ผ๐‘)2๏ฟฝฬ‡๏ฟฝโˆ’2

ฮ›3(๐‘) = ((๏ฟฝฬ‡๏ฟฝ+1)2(2๏ฟฝฬ‡๏ฟฝ+1+โˆšฮ›1(๐‘))

โˆš(๏ฟฝฬ‡๏ฟฝ+1)4โˆ’8โˆ†2๐‘†H ๐‘2(2๏ฟฝฬ‡๏ฟฝ+1+โˆšฮ›1(๐‘))

2โˆ’ 2๏ฟฝฬ‡๏ฟฝ + 1)

2

(14).

3. Variational method

3.1 Trial function

Multi-electron stationary wave equation is a second-order eigenequation without analytical solution, so the

representation of trial function is particularly important in approximate solution (the so-called trial function is the

approximate solution of the eigenfunction in the stationary wave equation).

On the one hand, any single-valued convergent function may become an approximate solution to it

mathematically. On the other hand, the lowest energy is only its partial solution, for example, its approximate

solution does not satisify the lowest energy principle and the orthogonal transformation constraints in the excited

state of the system. In other words, the eigenfunction of the stationary wave equation satisfies this property[22] only

in the case of single electron approximation, for example, Hartree-Fock variational method[14-17], Monte-Carlo

method[23,24] and Kohn-Sham method (or density functional theory)[25] are applied in the calculation of multi-

electron stationary Schrรถdinger equation. Therefore, the following trial function is adopted according to the basic

principle of Hartree-Fock variational method:

๐›นโŸฆ๏ฟฝโƒ—โƒ—๏ฟฝ โŸง = โˆ‘ โˆ‘ (๐œ‘โŸฆ๐‘–โŸง(๏ฟฝโƒ—๏ฟฝ ๐‘–)๐œ‘โŸฆ๐‘—โŸง(๏ฟฝโƒ—๏ฟฝ ๐‘—) โˆ’ (โˆ’1)๐‘†โŸฆ๐‘–โŸง,โŸฆ๐‘—โŸง๐œ‘โŸฆ๐‘–โŸง(๏ฟฝโƒ—๏ฟฝ ๐‘—)๐œ‘โŸฆ๐‘—โŸง(๏ฟฝโƒ—๏ฟฝ ๐‘–))โˆ ๐œ‘โŸฆ๐‘˜โŸง(๏ฟฝโƒ—๏ฟฝ ๐‘˜)

๐‘๐‘˜โ‰ ๐‘–,๐‘—

๐‘๐‘—=๐‘–+1

๐‘โˆ’1๐‘–=1

๐‘ . ๐‘ก. โˆ€ {๐‘†โŸฆ๐‘–โŸง,โŸฆ๐‘—โŸง = 0

|(๐‘›๐‘–+๐ฝ๐‘–โˆ’1)(๐‘›๐‘–+๐ฝ๐‘–)โˆ’(๐‘›๐‘—+๐ฝ๐‘—โˆ’1)(๐‘›๐‘—+๐ฝ๐‘—)

2+ ๐‘™๐‘– + ๐ฝ๐‘– โˆ’ ๐‘™๐‘— โˆ’ ๐ฝ๐‘—| < 3

โŸน โŸจ๐œ‘โŸฆ๐‘–โŸง(๏ฟฝโƒ—๏ฟฝ )|๐œ‘โŸฆ๐‘—โŸง(๏ฟฝโƒ—๏ฟฝ )โŸฉ โ‰ˆ 0 (15).

Page 6: Theoretical Calculation of Atomic Hyperfine Structure Zhao

6

Wherein, the hydrogen-like wave function is denoted by ๐œ‘โŸฆ๐‘–โŸง(๏ฟฝโƒ—๏ฟฝ ) = ๐ดโŸฆ๐‘–โŸง๐›ทโŸฆ๐‘–โŸง(๐œ™)๐›ฉโŸฆ๐‘–โŸง(๐œƒ)๐‘…โŸฆ๐‘–โŸง(๐‘Ÿ), the electron

configuration is denoted by โŸฆ๏ฟฝโƒ—โƒ—๏ฟฝ โŸง = (โŸฆ1โŸง, โŸฆ2โŸงโ‹ฏ ), the normalization coefficient is denoted by

๐ดโŸฆ๐‘–โŸง =1

โˆšโˆซ๐›ทโŸฆ๐‘–โŸง2 (๐œ™)๐›ฉโŸฆ๐‘–โŸง

2 (๐œƒ)๐‘…โŸฆ๐‘–โŸง2 (๐‘Ÿ) ๐‘‘๏ฟฝโƒ—๏ฟฝ

, and the symmetry coefficient sis denoted by ๐‘†โŸฆ๐‘–โŸง,โŸฆ๐‘—โŸง = 0 ๐‘œ๐‘Ÿ 1.

3.2 Energy functional

Suppose that the experimental value of the system is denoted by ๐ธโŸฆ๏ฟฝโƒ—โƒ—๏ฟฝ โŸง

๐‘’๐‘ฅ๐‘, the error rate is denoted by

ํœ€โŸฆ๏ฟฝโƒ—โƒ—๏ฟฝ โŸง =๐ธโŸฆ๏ฟฝโƒ—โƒ—๏ฟฝ โŸงโˆ’๐ธโŸฆ๏ฟฝโƒ—โƒ—๏ฟฝ โŸง

๐‘’๐‘ฅ๐‘

|๐ธโŸฆ๏ฟฝโƒ—โƒ—๏ฟฝ โŸง

๐‘’๐‘ฅ๐‘|ร— 100, and the energy functional minimization model for the helium-like systems is denoted by

๐ธโŸฆ๏ฟฝโƒ—โƒ—๏ฟฝ โŸงHe = ๐‘€๐‘–๐‘›

1

๐ดโˆ‘ โŸจ๐›น

โŸฆ๏ฟฝโƒ—โƒ—๏ฟฝ โŸงHe|๐ป๐‘–|๐›นโŸฆ๏ฟฝโƒ—โƒ—๏ฟฝ โŸง

HeโŸฉ๐‘๐‘–=1 (๐‘ = 2 ๐‘Ž๐‘›๐‘‘ ๐ด = โŸจ๐›น

โŸฆ๏ฟฝโƒ—โƒ—๏ฟฝ โŸงHe |๐›น

โŸฆ๏ฟฝโƒ—โƒ—๏ฟฝ โŸงHeโŸฉ) (16).

Then the maximum error rate of the helium-like system is ๐‘€๐‘Ž๐‘ฅ {|ํœ€โŸฆ๏ฟฝโƒ—โƒ—๏ฟฝ โŸง|} โ‰ˆ 0.96 (the specific calculation

process is similar to Hartree Fock method, omitted here).

Wherein, the Hamiltonian operator ๐ป๐‘– is shown in Equation (5), the structure of the trial function ๐›นโŸฆ๏ฟฝโƒ—โƒ—๏ฟฝ โŸง is

shown in Equation (15), and the correlation calculation results are shown in Table 1.

Table 1: Energy of helium atom (๐ธโŸฆ๏ฟฝโƒ—โƒ—๏ฟฝ โŸงS = ๐‘€๐‘–๐‘›

1

๐ดโˆ‘ โŸจ๐›น

โŸฆ๏ฟฝโƒ—โƒ—๏ฟฝ โŸงHe|โˆ’

1

2โˆ‡๐‘–2 โˆ’

2

๐‘Ÿ๐‘–+

0.5

๐‘Ÿ1,2|๐›น

โŸฆ๏ฟฝโƒ—โƒ—๏ฟฝ โŸงHeโŸฉ2

๐‘–=1 ๐‘Ž. ๐‘ข.)

ID ๐‘›1, ๐‘™1, ๐‘š1, ๐ฝ1 ; ๐‘›2, ๐‘™2, ๐‘š2, ๐ฝ2; ๐‘†โŸฆ1โŸง,โŸฆ2โŸง ๐ธโŸฆ๏ฟฝโƒ—โƒ—๏ฟฝ โŸงHe ๐ธ

โŸฆ๏ฟฝโƒ—โƒ—๏ฟฝ โŸงS ๐ธ๐ผ๐ท

Drake[18,26] ํœ€โŸฆ๏ฟฝโƒ—โƒ—๏ฟฝ โŸง

1 1,0,0,0 ; 1,0,0,0 ; 1 -2.875821 -2.875661 -2.90375 0.96

2 1,0,0,0 ; 2,0,0,0 ; 1 -2.170578 -2.170465 -2.17533 0.22

3 1,0,0,0 ; 2,0,0,0 ; 0 -2.138372 -2.138269 -2.14612 0.36

4 1,0,0,0 ; 1,0,0,1 ; 0 -2.130801

5 1,0,0,0 ; 2,1,0,0 ; 0 -2.130799 -2.130691 -2.13332 0.12

6 1,0,0,0 ; 2,1,0,0 ; 1 -2.122499 -2.12239

7 1,0,0,0 ; 3,0,0,0 ; 1 -2.068694 -2.068585 -2.06885 0.01

8 1,0,0,0 ; 3,0,0,0 ; 0 -2.06389 -2.063781 -2.06143 -0.12

9 1,0,0,0 ; 2,0,0,1 ; 0 -2.057419

10 1,0,0,0 ; 3,1,0,0 ; 0 -2.057418 -2.057310 -2.05824 0.04

11 1,0,0,0 ; 3,2,0,0 ; 0 -2.05568 -2.055572 -2.05580 0.01

12 1,0,0,0 ; 3,2,0,0 ; 1 -2.055654 -2.055546 -2.05578 0.01

13 1,0,0,0 ; 3,1,0,0 ; 1 -2.054817 -2.054709

Page 7: Theoretical Calculation of Atomic Hyperfine Structure Zhao

7

In Table 1, the contribution of magnetic interaction (relativistic relativity and quantum electrodynamic

correction) is mainly the correction of kinetic energy and potential energy (the relativistic correction between

electrons is ignored as it is small), and the hyultrafine splitting of the system is much lower than the total energy of

the system. Therefore, the calculation error of Equation (16) mainly arises from the estimation error (repulsive

energy) between electrons caused by the the single particle approximation. So a new monocentric repulsive potential

is introduced under the expression of the trial function of Equation (15):

๐‘‰๐œƒHF(๏ฟฝโƒ—๏ฟฝ ๐‘– , ๏ฟฝโƒ—๏ฟฝ ๐‘—) =

๐œ‚1

๐‘Ÿ๐‘–,๐‘—+๐œ‚2๐‘Ÿ๐‘–,๐‘—

๐‘Ÿ๐‘–๐‘Ÿ๐‘—+๐œ‚3(๐‘Ÿ๐‘–

2+๐‘Ÿ๐‘—2)

๐‘Ÿ๐‘–๐‘Ÿ๐‘—๐‘Ÿ๐‘–,๐‘—+๐œ‚4๐‘Ÿ๐‘–,๐‘—

2

๐‘Ÿ๐‘–๐‘Ÿ๐‘—2 +

๐œ‚5(๐‘Ÿ๐‘–+๐‘Ÿ๐‘—)

๐‘Ÿ๐‘–๐‘Ÿ๐‘—๐‘Ÿ๐‘–,๐‘—+๐œ‚6๐‘Ÿ๐‘–๐‘Ÿ๐‘—

๐‘Ÿ๐‘–,๐‘—+๐œ‚7(๐‘๐‘œ๐‘ (๐œƒ๐‘–)๐‘๐‘œ๐‘ (๐œƒ๐‘—)+๐‘ ๐‘–๐‘›(๐œƒ๐‘–)๐‘ ๐‘–๐‘›(๐œƒ๐‘—)๐‘๐‘œ๐‘ (๐œ™๐‘–โˆ’๐œ™๐‘—))

๐‘Ÿ๐‘–๐‘Ÿ๐‘— (17).

Therefore, the Hamiltonian operator in the single particle approximation is (the spherical coordinate system):

๐ป๐‘–HF = โˆ’

1

2โˆ‡๐‘–2 โˆ’

๐‘

๐‘Ÿ๐‘–โˆ’๐›ฟ3(๐‘)

๐‘Ÿ๐‘–2 โˆ’

๐›ฟ2(๐‘)

๐‘Ÿ๐‘–2๐‘๐‘œ๐‘ 2(๐œƒ๐‘–)

+๐›ฟ1(๐‘)

๐‘Ÿ๐‘–2๐‘ ๐‘–๐‘›2(๐œƒ๐‘–)

+ โˆ‘ ๐‘‰๐œƒHF(๏ฟฝโƒ—๏ฟฝ ๐‘–, ๏ฟฝโƒ—๏ฟฝ ๐‘—)

๐‘๐‘—=1 ๐‘Ž๐‘›๐‘‘ ๐‘—โ‰ ๐‘– (18).

