Transcript
Page 1: Supersymmetry and mechanisms of breaking it

Supersymmetry and

mechanisms of breaking it

Behnoosh Khavari Institute for research in Fundamental Sciences

Page 2: Supersymmetry and mechanisms of breaking it

1-Why Supersymmetry?

2-How to contain Supersymmetry?

3- Why and how to break Supersymmetry?

4-A Simple model for SUSY breaking

0-A review on QFT and SM of Particle physics

PLAN OF TALK

Page 3: Supersymmetry and mechanisms of breaking it

SYMMETRY IN PHYSICS

β€’ SYMMETRY INVARIANCE

β€’ CLASSICAL MECHANICS

β€’ CLASSICAL ELECTRODYNAMICS

Page 4: Supersymmetry and mechanisms of breaking it

CLASSICAL PHYSICS

β€’ 𝐿 =1

2π‘šπ‘‹ 2

β€’πœ•πΏ

πœ•π‘₯βˆ’

𝑑

𝑑𝑑

πœ•πΏ

πœ•π‘₯ = 0

β€’ π‘šπ‘₯ = π‘π‘œπ‘›π‘ π‘‘.

β€’ π‘₯ ∢ 𝑐𝑦𝑐𝑙𝑖𝑐 π‘£π‘Žπ‘Ÿπ‘–π‘Žπ‘π‘™π‘’

β€’ SYMMETRY CONSERVED QUANTITY

Page 5: Supersymmetry and mechanisms of breaking it

ELECTRODYNAMICS

β€’ 𝐿 =βˆ’1

4𝐹𝛼𝛽𝐹𝛼𝛽 + 𝐽𝛼𝐴𝛼

β€’ 𝐴𝛼 β†’ 𝐴𝛼+πœ•π›ΌπΉ(π‘₯)

β€’ πœ•π›Όπ½π›Ό = 0

β€’ 𝑄 = π‘π‘œπ‘›π‘ π‘‘.

β€’ SYMMETRY CONSERVED QUANTITY

Page 6: Supersymmetry and mechanisms of breaking it

QFT AS THE FUNDAMENTAL THEORY

β€’ All fundamental interactions are described

through invariances.

β€’ Lorentz invariance is necessary.

β€’ Lagrangian of QFT has all these symmetries.

Page 7: Supersymmetry and mechanisms of breaking it

The standard model describes three fundamental

Interactions for elementary particles :

EM U(1) symmetry

electroWEAK

SU(2)*U(1) symmetry

STRONG SU(3) symmetry

Page 8: Supersymmetry and mechanisms of breaking it

OBSERVED ELEMENTARY PARTICLES UNTIL 2012

β€’

β€’

http://abyss.uoregon.edu/~js/ast123/lectures/lec07.html

Page 9: Supersymmetry and mechanisms of breaking it

SALAM-WEINBERG MODEL

β€’ PREDICTION : HIGGS BOSON

β€’ ANY PROBLEM?

β€’ YES, The gauge hierarchy problem.

Page 10: Supersymmetry and mechanisms of breaking it

Hierarchy problem of the Higgs mass

β€’ Quantum corrections in the frame of SM take the mass of Higgs to Planck scale.

Yukawa coupling 𝐻4

Ξ›2 divergence

Page 11: Supersymmetry and mechanisms of breaking it

A GOOD MOTIVATION FOR SUSY

Page 12: Supersymmetry and mechanisms of breaking it

What does mean supersymmetry(SUSY)?

β€’ (N=1) type : for each particle in nature there is another one with a difference in spin by one half :

β€’ 𝑄 π‘“π‘’π‘Ÿπ‘šπ‘–π‘œπ‘› = π‘π‘œπ‘ π‘œπ‘› ,

β€’ 𝑄 π‘π‘œπ‘ π‘œπ‘› = π‘“π‘’π‘Ÿπ‘šπ‘–π‘œπ‘› .

Page 13: Supersymmetry and mechanisms of breaking it

How does SUSY solve Hierarchy problem?

β€’ SUSY introduces new interactions due to new particles.

Page 14: Supersymmetry and mechanisms of breaking it

How to incorporate SUSY into QFT ?