Therefore, the energy functional minimization model of the atomic system is (Rayleigh-Ritz variational method,

and the specific algorithm is shown in the appendix):

๐ธโŸฆ๏ฟฝโƒ—โƒ—๏ฟฝ โŸง = ๐‘€๐‘–๐‘› ๐ธ๐ผ๐ทHF(โŸฆ๏ฟฝโƒ—โƒ—๏ฟฝ โŸง) =

1

๐ดโˆ‘ โŸจ๐›นโŸฆ๏ฟฝโƒ—โƒ—๏ฟฝ โŸง|๐ป๐‘–

HF|๐›นโŸฆ๏ฟฝโƒ—โƒ—๏ฟฝ โŸงโŸฉ๐‘๐‘–=1 (19).

Moreover, according to the fitting technology of neural network and ๐‘€๐‘–๐‘› ๐น(๐œ‚1, ๐œ‚2,โ‹ฏ ๐œ‚7) = โˆ‘ |๐ธ๐‘–โˆ’๐ธ๐‘–

NIST

๐ธ๐‘–NIST |๐‘–=1 ,

it can be obtained(Fitting process, omitted):

๐œ‚1 = 0.47883387; ๐œ‚2 = โˆ’0.01397390; ๐œ‚3 = 0.00769582; ๐œ‚4 = 0.00000713 ;

๐œ‚5 = 0.00231748; ๐œ‚6 = 0.01837402; ๐œ‚7 = โˆ’0.1701; (20).

4. Conclusion

4.1 Hyperfine structures of hydrogen atoms and ๐”๐Ÿ—๐Ÿ+ ions (๐’ โ‰ค ๐Ÿ)

In order to verify the reasonableness of introducing the magnetic interaction potential ๐‘‰๐ฟ๐น(๏ฟฝโƒ—๏ฟฝ ๐‘–), we calculated the

hyrefine structures of hydrogen atoms and U91+ ions, and the calculation results are shown in Table 2 and Table 3.

Table 2: Hyrefine structure of hydrogen atoms (Z=1)

ID ๐‘›๐‘– , ๐‘™๐‘– , |๐‘š๐‘–|, ๐ฝ๐‘– , ๐‘ƒ๐‘– ฮ”๐ธ๐‘– ฮ”๐ธ๐‘–๐‘„๐ธ๐ท ํœ€๐‘–

1 1,0,0,0,0 0 0

2 1,0,0,0,1 0.0000002159 0.0000002159 0

3 2,0,0,0,0 0.3750059662 0.3750047181 -0.00033

4 2,0,0,0,1 0.3750059932 0.3750049059 -0.00029

5 1,0,0,1,0 0.3750061270 0.3750063957 0.00007

6 1,0,0,1,1 0.3750061540 0.3750064047 0.00007

7 2,1,0,0,0 0.3750067246 0.3750064002 -0.00009

Page 8: Theoretical Calculation of Atomic Hyperfine Structure Zhao

8

8 2,1,0,0,1 0.3750067381 0.3750064038 -0.00009

9 2,1,1,0,1 0.3750067516

Table 3: Hyrefine structure of U91+ ions (Z=92)

ID ๐‘›๐‘– , ๐‘™๐‘– , |๐‘š๐‘–|, ๐ฝ๐‘– , ๐‘ƒ๐‘– ฮ”๐ธ๐‘– ฮ”๐ธ๐‘–๐‘„๐ธ๐ท

ํœ€๐‘–

1 1,0,0,0,0 0 0

2 1,0,0,0,1 0.1681208972 0.1681208972

3 2,0,0,0,0 3728.7449184168 3603.9123738739 -3.46

4 2,0,0,0,1 3728.7638243654 3615.4529989734 -3.13

5 1,0,0,1,0 3740.2645284047 3771.7073141378 0.83

6 1,0,0,1,1 3740.2801716006 3771.7143191751 0.83

7 2,1,0,0,0 3799.8628613294 3771.7108166564 -0.75

8 2,1,0,0,1 3799.8700571364 3771.7136186714 -0.75

9 2,1,1,0,1 3799.8772528214

Wherein, ฮ”๐ธ๐‘– = ๐ธโŸฆ๏ฟฝโƒ—โƒ—๏ฟฝ โŸง โˆ’ ๐ธ๐‘”๐‘Ÿ๐‘œ๐‘ข๐‘›๐‘‘ ๐‘ ๐‘ก๐‘Ž๐‘ก๐‘’ , error rate ํœ€๐‘– =100(ฮ”๐ธ๐‘–

๐‘„๐ธ๐ทโˆ’ฮ”๐ธ๐‘–)

ฮ”๐ธ๐‘–๐‘„๐ธ๐ท ๐‘œ๐‘Ÿ

100(ฮ”๐ธ๐‘–NISTโˆ’ฮ”๐ธ๐‘–)

ฮ”๐ธ๐‘–NIST , the calculation

method of ๐ธโŸฆ๏ฟฝโƒ—โƒ—๏ฟฝ โŸง is shown in Equation (10) or (19), and the calculation method of ๐ธ๐‘–๐‘„๐ธ๐ท

is shown in Equation (3).

Next, in Table 2 and Table 3, Lamb shift= {ฮ”๐ธ2 โˆ’ ฮ”๐ธ1 = 0.0000002159 ๐‘œ๐‘Ÿ 0.1681208972ฮ”๐ธ5 โˆ’ ฮ”๐ธ3 = 0.0000001608 ๐‘œ๐‘Ÿ 11.5196099879

, which is

consistent with the experimental value(The ground state is shown in Table 6).

However, in Table 2 and Table 3, there are differences in hyperfine structure splitting, which increase with the

increase of Z, because the number of energy levels we calculated is more than the result of quantum electrodynamics,

for example, the number of energy levels we calculated is 7 but the number of energy levels in the quantum

electrodynamics is 6 when 3โ‰คIDโ‰ค9. For example, in the hydrogen atoms,

ฮ”๐ธ4โˆ’ฮ”๐ธ3

ฮ”๐ธ4๐‘„๐ธ๐ท

โˆ’ฮ”๐ธ3๐‘„๐ธ๐ท โ‰ˆ 0.14 ๐‘Ž๐‘›๐‘‘

ฮ”๐ธ4โˆ’ฮ”๐ธ3

๐ธMH(2,0,0,1)โˆ’๐ธM

H(2,0,0,0)โ‰ˆ 1 (21).

Meanwhile, this energy difference does not affect the application of our method in other atomic systems since

this difference is much smaller than the calculation error of electron correlation effect (in the multi-electron system).

In addition, as the difference between two energy levels of hyperfine splitting of hydrogen atoms is not equal

to 1058MHZ (high-order approximation) in the quantum electrodynamics, some unreasonable approximation[12]

Page 9: Theoretical Calculation of Atomic Hyperfine Structure Zhao

9

may exist in the renormalization calculation scheme. So the actual error of the hydrogen-like is less than the

calculation result of Equation (21).

4.2 Hyperfine structures of helium atoms and lithium atoms (excited single state)

Based on the calculation of the hydrogen-like system (as shown in Table 2 and 3), we believe that Equation (5)

is a better improved model of the stationary Schrรถdinger equation, and it has lower calculation complexity than

Betheโ€™s calculation method[11].

However, this multi-electron eigenequation has no analytical solution, so a relatively feasible approximate

solution can be obtained only by some approximation, as shown in Equation (19). Therefore, in order to verify the

calculation accuracy of the relevant method, we calculated the excited single state energy of helium atoms and

lithium atoms, and the calculation results are shown in Table 4, Table 5 and Table 6.

Table 4: Excited single state energy of helium atoms (improved), and (๐‘›1, ๐‘™1, ๐‘š1, ๐ฝ1, ๐‘ƒ1) = (1,0,0,0,0).

ID ๐‘›2, ๐‘™2, |๐‘š2|, ๐ฝ2, ๐‘ƒ2; ๐‘†โŸฆ1โŸง,โŸฆ2โŸง ๐œ‰1 ๐œ‰2 ฮ”๐ธ๐‘– ฮ”๐ธ๐‘–NIST[18]

ํœ€๐‘–

1 1,0,0,0,1 ; 1 2.20144 1.20162 0 0

2 2,0,0,0,1 ; 1 2.03659 0.47136 0.7279475 0.7286623 0.10

3 2,0,0,0,0 ; 1 2.03659 0.47136 0.72794754

4 2,0,0,0,0 ; 0 1.87452 0.93726 0.75793283 0.7579329 0.00

5 2,0,0,0,1 ; 0 1.87452 0.93726 0.75793301

6 1,0,0,1,0 ; 0 2.01815 0.53782 0.7704155 0.7707385 0.04

7 1,0,0,1,1 ; 0 2.01815 0.53782 0.77041557 0.7707388 0.04

8 2,1,0,0,0 ; 0 2.01815 0.53780 0.77041825

9 2,1,1,0,1 ; 0 2.01815 0.53780 0.77041829

10 2,1,0,0,1 ; 0 2.01815 0.53780 0.77041832 0.7707434 0.04

11 1,0,0,1,0 ; 1 2.02634 0.51203 0.77443671

12 1,0,0,1,1 ; 1 2.02634 0.51203 0.77443677

13 2,1,0,0,0 ; 1 2.02634 0.51202 0.7744392

14 2,1,1,0,1 ; 1 2.02634 0.51202 0.77443923

15 2,1,0,0,1 ; 1 2.02634 0.51202 0.77443926 0.7800744 0.72

16 3,0,0,0,1 ; 1 2.02724 0.31895 0.83523847 0.8352377 0.00

17 3,0,0,0,0 ; 1 2.02724 0.31895 0.8352385

18 3,0,0,0,0 ; 0 2.02055 0.47273 0.83899804

Page 10: Theoretical Calculation of Atomic Hyperfine Structure Zhao

10

19 3,0,0,0,1 ; 0 2.02055 0.47273 0.83899807 0.8426587 0.43

20 2,0,0,1,0 ; 0 2.02235 0.35736 0.84703949 0.8458483 -0.14

21 2,0,0,1,1 ; 0 2.02235 0.35736 0.84703951 0.8458484 -0.14

22 3,1,0,0,0 ; 0 2.02235 0.35735 0.84704032 0.8458496 -0.14

23 3,1,1,0,1 ; 0 2.02235 0.35735 0.84704033

24 3,1,0,0,1 ; 0 2.02235 0.35735 0.84704034

25 2,1,0,1,1 ; 1 2.02468 0.34700 0.84777506

26 2,1,1,1,1 ; 0 2.02440 0.34723 0.84777856

27 3,2,0,0,0 ; 0 2.02440 0.34722 0.84777931

28 3,2,1,0,1 ; 0 2.02440 0.34722 0.84777932

29 3,2,2,0,1 ; 0 2.02440 0.34722 0.84777932

30 3,2,0,0,1 ; 0 2.02440 0.34722 0.84777933

31 2,1,1,1,1 ; 1 2.02448 0.34667 0.84781357

32 3,2,0,0,0 ; 1 2.02448 0.34666 0.84781432 0.8482960 0.06

33 3,2,1,0,1 ; 1 2.02448 0.34666 0.84781433 0.8482960 0.06

34 3,2,2,0,1 ; 1 2.02448 0.34666 0.84781433

35 3,2,0,0,1 ; 1 2.02448 0.34666 0.84781434 0.8482962 0.06

36 2,1,0,1,1 ; 0 2.02420 0.34689 0.84781711

37 2,0,0,1,0 ; 1 2.02474 0.34660 0.84830709

38 2,0,0,1,1 ; 1 2.02474 0.34660 0.84830711 0.8483116 0.00

39 3,1,0,0,0 ; 1 2.02474 0.34660 0.84830787

40 3,1,1,0,1 ; 1 2.02474 0.34660 0.84830788

41 3,1,0,0,1 ; 1 2.02474 0.34660 0.84830789 0.8487875 0.06

Table 5: Excited single state energy of lithium atoms, and {

(๐‘›1, ๐‘™1, ๐‘š1, ๐ฝ1, ๐‘ƒ1) = (1,0,0,0,0)

(๐‘›2, ๐‘™2, ๐‘š2, ๐ฝ2, ๐‘ƒ2) = (1,0,0,0,1)๐‘†โŸฆ1โŸง,โŸฆ2โŸง = 1

.

ID ๐‘›3, ๐‘™3, |๐‘š3|, ๐ฝ3, ๐‘ƒ3; ๐‘†โŸฆ1โŸง,โŸฆ3โŸง, ๐‘†โŸฆ2โŸง,โŸฆ3โŸง ๐œ‰1 ๐œ‰2 ๐œ‰3 ฮ”๐ธ๐‘– ฮ”๐ธ๐‘–NIST[18]

ํœ€๐‘–

1 2,0,0,0,1 ; 1, 1 2.7076 2.7112 0.5541 0 0

2 2,0,0,0,0 ; 1, 1 2.7076 2.7112 0.5541 0.00000004

3 1,0,0,1,1 ; 0, 0 2.7091 2.7096 0.5389 0.04221700

Page 11: Theoretical Calculation of Atomic Hyperfine Structure Zhao

11

4 2,1,1,0,1 ; 0, 0 2.7091 2.7096 0.5389 0.04222315

5 2,1,0,0,1 ; 0, 0 2.7091 2.7096 0.5389 0.04222320

6 1,0,0,1,1 ; 1, 0 2.7122 2.7074 0.5366 0.04257838

7 2,1,1,0,1 ; 1, 0 2.7121 2.7074 0.5366 0.04258448

8 2,1,0,0,1 ; 1, 0 2.7122 2.7074 0.5366 0.04258453

9 1,0,0,1,1 ; 1, 1 2.7101 2.7106 0.5333 0.04311297

10 2,1,1,0,1 ; 1, 1 2.7101 2.7106 0.5333 0.04311900

11 2,1,0,0,1 ; 1, 1 2.7101 2.7106 0.5333 0.04311905

12 2,0,0,0,1 ; 1, 0 3.0047 2.1791 1.0895 0.07495433 0.067934 -10.33

13 2,0,0,0,1 ; 0, 0 2.5722 2.5722 1.2861 0.08422833

14 3,0,0,0,1 ; 1, 0 2.7251 2.6973 0.4483 0.08586089

15 3,0,0,0,1 ; 0, 0 2.6923 2.7304 0.5121 0.08936758

16 2,1,0,1,1 ; 1, 0 2.7137 2.7060 0.3724 0.12129450

17 2,1,0,1,1 ; 0, 0 2.7136 2.7060 0.3722 0.12131300

18 2,1,1,1,1 ; 0, 0 2.7101 2.7105 0.3629 0.12253243

19 3,2,1,0,1 ; 0, 0 2.7101 2.7105 0.3629 0.12253430

20 3,2,2,0,1 ; 0, 0 2.7101 2.7105 0.3629 0.12253430

21 3,2,0,0,1 ; 0, 0 2.7101 2.7105 0.3629 0.12253437

22 2,1,1,1,1 ; 1, 0 2.7101 2.7105 0.3628 0.12253596

23 3,2,1,0,1 ; 1, 0 2.7101 2.7105 0.3628 0.12253784

24 3,2,2,0,1 ; 1, 0 2.7101 2.7105 0.3628 0.12253784

25 3,2,0,0,1 ; 1, 0 2.7101 2.7105 0.3628 0.12253790

26 2,1,1,1,1 ; 1, 1 2.7101 2.7105 0.3627 0.12254126

27 3,2,0,0,1 ; 1, 1 2.7101 2.7105 0.3627 0.12254310

28 3,2,1,0,1 ; 1, 1 2.7100 2.7105 0.3627 0.12254313

29 3,2,2,0,1 ; 1, 1 2.7100 2.7105 0.3627 0.12254313

30 2,0,0,1,1 ; 0, 0 2.7094 2.7099 0.3694 0.12293941

31 3,1,1,0,1 ; 0, 0 2.7094 2.7099 0.3693 0.12294147

32 3,1,0,0,1 ; 0, 0 2.7094 2.7099 0.3693 0.12294148

33 2,0,0,1,1 ; 1, 0 2.7105 2.7091 0.3684 0.12306494

Page 12: Theoretical Calculation of Atomic Hyperfine Structure Zhao

12

34 3,1,1,0,1 ; 1, 0 2.7105 2.7091 0.3684 0.12306699

35 3,1,0,0,1 ; 1, 0 2.7105 2.7091 0.3684 0.12306700

36 2,0,0,1,1 ; 1, 1 2.7097 2.7102 0.3670 0.12325151

37 3,1,1,0,1 ; 1, 1 2.7097 2.7102 0.3669 0.12325354

38 3,1,0,0,1 ; 1, 1 2.7097 2.7102 0.3669 0.12325356

39 2,1,0,1,1 ; 1, 1 2.7070 2.7144 0.3544 0.12366534

40 3,0,0,0,1 ; 1, 1 2.7070 2.7084 0.3592 0.12401358 0.124012 0.00

41 3,1,0,1,0 ; 1, 0 2.7124 2.7053 0.3000 0.15232820 0.140965 -8.06

42 3,1,0,1,1 ; 1, 0 2.7124 2.7053 0.3000 0.15232821 0.140965 -8.06

43 3,1,0,1,1 ; 0, 0 2.7123 2.7054 0.2999 0.15234227

44 3,2,1,1,1 ; 0, 0 2.7093 2.7098 0.2871 0.15236303

45 3,2,0,1,1 ; 0, 0 2.7093 2.7098 0.2871 0.15236304

46 3,2,1,1,1 ; 1, 0 2.7093 2.7098 0.2871 0.15236304

47 3,2,2,1,1 ; 1, 0 2.7093 2.7098 0.2871 0.15236304

48 3,2,2,1,1 ; 0, 0 2.7093 2.7098 0.2871 0.15236304

49 3,2,0,1,1 ; 1, 0 2.7093 2.7098 0.2871 0.15236305

50 3,2,2,1,1 ; 1, 1 2.7093 2.7098 0.2871 0.15236305

51 3,2,0,1,1 ; 1, 1 2.7093 2.7098 0.2871 0.15236306

52 3,2,1,1,1 ; 1, 1 2.7093 2.7098 0.2871 0.15236306

53 3,1,1,1,1 ; 0, 0 2.7090 2.7094 0.2902 0.15348358

54 3,1,1,1,1 ; 1, 0 2.7090 2.7094 0.2901 0.15348661

55 3,1,1,1,1 ; 1, 1 2.7090 2.7094 0.2901 0.15349113

56 3,0,0,1,1 ; 0, 0 2.7086 2.7090 0.2951 0.15398605

57 3,0,0,1,0 ; 1, 0 2.7091 2.7086 0.2946 0.15405043 0.142596 -8.03

58 3,0,0,1,1 ; 1, 0 2.7091 2.7086 0.2946 0.15405045 0.142596 -8.03

59 3,0,0,1,1 ; 1, 1 2.7087 2.7092 0.2938 0.15414648

60 3,1,0,1,1 ; 1, 1 2.7062 2.7128 0.2816 0.15452481

Table 6: Ground state energy (ionization energy) of hydrogen atoms, U91+ ions, helium atoms and lithium atoms

Name Z N ๐œ‰1 ๐œ‰2 ๐œ‰3 ๐ธ๐‘”๐‘Ÿ๐‘œ๐‘ข๐‘›๐‘‘ ๐‘ ๐‘ก๐‘Ž๐‘ก๐‘’ ๐ธ๐‘”๐‘Ÿ๐‘œ๐‘ข๐‘›๐‘‘ ๐‘ ๐‘ก๐‘Ž๐‘ก๐‘’NIST[18]

ํœ€๐‘–

Page 13: Theoretical Calculation of Atomic Hyperfine Structure Zhao

13

H 1 1 1.0000 -0.500007 -0.500007 0.00

U91+ 92 1 98.6035 -4861.323984 -4861.323984 0.00

He 2 2 2.20144 1.20162 -2.90374994 -2.903737 0.00

Li 3 3 2.7076 2.7112 0.5541 -7.47805890 -7.478060 0.00

If the electrons in transition occupy an atomic orbital in the third electron shell in the single electron transition

of helium atom and lithium atom, the number of energy levels of the lithium atom should be more than equal to the

number of energy levels of the helium atom. However, the helium atom has 10 energy levels (1s3s ~ 1s3p(1Pยฐ)) in

the calculation results of NIST, and the lithium atom has 5 energy levels (1s23s ~ 1s23d), as shown in Table 4 and

Table 5. Therefore, for the calculation results of the highly excited state of lithium atom, NIST's error may increase,

such as ID =12 in Table 5.

Secondly, the orthogonal calculation is required in the Hartree-Fock method, that is, the wave functions

corresponding to any two eigenvalues satisfy the mutually orthogonal constraints. However, this approximation is

not applicable to the high-precision calculation of the doubly excited state and is not consistent with the fact. For

example, there are always a large number of non-orthogonal cases between two wave functions in the accurate

calculation of the hydrogen molecular ion[27]. If the electron ๐‘’2 in the helium-like structure is fixed, the following

equation can be obtained:

(โˆ’1

2โˆ‡12 โˆ’

๐‘

๐‘Ÿ1+

1

๐‘Ÿ1,2)๐›น = (๐ธ +

๐‘

๐‘Ÿ2)๐›น (22).

Thus, we can use the method in Reference [27] to obtain the exact solution of Equation (22) (the solving

process is omitted), and there will be a large number of non-orthogonal cases in the calculation results, so the

solution of the wave function does not satisfy the mutually orthogonal constraints in the multi-electron system. In

other words, only when the orbitals occupied by two electrons are far apart, the wave function of the system

approaches the orthogonal transformation, so Drake had such high accuracy in his calculation of helium-like excited

single state system (another reason is that he used a large number of Hylleraas primary functions) [26,28].

Moreover, in the same electron layer, because โˆƒ๐‘– โ‰  ๐‘— โŸน ๐œ‰๐‘– โ‰  ๐œ‰๐‘— will have lower energy, which is also different

from the method of Drake et al.

Therefore, in order to reduce the complexity of the algorithm, the non-orthogonal method as shown in

Equation (15) is adopted in the construction of the trial function for the multi-electron system, and the calculation

results show that this method is a feasible calculation scheme. For example, in Table 4~6, our error rate |ํœ€๐‘–|% is

Page 14: Theoretical Calculation of Atomic Hyperfine Structure Zhao

14

less than 10.33%, which is lower than Grant's calculation method [9]. Thus, our method has good universality in

the comprehensive evaluation of calculation accuracy and complexity, as shown in Equation (5) and Equation (19).

Finally, the trial function is the calculation basis for the electron cloud density distribution and the molecular

structure, and CH4 is a good example to verify the calculation accuracy of the trial function , including the value of

๐‘†โŸฆ๐‘–โŸง,โŸฆ๐‘—โŸง. Therefore, we will report the theoretical calculation in this aspect in the subsequent research articles.

Appendix I: Energy Functional (Algorithm)

Algorithm name: energy functional ๐ธ๐ผ๐ทHF(โˆ™);

Input: โŸฆ๏ฟฝโƒ—โƒ—๏ฟฝ โŸง; // Configuration โŸฆ๏ฟฝโƒ—โƒ—๏ฟฝ โŸง = (โŸฆ1โŸง, โŸฆ2โŸงโ‹ฏ ) ๐‘Ž๐‘›๐‘‘ โŸฆ๐‘–โŸง = (๐‘›๐‘– , ๐‘™๐‘– , ๐‘š๐‘– , ๐ฝ๐‘– , ๐‘ƒ๐‘–; ๐œ‰โŸฆ๐‘–โŸง).

Output: ๐‘Š =1

๐ดร— โˆ‘ โŸจ๐›นโŸฆ๏ฟฝโƒ—โƒ—๏ฟฝ โŸง|๐ป๐‘–

HF|๐›นโŸฆ๏ฟฝโƒ—โƒ—๏ฟฝ โŸงโŸฉ๐‘๐‘–=1 ; // ๐ด = โŸจ๐›นโŸฆ๏ฟฝโƒ—โƒ—๏ฟฝ โŸง|๐›นโŸฆ๏ฟฝโƒ—โƒ—๏ฟฝ โŸงโŸฉ.