Page 15: Supersymmetry and mechanisms of breaking it

A review on non-supersymmetric QFT

β€’ Poincare symmetry (space-time and Lorentz transformation)

β€’ Internal symmetry

β€’ CPT symmetry

Page 16: Supersymmetry and mechanisms of breaking it

Poincare algebra

β€’ π‘ƒπœ‡, π‘ƒπœˆ = 0

β€’ π‘€πœ‡πœˆ , π‘ƒπœŽ = 𝑖(π‘ƒπœ‡πœ‚πœˆπœŽ βˆ’ π‘ƒπœˆπœ‚πœ‡πœŽ)

β€’ π‘€πœ‡πœˆ , π‘€πœŒπœŽ

= 𝑖 π‘€πœ‡πœŽπœ‚πœˆπœŒ + π‘€πœˆπœŒπœ‚πœ‡πœŽ βˆ’ π‘€πœ‡πœŒπœ‚πœˆπœŽ βˆ’ π‘€πœˆπœŽπœ‚πœ‡πœŒ

Page 17: Supersymmetry and mechanisms of breaking it

Coleman-mandula theorem

β€’ Limiting algebra to contain only commutation relations

Only QFT symmetries

β€’ Loosing the constraint β€œonly commutation relations”

expanding algebra by

anti commutation relations

Page 18: Supersymmetry and mechanisms of breaking it

supercharge

β€’ 𝑄𝛼 π‘œπ‘π‘’π‘Ÿπ‘Žπ‘‘π‘œπ‘Ÿ (π‘”π‘’π‘›π‘’π‘Ÿπ‘Žπ‘‘π‘œπ‘Ÿ π‘œπ‘“ π‘†π‘ˆπ‘†π‘Œ)

π‘Ÿπ‘’π‘π‘Ÿπ‘’π‘ π‘’π‘›π‘‘π‘Žπ‘‘π‘–π‘œπ‘› π‘œπ‘“ πΏπ‘œπ‘Ÿπ‘’π‘›π‘‘π‘§ π‘”π‘Ÿπ‘œπ‘’π‘

β€’ 𝑄𝛼, 𝑄𝛽 = 0 , 𝑄𝛼, 𝑄 𝛽 = 2(πœŽπœ‡)𝛼𝛽 π‘ƒπœ‡

β€’ 𝑄𝛼, π‘ƒπœ‡ = 0 𝑄𝛼, π‘€πœ‡πœˆ = (πœŽπœ‡πœˆ)𝛼 𝛽

𝑄𝛽

β€’ 𝑄𝛼, 𝑇 = 0

Page 19: Supersymmetry and mechanisms of breaking it

Massless case (N=1)

β€’ 𝑄α 𝑝, πœ† π‘–π‘›π‘–π‘‘π‘–π‘Žπ‘™

= 0 𝑝, πœ† π‘–π‘›π‘–π‘‘π‘–π‘Žπ‘™

= Ξ©

β€’ 𝑝, πœ† , Q 2 𝑝, πœ† = 𝑝, πœ† βˆ’1

2

Page 20: Supersymmetry and mechanisms of breaking it

How to incorporate N=1 SUSY into QFT ?

β€’ Generalization:

β€’ Space β†’ superspace : π‘₯πœ‡β†’ π‘₯πœ‡ , πœƒπ›Ό , πœƒ 𝛼

β€’ Field(π‘₯πœ‡) β†’ superfield(π‘₯πœ‡ , πœƒπ›Ό , πœƒ 𝛼 )

β€’ πœƒπ›Ό , πœƒ 𝛼 : fermionic coordinates

Page 21: Supersymmetry and mechanisms of breaking it

Chiral superfield

β€’ 𝑆 π‘₯πœ‡, πœƒ, πœƒ = πœ‘ π‘₯ + 2πœƒπœ“ π‘₯ + πœƒπœƒπΉ π‘₯

+ π‘–πœ•πœ‡πœ‘ π‘₯ πœƒπœŽπœ‡πœƒ βˆ’π‘–

2πœƒπœƒπœ•πœ‡πœ“ π‘₯ πœŽπœ‡πœƒ

βˆ’1

4πœ•πœ‡πœ•πœ‡πœ‘(π‘₯)πœƒπœƒπœƒ πœƒ

β€’ It describes quarks and squarks or leptons and sleptons.

Page 22: Supersymmetry and mechanisms of breaking it

How to make a supersymmetric lagrangian ?

π›Ώπœ‘ = 2πœ‰πœ“

π›Ώπœ“ = 2πœ‰πΉ βˆ’ 2πœ•πœ‡πœ‘πœŽπœ‡πœ‰

𝛿𝐹 = 𝑖 2πœ•πœ‡πœ“πœŽπœ‡πœ‰

β€’ β„’ = (πœ™β€ πœ™) 𝐷

+ π‘Š 𝛷 𝐹 + 𝐻. 𝐢

β€’ +1

4(π‘Šπ›Όπ‘Šπ›Ό) 𝐹 + 𝐻. 𝐢.