Algorithmic process:

๐ธ๐ผ๐ทHF(โŸฆ๏ฟฝโƒ—โƒ—๏ฟฝ โŸง) {

Initially assigned values:

๐ด โ† 0; ๐‘‹ โ† 0; ๐‘Š โ† 0;

โ„Ž1,1 โ† ๐œ‚1; โ„Ž2,1 โ† ๐œ‚2; โ„Ž3,1 โ† ๐œ‚3;โ„Ž4,1 โ† ๐œ‚3; โ„Ž5,1 โ† ๐œ‚4; โ„Ž6,1 โ† ๐œ‚5;โ„Ž7,1 โ† ๐œ‚5; โ„Ž8,1 โ† ๐œ‚6;

โ„Ž1,2 โ† 0; โ„Ž2,2 โ† โˆ’1; โ„Ž3,2 โ† โˆ’1;โ„Ž4,2 โ† 1; โ„Ž5,2 โ† โˆ’1;โ„Ž6,2 โ† โˆ’1;โ„Ž7,2 โ† 0; โ„Ž8,2 โ† 1;

โ„Ž1,3 โ† 0; โ„Ž2,3 โ† โˆ’1; โ„Ž3,3 โ† 1;โ„Ž4,3 โ† โˆ’1; โ„Ž5,3 โ† โˆ’2;โ„Ž6,3 โ† 0;โ„Ž7,3 โ† โˆ’1; โ„Ž8,3 โ† 1;

โ„Ž1,4 โ† โˆ’1;โ„Ž2,4 โ† 1;โ„Ž3,4 โ† โˆ’1;โ„Ž4,4 โ† โˆ’1; โ„Ž5,4 โ† 2; โ„Ž6,4 โ† โˆ’1;โ„Ž7,4 โ† โˆ’1; โ„Ž8,4 โ† โˆ’1;

๐น๐‘œ๐‘Ÿ(๐‘– โ† 1; ๐‘– โ‰ค 8; ๐‘– โ† ๐‘– + 1){โ„Ž๐‘–,12 โ† โ„Ž๐‘–,11 โ† โ„Ž๐‘–,10 โ† โ„Ž๐‘–,9 โ† โ„Ž๐‘–,8 โ† โ„Ž๐‘–,7 โ† โ„Ž๐‘–,6 โ† โ„Ž๐‘–,5 โ† 0; }

โ„Ž9,1 โ† ๐œ‚7; โ„Ž9,3 โ† โ„Ž9,2 โ† โˆ’1; โ„Ž9,12 โ† โ„Ž9,11 โ† โ„Ž9,10 โ† โ„Ž9,9 โ† โ„Ž9,8 โ† โ„Ž9,7 โ† โ„Ž9,4 โ† 0; โ„Ž9,6 โ† โ„Ž9,5 โ† 1;

โ„Ž10,1 โ† ๐œ‚7; โ„Ž10,3 โ† โ„Ž10,2 โ† โˆ’1; โ„Ž10,12 โ† โ„Ž10,11 โ† โ„Ž10,6 โ† โ„Ž10,5 โ† โ„Ž10,4 โ† 0;

โ„Ž11,1 โ† ๐œ‚7; โ„Ž11,3 โ† โ„Ž11,2 โ† โˆ’1; โ„Ž11,10 โ† โ„Ž11,9 โ† โ„Ž11,6 โ† โ„Ž11,5 โ† โ„Ž11,4 โ† 0;

โ„Ž10,10 โ† โ„Ž10,9 โ† โ„Ž10,8 โ† โ„Ž10,7 โ† โ„Ž11,12 โ† โ„Ž11,11 โ† โ„Ž11,8 โ† โ„Ž11,7 โ† 1;

๐น๐‘œ๐‘Ÿ(๐‘– โ† 1; ๐‘– โ‰ค ๐‘; ๐‘– โ† ๐‘– + 1){ ๐น๐‘œ๐‘Ÿ(๐‘— โ† 1; ๐‘— โ‰ค ๐‘; ๐‘— โ† ๐‘— + 1){

๐‘†โŸฆ๐‘–โŸง,โŸฆ๐‘—โŸง โ† {0 ๐‘œ๐‘Ÿ 1 ๐‘–๐‘“(โŸจ๐œ‘โŸฆ๐‘–โŸง(๏ฟฝโƒ—๏ฟฝ )|๐œ‘โŸฆ๐‘—โŸง(๏ฟฝโƒ—๏ฟฝ )โŸฉ โ‰ˆ 0)

1 ๐‘’๐‘™๐‘ ๐‘’ ๏ผ›

๐‘ข๐‘–,๐‘— โ† โŸจ๐œ‘โŸฆ๐‘–โŸง|๐œ‘โŸฆ๐‘—โŸงโŸฉ; ๐‘‰๐‘–,๐‘— โ† โŸจ๐œ‘โŸฆ๐‘–โŸง|1

๐‘Ÿ|๐œ‘โŸฆ๐‘—โŸงโŸฉ ; }} //๐œ‘โŸฆ๐‘–โŸง = ๐œ‘โŸฆ๐‘–โŸง(๏ฟฝโƒ—๏ฟฝ );

Correlation calculation of potential energy and repulsive energy:

๐น๐‘œ๐‘Ÿ(๐‘–1 โ† 1; ๐‘–1 โ‰ค ๐‘ โˆ’ 1; ๐‘–1 โ† ๐‘–1 + 1){ ๐น๐‘œ๐‘Ÿ(๐‘—1 โ† ๐‘–1 + 1; ๐‘—1 โ‰ค ๐‘; ๐‘—1 โ† ๐‘—1 + 1){

๐น๐‘œ๐‘Ÿ(๐‘–2 โ† 1; ๐‘–2 โ‰ค ๐‘ โˆ’ 1; ๐‘–2 โ† ๐‘–2 + 1){ ๐น๐‘œ๐‘Ÿ(๐‘—2 โ† ๐‘–2 + 1; ๐‘—2 โ‰ค ๐‘; ๐‘—2 โ† ๐‘—2 + 1){

๐‘ฃ1 โ† โˆ’(โˆ’1)๐‘†โŸฆ๐‘–2โŸง,โŸฆ๐‘—2โŸง;๐‘ฃ2 โ† โˆ’(โˆ’1)๐‘†โŸฆ๐‘–1โŸง,โŸฆ๐‘—1โŸง; ๐‘ฃ3 โ† (โˆ’1)๐‘†โŸฆ๐‘–1โŸง,โŸฆ๐‘—1โŸง+๐‘†โŸฆ๐‘–2โŸง,โŸฆ๐‘—2โŸง;

Page 15: Theoretical Calculation of Atomic Hyperfine Structure Zhao

15

Normalization coefficient:

๐ด โ† ๐ด + 1 + ๐‘ฃ1๐‘ข๐‘–2,๐‘—22 + ๐‘ฃ2๐‘ข๐‘–1,๐‘—1

2 ;

๐ผ๐‘“(๐‘–2 = ๐‘–1 ๐‘Ž๐‘›๐‘‘ ๐‘—2 = ๐‘—1){๐ด โ† ๐ด + ๐‘ฃ3; } ๐ธ๐‘™๐‘ ๐‘’ ๐‘–๐‘“(๐‘–2 = ๐‘–1 ๐‘Ž๐‘›๐‘‘ ๐‘—2 โ‰  ๐‘—1){๐ด โ† ๐ด + ๐‘ฃ3๐‘ข๐‘—1,๐‘—2๐‘ข๐‘–1,๐‘—1๐‘ข๐‘–1,๐‘—2; }

๐ธ๐‘™๐‘ ๐‘’ ๐‘–๐‘“(๐‘–2 = ๐‘—1){๐ด โ† ๐ด + ๐‘ฃ3๐‘ข๐‘–1,๐‘—1๐‘ข๐‘–1,๐‘—2๐‘ข๐‘—1,๐‘—2; } ๐ธ๐‘™๐‘ ๐‘’ ๐‘–๐‘“(๐‘—2 = ๐‘–1){๐ด โ† ๐ด + ๐‘ฃ3๐‘ข๐‘—1,๐‘–2๐‘ข๐‘–1,๐‘—1๐‘ข๐‘–2,๐‘–1; }

๐ธ๐‘™๐‘ ๐‘’ ๐‘–๐‘“(๐‘—2 = ๐‘—1){๐ด โ† ๐ด + ๐‘ฃ3๐‘ข๐‘—1,๐‘–1๐‘ข๐‘–1,๐‘–2๐‘ข๐‘–2,๐‘—1; } ๐ธ๐‘™๐‘ ๐‘’{๐ด โ† ๐ด + ๐‘ฃ3๐‘ข๐‘–1,๐‘—12 ๐‘ข๐‘–2,๐‘—2

2 ; }

Potential energy:

๐น๐‘œ๐‘Ÿ(๐‘–3 โ† 1; ๐‘–3 โ‰ค ๐‘; ๐‘–3 โ† ๐‘–3 + 1){

๐‘ฃ4 โ† ๐œ‰โŸฆ๐‘–3โŸง แ‰†๐‘›๐‘–3 โˆ’ ๐‘™๐‘–3 โˆ’1

2+โˆš(๐ฟโŸฆ๐‘–3โŸง +

1

2)2โˆ’ 2๐›ฟ3(๐‘)แ‰‡ โˆ’ ๐‘ ; ๐‘Š โ† ๐‘Š + ๐‘ฃ4๐‘‰๐‘–3,๐‘–3;

๐ผ๐‘“(๐‘–3 = ๐‘–2 ๐‘œ๐‘Ÿ ๐‘—2){ ๐‘Š โ† ๐‘Š + ๐‘ฃ1๐‘ฃ4๐‘ข๐‘–2,๐‘—2๐‘‰๐‘–2,๐‘—2; } ๐ธ๐‘™๐‘ ๐‘’{๐‘Š โ† ๐‘Š + ๐‘ฃ1๐‘ฃ4๐‘ข๐‘–2,๐‘—22 ๐‘‰๐‘–3,๐‘–3; }

๐ผ๐‘“(๐‘–3 = ๐‘–1 ๐‘œ๐‘Ÿ ๐‘—1){ ๐‘Š โ† ๐‘Š + ๐‘ฃ2๐‘ฃ4๐‘ข๐‘–1,๐‘—1๐‘‰๐‘–1,๐‘—1; } ๐ธ๐‘™๐‘ ๐‘’{๐‘Š โ† ๐‘Š + ๐‘ฃ2๐‘ฃ4๐‘ข๐‘–1,๐‘—12 ๐‘‰๐‘–3,๐‘–3; }

๐ผ๐‘“(๐‘–2 = ๐‘–1){๐ผ๐‘“(๐‘—2 = ๐‘—1){๐‘Š โ† ๐‘Š + ๐‘ฃ3๐‘ฃ4๐‘‰๐‘–3,๐‘–3; } ๐ธ๐‘™๐‘ ๐‘’{๐‘–๐‘“(๐‘–3 = ๐‘–1){๐‘Š โ† ๐‘Š + ๐‘ฃ3๐‘ฃ4๐‘ข๐‘–1,๐‘—1๐‘ข๐‘—1,๐‘—2๐‘‰๐‘–3,๐‘—2; }

๐ธ๐‘™๐‘ ๐‘’ ๐‘–๐‘“(๐‘–3 = ๐‘—1){๐‘Š โ† ๐‘Š + ๐‘ฃ3๐‘ฃ4๐‘ข๐‘—1,๐‘—2๐‘ข๐‘–1,๐‘—2๐‘‰๐‘–3,๐‘–1; } ๐ธ๐‘™๐‘ ๐‘’ ๐‘–๐‘“(๐‘–3 = ๐‘—2){๐‘Š โ† ๐‘Š + ๐‘ฃ3๐‘ฃ4๐‘ข๐‘–1,๐‘—1๐‘ข๐‘–1,๐‘—2๐‘‰๐‘–3,๐‘—1; }

๐ธ๐‘™๐‘ ๐‘’{๐‘Š โ† ๐‘Š + ๐‘ฃ3๐‘ฃ4๐‘ข๐‘–1,๐‘—1๐‘ข๐‘–1,๐‘—2๐‘ข๐‘—1,๐‘—2๐‘‰๐‘–3,๐‘–3; }}}

๐ธ๐‘™๐‘ ๐‘’ ๐‘–๐‘“(๐‘–2 = ๐‘—1){๐‘–๐‘“(๐‘–3 = ๐‘–1){๐‘Š โ† ๐‘Š + ๐‘ฃ3๐‘ฃ4๐‘ข๐‘–1,๐‘—2๐‘ข๐‘—1,๐‘—2๐‘‰๐‘–3,๐‘—1; }

๐ธ๐‘™๐‘ ๐‘’ ๐‘–๐‘“(๐‘–3 = ๐‘—1){๐‘Š โ† ๐‘Š + ๐‘ฃ3๐‘ฃ4๐‘ข๐‘–1,๐‘—1๐‘ข๐‘–1,๐‘—2๐‘‰๐‘–3,๐‘—2; } ๐ธ๐‘™๐‘ ๐‘’ ๐‘–๐‘“(๐‘–3 = ๐‘—2){๐‘Š โ† ๐‘Š + ๐‘ฃ3๐‘ฃ4๐‘ข๐‘–1,๐‘—1๐‘ข๐‘—1,๐‘—2๐‘‰๐‘–3,๐‘–1; }

๐ธ๐‘™๐‘ ๐‘’{๐‘Š โ† ๐‘Š + ๐‘ฃ3๐‘ฃ4๐‘ข๐‘–1,๐‘—1๐‘ข๐‘–1,๐‘—2๐‘ข๐‘—1,๐‘—2๐‘‰๐‘–3,๐‘–3; }}

๐ธ๐‘™๐‘ ๐‘’{๐‘–๐‘“(๐‘—2 = ๐‘–1){๐‘–๐‘“(๐‘–3 = ๐‘–1){๐‘Š โ† ๐‘Š + ๐‘ฃ3๐‘ฃ4๐‘ข๐‘–1,๐‘—1๐‘ข๐‘—1,๐‘–2๐‘‰๐‘–3,๐‘–2; }

๐ธ๐‘™๐‘ ๐‘’ ๐‘–๐‘“(๐‘–3 = ๐‘—1){๐‘Š โ† ๐‘Š + ๐‘ฃ3๐‘ฃ4๐‘ข๐‘–2,๐‘—1๐‘ข๐‘–1,๐‘–2๐‘‰๐‘–3,๐‘–1; } ๐ธ๐‘™๐‘ ๐‘’ ๐‘–๐‘“(๐‘–3 = ๐‘–2){๐‘Š โ† ๐‘Š + ๐‘ฃ3๐‘ฃ4๐‘ข๐‘–1,๐‘—1๐‘ข๐‘–1,๐‘–2๐‘‰๐‘–3,๐‘—1; }

๐ธ๐‘™๐‘ ๐‘’{๐‘Š โ† ๐‘Š + ๐‘ฃ3๐‘ฃ4๐‘ข๐‘–1,๐‘—1๐‘ข๐‘–1,๐‘–2๐‘ข๐‘—1,๐‘–2๐‘‰๐‘–3,๐‘–3; }}

๐ธ๐‘™๐‘ ๐‘’ ๐‘–๐‘“(๐‘—2 = ๐‘—1){ ๐‘–๐‘“(๐‘–3 = ๐‘–1){๐‘Š โ† ๐‘Š + ๐‘ฃ3๐‘ฃ4๐‘ข๐‘–2,๐‘—1๐‘ข๐‘–1,๐‘–2๐‘‰๐‘–3,๐‘—1; }

๐ธ๐‘™๐‘ ๐‘’ ๐‘–๐‘“(๐‘–3 = ๐‘—1){๐‘Š โ† ๐‘Š + ๐‘ฃ3๐‘ฃ4๐‘ข๐‘–1,๐‘—1๐‘ข๐‘–1,๐‘–2๐‘‰๐‘–3,๐‘–2; } ๐ธ๐‘™๐‘ ๐‘’ ๐‘–๐‘“(๐‘–3 = ๐‘–2){๐‘Š โ† ๐‘Š + ๐‘ฃ3๐‘ฃ4๐‘ข๐‘–1,๐‘—1๐‘ข๐‘—1,๐‘–2๐‘‰๐‘–3,๐‘–1; }

๐ธ๐‘™๐‘ ๐‘’{๐‘Š โ† ๐‘Š + ๐‘ฃ3๐‘ฃ4๐‘ข๐‘–1,๐‘—1๐‘ข๐‘–1,๐‘–2๐‘ข๐‘—1,๐‘–2๐‘‰๐‘–3,๐‘–3; }}

๐ธ๐‘™๐‘ ๐‘’{ ๐‘–๐‘“(๐‘–3 = ๐‘–1){๐‘Š โ† ๐‘Š + ๐‘ฃ3๐‘ฃ4๐‘ข๐‘–1,๐‘—1๐‘ข๐‘–2,๐‘—22 ๐‘‰๐‘–3,๐‘—1; }

๐ธ๐‘™๐‘ ๐‘’ ๐‘–๐‘“(๐‘–3 = ๐‘—1){๐‘Š โ† ๐‘Š + ๐‘ฃ3๐‘ฃ4๐‘ข๐‘–1,๐‘—1๐‘ข๐‘–2,๐‘—22 ๐‘‰๐‘–3,๐‘–1; } ๐ธ๐‘™๐‘ ๐‘’ ๐‘–๐‘“(๐‘–3 = ๐‘–2){๐‘Š โ† ๐‘Š + ๐‘ฃ3๐‘ฃ4๐‘ข๐‘–1,๐‘—1

2 ๐‘ข๐‘—2,๐‘–2๐‘‰๐‘–3,๐‘—2; }

๐ธ๐‘™๐‘ ๐‘’ ๐‘–๐‘“(๐‘–3 = ๐‘—2){๐‘Š โ† ๐‘Š + ๐‘ฃ3๐‘ฃ4๐‘ข๐‘–1,๐‘—12 ๐‘ข๐‘—2,๐‘–2๐‘‰๐‘–3,๐‘–2; }๐ธ๐‘™๐‘ ๐‘’{๐‘Š โ† ๐‘Š + ๐‘ฃ3๐‘ฃ4๐‘ข๐‘–1,๐‘—1

2 ๐‘ข๐‘–2,๐‘—22 ๐‘‰๐‘–3,๐‘–3; }}}}

Repulsive energy between electrons (monocentric double-electron coupling integral is shown in Appendix II below):

๐น๐‘œ๐‘Ÿ(๐‘–3 โ† 1; ๐‘–3 < ๐‘; ๐‘–3 โ† ๐‘–3 + 1){๐น๐‘œ๐‘Ÿ(๐‘—3 โ† ๐‘–3 + 1; ๐‘—3 โ‰ค ๐‘; ๐‘—3 โ† ๐‘—3 + 1){๐น๐‘œ๐‘Ÿ(๐‘˜ โ† 1; ๐‘˜ โ‰ค 11; ๐‘˜ โ† ๐‘˜ + 1){

๐‘‹ โ† ๐‘‹ + ๐ผII(โŸฆ๐‘–3โŸง, โŸฆ๐‘–3โŸง, โŸฆ๐‘—3โŸง, โŸฆ๐‘—3โŸง; ๏ฟฝโƒ—โƒ—๏ฟฝ ๐‘˜); //๏ฟฝโƒ—โƒ—๏ฟฝ ๐‘˜ = (โ„Ž๐‘˜,1, โ„Ž๐‘˜,2โ‹ฏโ„Ž๐‘˜,12).

๐ผ๐‘“(๐‘–2 = ๐‘–1 ๐‘Ž๐‘›๐‘‘ ๐‘—2 = ๐‘—1){๐‘‹ โ† ๐‘‹ + ๐‘ฃ3๐ผII(โŸฆ๐‘–3โŸง, โŸฆ๐‘–3โŸง, โŸฆ๐‘—3โŸง, โŸฆ๐‘—3โŸง; ๏ฟฝโƒ—โƒ—๏ฟฝ ๐‘˜); }

๐ธ๐‘™๐‘ ๐‘’ ๐‘–๐‘“(๐‘–2 โ‰  ๐‘–1 ๐‘Ž๐‘›๐‘‘ ๐‘–2 โ‰  ๐‘—1 ๐‘Ž๐‘›๐‘‘ ๐‘—2 โ‰  ๐‘—1 ๐‘Ž๐‘›๐‘‘ ๐‘—2 โ‰  ๐‘–1) {

Page 16: Theoretical Calculation of Atomic Hyperfine Structure Zhao

16

๐ผ๐‘“(๐‘–3 = ๐‘–1 ๐‘Ž๐‘›๐‘‘ ๐‘—3 = ๐‘—1){๐‘‹ โ† ๐‘‹ + ๐‘ฃ3๐‘ข๐‘–2,๐‘—22 ๐ผII(โŸฆ๐‘–1โŸง, โŸฆ๐‘—1โŸง, โŸฆ๐‘–1โŸง, โŸฆ๐‘—1โŸง; ๏ฟฝโƒ—โƒ—๏ฟฝ ๐‘˜); }

๐ธ๐‘™๐‘ ๐‘’ ๐‘–๐‘“(๐‘–3 = ๐‘–2 ๐‘Ž๐‘›๐‘‘ ๐‘—3 = ๐‘—2){๐‘‹ โ† ๐‘‹ + ๐‘ฃ3๐‘ข๐‘–1,๐‘—12 ๐ผII(โŸฆ๐‘–2โŸง, โŸฆ๐‘—2โŸง, โŸฆ๐‘–2โŸง, โŸฆ๐‘—2โŸง; ๏ฟฝโƒ—โƒ—๏ฟฝ ๐‘˜); }

๐ธ๐‘™๐‘ ๐‘’ ๐‘–๐‘“((๐‘–3 = ๐‘–1 ๐‘œ๐‘Ÿ ๐‘–3 = ๐‘—1) ๐‘Ž๐‘›๐‘‘ (๐‘—3 = ๐‘–2 ๐‘œ๐‘Ÿ ๐‘—3 = ๐‘—2)){๐‘‹ โ† ๐‘‹ + ๐‘ฃ3๐‘ข๐‘–1,๐‘—1๐‘ข๐‘–2,๐‘—2๐ผII(โŸฆ๐‘–1โŸง, โŸฆ๐‘—1โŸง, โŸฆ๐‘–2โŸง, โŸฆ๐‘—2โŸง; ๏ฟฝโƒ—โƒ—๏ฟฝ ๐‘˜); }

๐ธ๐‘™๐‘ ๐‘’ ๐‘–๐‘“((๐‘–3 = ๐‘–2 ๐‘œ๐‘Ÿ ๐‘–3 = ๐‘—2) ๐‘Ž๐‘›๐‘‘ (๐‘—3 = ๐‘–1 ๐‘œ๐‘Ÿ ๐‘—3 = ๐‘—1)){๐‘‹ โ† ๐‘‹ + ๐‘ฃ3๐‘ข๐‘–1,๐‘—1๐‘ข๐‘–2,๐‘—2๐ผII(โŸฆ๐‘–1โŸง, โŸฆ๐‘—1โŸง, โŸฆ๐‘–2โŸง, โŸฆ๐‘—2โŸง; ๏ฟฝโƒ—โƒ—๏ฟฝ ๐‘˜); }

๐ธ๐‘™๐‘ ๐‘’ ๐‘–๐‘“(๐‘–3 = ๐‘–1 ๐‘œ๐‘Ÿ ๐‘–3 = ๐‘—1){๐‘‹ โ† ๐‘‹ + ๐‘ฃ3๐‘ข๐‘–1,๐‘—1๐‘ข๐‘–2,๐‘—22 ๐ผII(โŸฆ๐‘–1โŸง, โŸฆ๐‘—1โŸง, โŸฆ๐‘—3โŸง, โŸฆ๐‘—3โŸง; ๏ฟฝโƒ—โƒ—๏ฟฝ ๐‘˜); }

๐ธ๐‘™๐‘ ๐‘’ ๐‘–๐‘“(๐‘–3 = ๐‘–2 ๐‘œ๐‘Ÿ ๐‘–3 = ๐‘—2){๐‘‹ โ† ๐‘‹ + ๐‘ฃ3๐‘ข๐‘–2,๐‘—2๐‘ข๐‘–1,๐‘—12 ๐ผII(โŸฆ๐‘–2โŸง, โŸฆ๐‘—2โŸง, โŸฆ๐‘—3โŸง, โŸฆ๐‘—3โŸง; ๏ฟฝโƒ—โƒ—๏ฟฝ ๐‘˜); }

๐ธ๐‘™๐‘ ๐‘’ ๐‘–๐‘“(๐‘—3 = ๐‘–1 ๐‘œ๐‘Ÿ ๐‘—3 = ๐‘—1){๐‘‹ โ† ๐‘‹ + ๐‘ฃ3๐‘ข๐‘–1,๐‘—1๐‘ข๐‘–2,๐‘—22 ๐ผII(โŸฆ๐‘–1โŸง, โŸฆ๐‘—1โŸง, โŸฆ๐‘–3โŸง, โŸฆ๐‘–3โŸง; ๏ฟฝโƒ—โƒ—๏ฟฝ ๐‘˜); }

๐ธ๐‘™๐‘ ๐‘’ ๐‘–๐‘“(๐‘—3 = ๐‘–2 ๐‘œ๐‘Ÿ ๐‘—3 = ๐‘—2){๐‘‹ โ† ๐‘‹ + ๐‘ฃ3๐‘ข๐‘–2,๐‘—2๐‘ข๐‘–1,๐‘—12 ๐ผII(โŸฆ๐‘–2โŸง, โŸฆ๐‘—2โŸง, โŸฆ๐‘–3โŸง, โŸฆ๐‘–3โŸง; ๏ฟฝโƒ—โƒ—๏ฟฝ ๐‘˜); }

๐ธ๐‘™๐‘ ๐‘’{๐‘‹ โ† ๐‘‹ + ๐‘ฃ3๐‘ข๐‘–1,๐‘—12 ๐‘ข๐‘–2,๐‘—2

2 ๐ผII(โŸฆ๐‘–3โŸง, โŸฆ๐‘–3โŸง, โŸฆ๐‘—3โŸง, โŸฆ๐‘—3โŸง; ๏ฟฝโƒ—โƒ—๏ฟฝ ๐‘˜); }

} ๐น๐‘œ๐‘Ÿ(๐‘  โ† 1; ๐‘  < 3; ๐‘  โ† ๐‘  + 1){

๐ผ๐‘“(๐‘  = 1){๐‘ก1 โ† ๐‘–2; ๐‘ก2 โ† ๐‘—2; } ๐ธ๐‘™๐‘ ๐‘’ {๐‘ก1 โ† ๐‘–1; ๐‘ก2 โ† ๐‘—1; }

๐ผ๐‘“(๐‘–3 = ๐‘ก1 ๐‘Ž๐‘›๐‘‘ ๐‘—3 = ๐‘ก2){๐‘‹ โ† ๐‘‹ + ๐‘ฃ๐‘ ๐ผII(โŸฆ๐‘ก1โŸง, โŸฆ๐‘ก2โŸง, โŸฆ๐‘ก1โŸง, โŸฆ๐‘ก2โŸง; ๏ฟฝโƒ—โƒ—๏ฟฝ ๐‘˜); }

๐ธ๐‘™๐‘ ๐‘’ ๐‘–๐‘“(๐‘—3 = ๐‘ก1 ๐‘œ๐‘Ÿ (๐‘–3 โ‰  ๐‘ก1 ๐‘Ž๐‘›๐‘‘ ๐‘—3 = ๐‘ก2)){๐‘‹ โ† ๐‘‹ + ๐‘ฃ๐‘ ๐‘ข๐‘ก1,๐‘ก2๐ผII(โŸฆ๐‘–3โŸง, โŸฆ๐‘–3โŸง, โŸฆ๐‘ก1โŸง, โŸฆ๐‘ก2โŸง; ๏ฟฝโƒ—โƒ—๏ฟฝ ๐‘˜); }

๐ธ๐‘™๐‘ ๐‘’ ๐‘–๐‘“(๐‘–3 = ๐‘ก2 ๐‘œ๐‘Ÿ (๐‘–3 = ๐‘ก1 ๐‘Ž๐‘›๐‘‘ ๐‘—3 โ‰  ๐‘ก2)){๐‘‹ โ† ๐‘‹ + ๐‘ฃ๐‘ ๐‘ข๐‘ก1,๐‘ก2๐ผII(โŸฆ๐‘ก1โŸง, โŸฆ๐‘ก2โŸง, โŸฆ๐‘—3โŸง, โŸฆ๐‘—3โŸง; ๏ฟฝโƒ—โƒ—๏ฟฝ ๐‘˜); }

๐ธ๐‘™๐‘ ๐‘’{๐‘‹ โ† ๐‘‹ + ๐‘ฃ๐‘ ๐‘ข๐‘ก1,๐‘ก22 ๐ผII(โŸฆ๐‘–3โŸง, โŸฆ๐‘–3โŸง, โŸฆ๐‘—3โŸง, โŸฆ๐‘—3โŸง; ๏ฟฝโƒ—โƒ—๏ฟฝ ๐‘˜); }

} ๐น๐‘œ๐‘Ÿ(๐‘  โ† 1; ๐‘  < 7; ๐‘  โ† ๐‘  + 1){

๐‘–๐‘“(๐‘  = 1 ){๐‘ก1 โ† ๐‘—2; ๐‘ก2 โ† ๐‘–1; ๐‘ก3 โ† ๐‘–2; ๐‘ก4 โ† ๐‘–1; ๐‘ก5 โ† ๐‘—1; ๐‘ก6 โ† ๐‘–2; ๐‘ก7 โ† ๐‘–1; ๐‘ก8 โ† ๐‘–2; ๐‘ก9 โ† ๐‘—1; ๐‘ก10 โ† ๐‘–1; ๐‘ก11 โ† ๐‘—1; }

๐‘–๐‘“(๐‘  = 2 ){๐‘ก1 โ† ๐‘–2; ๐‘ก2 โ† ๐‘—1; ๐‘ก3 โ† ๐‘–1; ๐‘ก4 โ† ๐‘—1; ๐‘ก5 โ† ๐‘—2; ๐‘ก6 โ† ๐‘–1; ๐‘ก7 โ† ๐‘—1; ๐‘ก8 โ† ๐‘–1; ๐‘ก9 โ† ๐‘—1; ๐‘ก10 โ† ๐‘—1; ๐‘ก11 โ† ๐‘—2; }

๐‘–๐‘“(๐‘  = 3 ){๐‘ก1 โ† ๐‘–2; ๐‘ก2 โ† ๐‘–1; ๐‘ก3 โ† ๐‘–1; ๐‘ก4 โ† ๐‘—1; ๐‘ก5 โ† ๐‘—2; ๐‘ก6 โ† ๐‘—1; ๐‘ก7 โ† ๐‘—2; ๐‘ก8 โ† ๐‘–1; ๐‘ก9 โ† ๐‘—1; ๐‘ก10 โ† ๐‘–1; ๐‘ก11 โ† ๐‘—2; }

๐‘–๐‘“(๐‘  = 4 ){๐‘ก1 โ† ๐‘–2; ๐‘ก2 โ† ๐‘–1; ๐‘ก3 โ† ๐‘–1; ๐‘ก4 โ† ๐‘—2; ๐‘ก5 โ† ๐‘—1; ๐‘ก6 โ† ๐‘—1; ๐‘ก7 โ† ๐‘—2; ๐‘ก8 โ† ๐‘–1; ๐‘ก9 โ† ๐‘—2; ๐‘ก10 โ† ๐‘–1; ๐‘ก11 โ† ๐‘—1; }

๐‘–๐‘“(๐‘  = 5 ){๐‘ก1 โ† ๐‘—2; ๐‘ก2 โ† ๐‘—1; ๐‘ก3 โ† ๐‘–2; ๐‘ก4 โ† ๐‘–1; ๐‘ก5 โ† ๐‘—1; ๐‘ก6 โ† ๐‘–2; ๐‘ก7 โ† ๐‘—1; ๐‘ก8 โ† ๐‘–1; ๐‘ก9 โ† ๐‘—1; ๐‘ก10 โ† ๐‘–1; ๐‘ก11 โ† ๐‘–2; }

๐‘–๐‘“(๐‘  = 6 ){๐‘ก1 โ† ๐‘—2; ๐‘ก2 โ† ๐‘—1; ๐‘ก3 โ† ๐‘–1; ๐‘ก4 โ† ๐‘–2; ๐‘ก5 โ† ๐‘—1; ๐‘ก6 โ† ๐‘–1; ๐‘ก7 โ† ๐‘—1; ๐‘ก8 โ† ๐‘–2; ๐‘ก9 โ† ๐‘—1; ๐‘ก10 โ† ๐‘–1; ๐‘ก11 โ† ๐‘–2; }

๐‘–๐‘“(๐‘ก1 = ๐‘ก2 ๐‘Ž๐‘›๐‘‘ ๐‘ก3 < ๐‘ก4 < ๐‘ก5){

๐ผ๐‘“(๐‘–3 = ๐‘ก3 ๐‘Ž๐‘›๐‘‘ ๐‘—3 = ๐‘ก4){๐‘‹ โ† ๐‘‹ + ๐‘ฃ3๐‘ข๐‘ก10,๐‘ก11๐ผII(โŸฆ๐‘ก6โŸง, โŸฆ๐‘ก7โŸง, โŸฆ๐‘ก8โŸง, โŸฆ๐‘ก9โŸง; ๏ฟฝโƒ—โƒ—๏ฟฝ ๐‘˜); }

๐ธ๐‘™๐‘ ๐‘’ ๐‘–๐‘“(๐‘–3 = ๐‘ก3 ๐‘Ž๐‘›๐‘‘ ๐‘—3 = ๐‘ก5){๐‘‹ โ† ๐‘‹ + ๐‘ฃ3๐‘ข๐‘ก8,๐‘ก9๐ผII(โŸฆ๐‘ก6โŸง, โŸฆ๐‘ก7โŸง, โŸฆ๐‘ก10โŸง, โŸฆ๐‘ก11โŸง; ๏ฟฝโƒ—โƒ—๏ฟฝ ๐‘˜); }

Page 17: Theoretical Calculation of Atomic Hyperfine Structure Zhao

17

๐ธ๐‘™๐‘ ๐‘’ ๐‘–๐‘“(๐‘–3 = ๐‘ก4 ๐‘Ž๐‘›๐‘‘ ๐‘—3 = ๐‘ก5){๐‘‹ โ† ๐‘‹ + ๐‘ฃ3๐‘ข๐‘ก6,๐‘ก7๐ผII(โŸฆ๐‘ก8โŸง, โŸฆ๐‘ก9โŸง, โŸฆ๐‘ก10โŸง, โŸฆ๐‘ก11โŸง; ๏ฟฝโƒ—โƒ—๏ฟฝ ๐‘˜); }

๐ธ๐‘™๐‘ ๐‘’ ๐‘–๐‘“(๐‘–3 = ๐‘ก3){๐‘‹ โ† ๐‘‹ + ๐‘ฃ3๐‘ข๐‘ก8,๐‘ก9๐‘ข๐‘ก10,๐‘ก11๐ผII(โŸฆ๐‘ก6โŸง, โŸฆ๐‘ก7โŸง, โŸฆ๐‘—3โŸง, โŸฆ๐‘—3โŸง; ๏ฟฝโƒ—โƒ—๏ฟฝ ๐‘˜); }

๐ธ๐‘™๐‘ ๐‘’ ๐‘–๐‘“(๐‘–3 = ๐‘ก4){๐‘‹ โ† ๐‘‹ + ๐‘ฃ3๐‘ข๐‘ก6,๐‘ก7๐‘ข๐‘ก10,๐‘ก11๐ผII(โŸฆ๐‘ก8โŸง, โŸฆ๐‘ก9โŸง, โŸฆ๐‘—3โŸง, โŸฆ๐‘—3โŸง; ๏ฟฝโƒ—โƒ—๏ฟฝ ๐‘˜); }

๐ธ๐‘™๐‘ ๐‘’ ๐‘–๐‘“(๐‘–3 = ๐‘ก5){๐‘‹ โ† ๐‘‹ + ๐‘ฃ3๐‘ข๐‘ก6,๐‘ก7๐‘ข๐‘ก8,๐‘ก9๐ผII(โŸฆ๐‘ก10โŸง, โŸฆ๐‘ก11โŸง, โŸฆ๐‘—3โŸง, โŸฆ๐‘—3โŸง; ๏ฟฝโƒ—โƒ—๏ฟฝ ๐‘˜); }

๐ธ๐‘™๐‘ ๐‘’ ๐‘–๐‘“(๐‘—3 = ๐‘ก3){๐‘‹ โ† ๐‘‹ + ๐‘ฃ3๐‘ข๐‘ก8,๐‘ก9๐‘ข๐‘ก10,๐‘ก11๐ผII(โŸฆ๐‘ก6โŸง, โŸฆ๐‘ก7โŸง, โŸฆ๐‘–3โŸง, โŸฆ๐‘–3โŸง; ๏ฟฝโƒ—โƒ—๏ฟฝ ๐‘˜); }

๐ธ๐‘™๐‘ ๐‘’ ๐‘–๐‘“(๐‘—3 = ๐‘ก4){๐‘‹ โ† ๐‘‹ + ๐‘ฃ3๐‘ข๐‘ก6,๐‘ก7๐‘ข๐‘ก10,๐‘ก11๐ผII(โŸฆ๐‘ก8โŸง, โŸฆ๐‘ก9โŸง, โŸฆ๐‘–3โŸง, โŸฆ๐‘–3โŸง; ๏ฟฝโƒ—โƒ—๏ฟฝ ๐‘˜); }

๐ธ๐‘™๐‘ ๐‘’ ๐‘–๐‘“(๐‘—3 = ๐‘ก5){๐‘‹ โ† ๐‘‹ + ๐‘ฃ3๐‘ข๐‘ก6,๐‘ก7๐‘ข๐‘ก8,๐‘ก9๐ผII(โŸฆ๐‘ก10โŸง, โŸฆ๐‘ก11โŸง, โŸฆ๐‘–3โŸง, โŸฆ๐‘–3โŸง; ๏ฟฝโƒ—โƒ—๏ฟฝ ๐‘˜); }

๐ธ๐‘™๐‘ ๐‘’{๐‘‹ โ† ๐‘‹ + ๐‘ฃ3๐‘ข๐‘ก6,๐‘ก7๐‘ข๐‘ก8,๐‘ก9๐‘ข๐‘ก10,๐‘ก11๐ผII(โŸฆ๐‘—3โŸง, โŸฆ๐‘—3โŸง, โŸฆ๐‘–3โŸง, โŸฆ๐‘–3โŸง; ๏ฟฝโƒ—โƒ—๏ฟฝ ๐‘˜); }

}}}}}}}}}

Total energy:

๐‘Š โ†๐‘Š+ 2๐‘‹

๐ด; ๐น๐‘œ๐‘Ÿ(๐‘– โ† 1; ๐‘– โ‰ค ๐‘; ๐‘– โ† ๐‘– + 1) {๐‘Š โ† ๐‘Š โˆ’

1

2๐œ‰๐‘–2; }

๐‘…๐‘’๐‘ก๐‘ข๐‘Ÿ๐‘› ๐‘Š; } //End.

Appendix II: Monocentric Double-electron Coupling Integral (Algorithm)

Lemma[26]: six-dimensional integral element ๐‘‘๏ฟฝโƒ—๏ฟฝ 1๐‘‘๏ฟฝโƒ—๏ฟฝ 2 = ๐‘Ÿ1๐‘Ÿ2๐‘Ÿ1,2๐‘ ๐‘–๐‘›(๐œƒ1) ๐‘‘๐‘Ÿ1๐‘‘๐‘Ÿ2๐‘‘๐‘Ÿ1,2๐‘‘๐œ™1๐‘‘๐œƒ1๐‘‘๐œ’1,2.

Proposition (proof, omitted):

{

cos(๐œƒ2) = cos(๐œƒ1)cos(๐›ฝ1,2) + sin(๐œƒ1)cos(๐œ’1,2)sin(๐›ฝ1,2)

cos(๐œ™2) =cos(๐›ฝ1,2)cos(๐œ™1)

sin(๐œƒ2)sin(๐œƒ1)โˆ’cos(๐œƒ2)cos(๐œƒ1)cos(๐œ™1)

sin(๐œƒ2)sin(๐œƒ1)+sin(๐›ฝ1,2)sin(๐œ’1,2)sin(๐œ™1)

sin(๐œƒ2)

sin(๐œ™2) =cos(๐›ฝ1,2)sin(๐œ™1)

sin(๐œƒ2)sin(๐œƒ1)โˆ’cos(๐œƒ2)cos(๐œƒ1)sin(๐œ™1)

sin(๐œƒ2)sin(๐œƒ1)+sin(๐›ฝ1,2)sin(๐œ’1,2)cos(๐œ™1)

sin(๐œƒ2)

.

Therefore, the monocentric double-electron coupling integral algorithm we adopted is shown below (the

representation of coordinate vector ๏ฟฝโƒ—๏ฟฝ ๐‘– is shown in Figure 1):

Algorithm name: monocentric double-electron coupling integral ๐ผII(โˆ™);

Input: (โŸฆ1โŸง, โŸฆ2โŸง, โŸฆ3โŸง, โŸฆ4โŸง; ๏ฟฝโƒ—โƒ—๏ฟฝ );

Output: ๐‘Š = โŸจ๐œ‘โŸฆ1โŸง(๏ฟฝโƒ—๏ฟฝ 1)๐œ‘โŸฆ2โŸง(๏ฟฝโƒ—๏ฟฝ 1)|โ„Ž1๐‘Ÿ1โ„Ž2๐‘Ÿ2

โ„Ž3๐‘Ÿ1,2โ„Ž4๐‘‹(๏ฟฝโƒ—๏ฟฝ 1, ๏ฟฝโƒ—๏ฟฝ 2; ๏ฟฝโƒ—โƒ—๏ฟฝ )|๐œ‘โŸฆ3โŸง(๏ฟฝโƒ—๏ฟฝ 2)๐œ‘โŸฆ4โŸง(๏ฟฝโƒ—๏ฟฝ 2)โŸฉ;

// ๐‘‹(๏ฟฝโƒ—๏ฟฝ 1, ๏ฟฝโƒ—๏ฟฝ 2; ๏ฟฝโƒ—โƒ—๏ฟฝ ) = ๐‘๐‘œ๐‘ โ„Ž5(๐œƒ1)๐‘๐‘œ๐‘ 

โ„Ž6(๐œƒ2)๐‘ ๐‘–๐‘›โ„Ž7(๐œƒ1)๐‘ ๐‘–๐‘›

โ„Ž8(๐œƒ2)๐‘๐‘œ๐‘ โ„Ž9(๐œ™1)๐‘๐‘œ๐‘ 

โ„Ž10(๐œ™2)๐‘ ๐‘–๐‘›โ„Ž11(๐œ™1)๐‘ ๐‘–๐‘›

โ„Ž12(๐œ™2).

Algorithmic process(The algorithm is not optimized due to length):

๐ผII(โŸฆ1โŸง, โŸฆ2โŸง, โŸฆ3โŸง, โŸฆ4โŸง; ๏ฟฝโƒ—โƒ—๏ฟฝ ){ ๐‘Š โ† 0;

๐น๐‘œ๐‘Ÿ(๐‘1,1 โ† 0; ๐‘1,1 < ๐‘›1 โˆ’ ๐‘™1; ๐‘1,1 โ† ๐‘1,1 + 1){ ๐น๐‘œ๐‘Ÿ (๐‘1,2 โ† 0; ๐‘1,2 โ‰ค [๐‘™1โˆ’|๐‘š1|

2] ; ๐‘1,2 โ† ๐‘1,2 + 1) {

Page 18: Theoretical Calculation of Atomic Hyperfine Structure Zhao

18

๐‘ž1 โ† {0 ๐‘–๐‘“(๐‘š1 โ‰ฅ 0)

1 ๐‘’๐‘™๐‘ ๐‘’ ; ๐น๐‘œ๐‘Ÿ (๐‘1,3 โ† 0; ๐‘1,3 โ‰ค [

|๐‘š1|โˆ’๐‘ž1

2] ; ๐‘1,3 โ† ๐‘1,3 + 1) {

โ‹ฎ โ‹ฎ

๐น๐‘œ๐‘Ÿ(๐‘4,1 โ† 0; ๐‘4,1 < ๐‘›4 โˆ’ ๐‘™4; ๐‘4,1 โ† ๐‘4,1 + 1){ ๐น๐‘œ๐‘Ÿ (๐‘4,2 โ† 0; ๐‘4,2 โ‰ค [๐‘™4โˆ’|๐‘š4|

2] ; ๐‘4,2 โ† ๐‘4,2 + 1) {

๐‘ž4 โ† {0 ๐‘–๐‘“(๐‘š4 โ‰ฅ 0)

1 ๐‘’๐‘™๐‘ ๐‘’ ; ๐น๐‘œ๐‘Ÿ (๐‘4,3 โ† 0; ๐‘4,3 โ‰ค [

|๐‘š4|โˆ’๐‘ž4

2] ; ๐‘4,3 โ† ๐‘4,3 + 1) {

๐‘ก1,1 โ† ๐‘™1 + ๐ฝ1 โˆ’ |๐‘š1| โˆ’ 2๐‘1,2 + ๐‘™2 + ๐ฝ2 โˆ’ |๐‘š2| โˆ’ 2๐‘2,2 + โ„Ž5; ๐‘ก1,2 โ† |๐‘š1| + |๐‘š2| + โ„Ž7;

๐‘ก2,1 โ† ๐‘™3 + ๐ฝ3 โˆ’ |๐‘š3| โˆ’ 2๐‘3,2 + ๐‘™4 + ๐ฝ4 โˆ’ |๐‘š4| โˆ’ 2๐‘4,2 + โ„Ž6; ๐‘ก2,2 โ† |๐‘š3| + |๐‘š4| + โ„Ž8;

๐‘ก1,3 โ† |๐‘š1| โˆ’ ๐‘ž1 โˆ’ 2๐‘1,3 + |๐‘š2| โˆ’ ๐‘ž2 โˆ’ 2๐‘2,3 + โ„Ž9; ๐‘ก1,4 โ† ๐‘ž1 + ๐‘ž2 + โ„Ž11;

๐‘ก2,3 โ† |๐‘š3| โˆ’ ๐‘ž3 โˆ’ 2๐‘3,3 + |๐‘š4| โˆ’ ๐‘ž4 โˆ’ 2๐‘4,3 + โ„Ž10; ๐‘ก2,4 โ† ๐‘ž3 + ๐‘ž4 + โ„Ž12;

๐‘ก1,5 โ† ๐‘™1 + ๐ฝ1 + ๐‘1,1 + ๐‘™2 + ๐ฝ2 + ๐‘2,1 + โ„Ž2 + 1; ๐‘ก1,6 โ† ๐œ‰1 + ๐œ‰2; ๐‘ก1,7 โ† โ„Ž4 + 1;

๐‘ก2,5 โ† ๐‘™3 + ๐ฝ3 + ๐‘3,1 + ๐‘™4 + ๐ฝ4 + ๐‘4,1 + โ„Ž3 + 1; ๐‘ก2,6 โ† ๐œ‰3 + ๐œ‰4;

๐ผ๐‘“ (๐‘ก1,2 < ๐‘ก2,2) {๐น๐‘œ๐‘Ÿ(๐‘– โ† 1; ๐‘– โ‰ค 6; ๐‘– โ† ๐‘– + 1){ ๐‘ฃ โ† ๐‘ก1,๐‘–; ๐‘ก1,๐‘– โ† ๐‘ก2,๐‘–; ๐‘ก2,๐‘– โ† ๐‘ฃ; }} ๐‘ก1,2 โ† ๐‘ก1,2 + 1;

๐ผ๐‘“ (0 โ‰ก (๐‘ก2,2 โˆ’ ๐‘ก2,4 โˆ’ ๐‘ก2,3) ๐‘š๐‘œ๐‘‘ 2){๐‘  โ† 0; ๐‘˜ โ† 0; } ๐ธ๐‘™๐‘ ๐‘’ {๐‘  โ† 2; ๐‘˜ โ† 1; }

๐น๐‘œ๐‘Ÿ(๐‘–1 โ† 0; ๐‘–1 โ‰ค ๐‘ก2,4; ๐‘–1 โ† ๐‘–1 + 1){ ๐น๐‘œ๐‘Ÿ(๐‘–2 โ† 0; ๐‘–2 โ‰ค ๐‘–1; ๐‘–2 โ† ๐‘–2 + 1){

๐น๐‘œ๐‘Ÿ(๐‘–3 โ† 0; ๐‘–3 โ‰ค ๐‘ก2,3; ๐‘–3 โ† ๐‘–3 + 1){ ๐น๐‘œ๐‘Ÿ(๐‘–4 โ† 0; ๐‘–4 โ‰ค ๐‘–3; ๐‘–4 โ† ๐‘–4 + 1){

๐น๐‘œ๐‘Ÿ (๐‘–5 โ† 0; ๐‘–5 โ‰ค๐‘ก2,2โˆ’๐‘ก2,4โˆ’๐‘ก2,3โˆ’๐‘˜

2; ๐‘–5 โ† ๐‘–5 + 1) { ๐น๐‘œ๐‘Ÿ(๐‘–6 โ† 0; ๐‘–6 โ‰ค ๐‘ ; ๐‘–6 โ† ๐‘–6 + 1){

๐น๐‘œ๐‘Ÿ(๐‘–7 โ† 0; ๐‘–7 โ‰ค ๐‘ก2,1 + ๐‘–2 + ๐‘–4 + 2๐‘–5 + 2๐‘–6; ๐‘–7 โ† ๐‘–7 + 1){

๐‘ฃ โ†(โˆ’1)๐‘–2+๐‘–4+๐‘–5๐‘ก2,3!๐‘ก2,4!(

๐‘ก2,2โˆ’๐‘ก2,4โˆ’๐‘ก2,3โˆ’๐‘˜

2)!(2๐‘–6)!(๐‘ก2,1+๐‘–2+๐‘–4+2๐‘–5+2๐‘–6)!

4๐‘–6(1โˆ’2๐‘–6)(๐‘–6!)2๐‘–2!(๐‘–1โˆ’๐‘–2)!(๐‘ก2,4โˆ’๐‘–1)!๐‘–4!(๐‘–3โˆ’๐‘–4)!(๐‘ก2,3โˆ’๐‘–3)!๐‘–5!(

๐‘ก2,2โˆ’๐‘ก2,4โˆ’๐‘ก2,3โˆ’๐‘˜

2โˆ’๐‘–5)!๐‘–7!(๐‘ก2,1+๐‘–2+๐‘–4+2๐‘–5+2๐‘–6โˆ’๐‘–7)!

;

๐‘ฃ โ† ๐‘ฃ ร— ๐‘ŒI(๐‘ก1,2 + ๐‘–7 โˆ’ ๐‘–1 โˆ’ ๐‘–3, ๐‘ก1,1 + ๐‘ก2,1 + 2๐‘–2 + 2๐‘–4 + 2๐‘–5 + 2๐‘–6 โˆ’ ๐‘–7);

๐‘ฃ โ† ๐‘ฃ ร— ๐‘ŒII(๐‘ก2,4 + ๐‘ก2,3 โˆ’ ๐‘–1 โˆ’ ๐‘–3, ๐‘–7) ร— ๐‘ŒII(๐‘ก1,4 + ๐‘ก2,3 + ๐‘–1 โˆ’ ๐‘–3, ๐‘ก1,3 + ๐‘ก2,4 โˆ’ ๐‘–1 + ๐‘–3);

๐‘โŸฆ๐‘—โŸง,๐‘˜ โ†

{

(โˆ’1)๐‘˜2

๐‘š๐‘—โˆ’2๐‘˜โˆ’1๐‘š๐‘—(๐‘š๐‘—โˆ’๐‘˜โˆ’1)!

(๐‘š๐‘—โˆ’2๐‘˜)!๐‘˜!๐‘–๐‘“(๐‘š๐‘— > 0)

(โˆ’1)๐‘˜2|๐‘š๐‘—|โˆ’2๐‘˜โˆ’1(|๐‘š๐‘—|โˆ’๐‘˜โˆ’1)!

(|๐‘š๐‘—|โˆ’2๐‘˜โˆ’1)!๐‘˜!๐‘’๐‘™๐‘ ๐‘’ ๐‘–๐‘“(๐‘š๐‘— < 0)

1 ๐‘’๐‘™๐‘ ๐‘’

๐‘Ž๐‘›๐‘‘ (๐‘˜ = 0,1โ‹ฏ , [|๐‘š๐‘—|โˆ’๐‘ž๐‘—

2]) ;

// The expansion coefficient of ๐‘๐‘œ๐‘ (๐‘š๐‘—๐œ™) or ๐‘ ๐‘–๐‘›(|๐‘š๐‘—|๐œ™) is denoted by ๐‘โŸฆ๐‘—โŸง,๐‘˜;

๐‘ฃ โ† ๐‘ฃ ร—โˆ ๐ดโŸฆ๐‘—โŸง๐‘ŽโŸฆ๐‘—โŸง,๐‘๐‘—,2๐‘โŸฆ๐‘—โŸง,๐‘๐‘—,1๐‘โŸฆ๐‘—โŸง,๐‘๐‘—,34๐‘—=1 ;

๐‘Š โ†๐‘Š + ๐‘ฃ ร— ๐‘ŒIII(๐‘ก1,7, ๐‘ก1,5, ๐‘ก2,5, ๐‘ก1,6, ๐‘ก2,6, ๐‘ก2,4 + ๐‘ก2,3 โˆ’ ๐‘–1 โˆ’ ๐‘–3 + ๐‘–7, ๐‘ก2,1 + ๐‘–1 + ๐‘–3 + 2๐‘–5 + 2๐‘–6 โˆ’ ๐‘–7);

}}}}}}}}}}}}}}}}}}} ๐‘…๐‘’๐‘ก๐‘ข๐‘Ÿ๐‘› (๐‘Š โ† ๐‘Š ร— ๐ด1๐ด2๐ด3๐ด4 ร— โ„Ž1); } //End.

Appendix III: Radial Generalized Integral (Algorithm)

Algorithm name: radial integral ๐‘ŒIII(โˆ™);

Page 19: Theoretical Calculation of Atomic Hyperfine Structure Zhao

19

Input: (๏ฟฝโƒ—๏ฟฝ );

Output: ๐‘Š = โˆซ ๐‘‘๐‘Ÿ1 โˆซ ๐‘‘๐‘Ÿ2 โˆซ ๐‘Ÿ1,2๐‘ 1๐‘Ÿ1

๐‘ 2๐‘Ÿ2๐‘ 3๐‘’โˆ’(๐‘ 4๐‘Ÿ1+๐‘ 5๐‘Ÿ2)sin๐‘ 6(๐›ฝ1,2)cos

๐‘ 7(๐›ฝ1,2)๐‘‘๐‘Ÿ1,2๐‘Ÿ1+๐‘Ÿ2|๐‘Ÿ1โˆ’๐‘Ÿ2|

+โˆž

0

+โˆž

0;

Algorithmic process:

๐‘ŒIII(๏ฟฝโƒ—๏ฟฝ ){ ๐ผ๐‘“ (0 โ‰ก ๐‘ 6 ๐‘š๐‘œ๐‘‘ 2){

๐‘Š โ† โˆ‘ โˆ‘ โˆ‘(๐‘ 62)!(๐‘ 7+2๐‘˜1)!๐‘ŒV(๐‘ 4,๐‘ 5,๐‘ 2+2๐‘˜2โˆ’2๐‘˜3โˆ’๐‘ 7โˆ’2๐‘˜1,๐‘ 3+2๐‘˜3โˆ’๐‘ 7โˆ’2๐‘˜1,๐‘ 1+2๐‘ 7+4๐‘˜1โˆ’2๐‘˜2)

(โˆ’1)๐‘ 7+๐‘˜1โˆ’๐‘˜2ร—2๐‘ 7+2๐‘˜1(๐‘ 62โˆ’๐‘˜1)!๐‘˜1!(๐‘ 7+2๐‘˜1โˆ’๐‘˜2)!(๐‘˜2โˆ’๐‘˜3)!๐‘˜3!

๐‘˜2๐‘˜3=0

๐‘ 7+2๐‘˜1๐‘˜2=0

๐‘ 62

๐‘˜1=0; }

๐ธ๐‘™๐‘ ๐‘’{

๐‘Š โ† โˆ‘ โˆ‘ โˆ‘ โˆ‘(2๐‘˜2)!(

๐‘ 6โˆ’1

2)!(๐‘ 7+2๐‘˜1+2๐‘˜2)!๐‘ŒV(

๐‘ 4,๐‘ 5,๐‘ 2+2๐‘˜3โˆ’2๐‘˜4โˆ’๐‘ 7โˆ’2๐‘˜1โˆ’2๐‘˜2, ๐‘ 3+2๐‘˜4โˆ’๐‘ 7โˆ’2๐‘˜1โˆ’2๐‘˜2,๐‘ 1+2๐‘ 7+4๐‘˜1+4๐‘˜2โˆ’2๐‘˜3

)

(โˆ’1)๐‘ 7+๐‘˜1โˆ’๐‘˜3ร—2๐‘ 7+2๐‘˜1+4๐‘˜2(1โˆ’2๐‘˜2)(๐‘˜2!)2(๐‘ 6โˆ’1

2โˆ’๐‘˜1)!๐‘˜1!(๐‘ 7+2๐‘˜1+2๐‘˜2โˆ’๐‘˜3)!(๐‘˜3โˆ’๐‘˜4)!๐‘˜4!

๐‘˜3๐‘˜4=0

๐‘ 7+2๐‘˜1+2๐‘˜2๐‘˜3=0

+โˆž๐‘˜2=0

๐‘ 6โˆ’1

2

๐‘˜1=0; }

๐‘…๐‘’๐‘ก๐‘ข๐‘Ÿ๐‘› ๐‘Š; } //End.

Wherein, the definite integral of the intermediate function is denoted by

{

๐‘ŒI(๐‘˜, ๐‘) = โˆซ sin๐‘˜(๐‘ฅ)cos๐‘(๐‘ฅ)

๐œ‹

0 ๐‘‘๐‘ฅ

๐‘ŒII(๐‘˜, ๐‘) = โˆซ sin๐‘˜(๐‘ฅ)cos๐‘(๐‘ฅ)๐‘‘๐‘ฅ2๐œ‹

0

๐‘ŒV(๏ฟฝโƒ—๏ฟฝ ) = โˆซ ๐‘Ÿ1๐‘ 3๐‘’โˆ’๐‘ 1๐‘Ÿ1๐‘‘๐‘Ÿ1 โˆซ ๐‘Ÿ2

๐‘ 4๐‘’โˆ’๐‘ 2๐‘Ÿ2๐‘‘๐‘Ÿ2 โˆซ ๐‘Ÿ1,2๐‘ 5๐‘‘๐‘Ÿ1,2

๐‘Ÿ1+๐‘Ÿ2|๐‘Ÿ1โˆ’๐‘Ÿ2|

+โˆž

0

+โˆž

0

.

References:

[1] Schrรถdinger E 1926 Ann. Phys.79 361.

[2] Schrรถdinger E 1926 Ann. Phys.79 489.

[3] Schrรถdinger E 1926 Ann. Phys.80 437.

[4] Schrรถdinger E 1926 Ann. Phys.81 109.

[5] Klein O 1926 Z.Phys. 37 895.

[6] Gordon W 1926 Z.Phys. 40 117.

[7] Pauli W, Weisskopf V 1934 Helv.Phys.Acta. 7 709.

[8] Dirac P A M 1928 Proc.Roy Soc. 117 610.

[9] Grant I P 1970 Adv. Phys. 19 82.

[10] Lamb W E, Retherford R C 1947 Phys. Rev. 72 214.

[11] Bethe H A 1947 Phys.Rev. 72 339.

[12] Zhu H Y 2013 Quantum field theory (Beijing:Peking University Press)p226 (in Chinese)

[13] Huang S Z 2016 Theory of atomic structure(Beijing: Higher Education Press)p352(in Chinese)

[14] Hartree D R 1928 Proc.Camb.Phil.Soc 24 89

[15] Hartree D R 1933Proc.R.Soc.A 141 209.

Page 20: Theoretical Calculation of Atomic Hyperfine Structure Zhao

20

[16] Fock V Z 1930 Z.Phys. 61 126.

[17] Slater J C 1930 Phys.Rev. 35 210.

[18] NIST Atomic Spectra Database. Energy Levels Data [DB]. National Institute of Standards and

Technology. 2001. 09.09 [2006.05]. http://physics. nist.gov/cgi-bin/AtData/display. Ksh.

[19] Liang C B, Zhou B 2006 Introduction to differential geometry and general relativity(Vol.1)

(Beijing: Science press)p247 (in Chinese)

[20] Born M, Oppenheimer R 1927 Ann. d. Phys. 84 457.

[21] Born M, Huang K 1954 Dynamic Theory of Crystal Lattice(Oxford: Oxford University Preaa).

[22] Xu G X,Li L M,Wang D M 2007 Quantum Chemistry-Basic Principles and ab initio method(Vol.1,2)

(Beijing:Science press)p187,p153 (in Chinese)

[23] Hammond B L, Lester W A Jr, Reynolds P J 1994 Monte Carlo Methods in Ab Ihitio Quantum

Chemistry. (Singapore:World Scientific Publishing Co).

[24] Foulkes W M C, Mitas L, Needs R J, Rajagopal G 2001 Rev.Mod.Phys.73 33.

[25] Kohn W, Sham L J 1965 Phys.Rev.A 140 1133.

[26] Drake G W F, Cassar M M, Nistor R A 2002 Phys.Rev.A. 65 054501.

[27] Scott T C,Aubert-Frรฉcon M, Grotendorst J 2006 Chem.Phys. 324 323.

[28] Hylleraas E A 1928 Z. Phys. 48 469.


Recommended