Page 23: Supersymmetry and mechanisms of breaking it

A chiral model : Wess-Zumino

π‘Š =1

2π‘šπ›·2 +

1

3𝑔𝛷3

β€’ β„’ =1

2πœ•πœ‡π΄πœ•πœ‡π΄ βˆ’

1

2π‘š2𝐴2 +

1

2πœ•πœ‡π΅πœ•πœ‡π΅ βˆ’

1

2π‘š2𝐡2

β€’ +1

2𝛹 𝑖ð βˆ’ π‘š 𝛹 βˆ’

π‘šπ‘”

2𝐴 𝐴2 + 𝐡2

β€’ βˆ’π‘”2

4𝐴4 + 𝐡4 + 2𝐴2𝐡2 βˆ’

𝑔

2𝛹 𝐴 βˆ’ 𝑖𝐡𝛢5 𝛹

Page 24: Supersymmetry and mechanisms of breaking it

= βˆ’π‘–π‘”2

44 . 3

𝑑4π‘˜

2πœ‹ 4

𝑖

π‘˜2 βˆ’ π‘š2

= 3𝑔2 𝑑4π‘˜

2πœ‹ 4

1

π‘˜2 βˆ’ π‘š2

= βˆ’π‘–π‘”2

2 2

𝑑4π‘˜

2πœ‹ 4 𝑖

π‘˜2 βˆ’ π‘š2

= 𝑔2 𝑑4π‘˜

2πœ‹ 4 1

π‘˜2 βˆ’ π‘š2

= βˆ’2𝑔2( 𝑑4π‘˜

2πœ‹ 4 1

π‘˜2 βˆ’ π‘š2 + 𝑑4π‘˜

2πœ‹ 4 1

π‘˜ βˆ’ 𝑝 2 βˆ’ π‘š2

+ 𝑑4π‘˜

2πœ‹ 4 4π‘š2 βˆ’ 𝑝2

π‘˜2 βˆ’ π‘š2) ( π‘˜ βˆ’ 𝑝 2 βˆ’ π‘š2 )

Page 25: Supersymmetry and mechanisms of breaking it

π‘™π‘œπ‘”π›¬ divergence π‘™π‘œπ‘”π›¬ divergence

There remains no 𝛬2 divergence.

Page 26: Supersymmetry and mechanisms of breaking it

Take a look at nature !

Selectron, Squark have not been observed.

SUSY must be broken : SUSY

Page 27: Supersymmetry and mechanisms of breaking it

SUPERSYMMETRY BREAKING

Page 28: Supersymmetry and mechanisms of breaking it

HOW TO BREAK SUSY?

Spontaneous SUSY breaking :

β„’ is supersymmetric, vacuum is not.

𝑄𝛼 0 β‰  0

Page 29: Supersymmetry and mechanisms of breaking it

F-term SUSY breaking

Chiral superfield transformation:

π›Ώπœ‘ = 2πœ‰πœ“

π›Ώπœ“ = 2πœ‰πΉ βˆ’ 2πœ•πœ‡πœ‘πœŽπœ‡πœ‰

𝛿𝐹 = 𝑖 2πœ•πœ‡πœ“πœŽπœ‡πœ‰

Only π›Ώπœ“ β‰  0 respects Lorentz invariance.

π›Ώπœ“ ∝ 𝐹 β‰  0

Page 30: Supersymmetry and mechanisms of breaking it

Scalar potential

𝑉 = 𝑉𝐹 πœ‘ =πœ•π‘Š

πœ•πœ‘

2

𝐹𝑖† = βˆ’

πœ•π‘Š πœ‘

πœ•πœ‘π‘–

Page 31: Supersymmetry and mechanisms of breaking it

Energy criterion

𝑄𝛼, 𝑄 𝛽 = 2(πœŽπœ‡)𝛼𝛽 π‘ƒπœ‡

𝐻 = 𝑃0 =1

4𝑄1𝑄 1 + 𝑄 1 𝑄1 + 𝑄2𝑄 2 + 𝑄 2 𝑄2

𝑯 =𝟏

πŸ’πŸŽ π‘ΈπŸπ‘Έ 𝟏 + 𝑸 𝟏 π‘ΈπŸ + π‘ΈπŸπ‘Έ 𝟐 + 𝑸 𝟐 π‘ΈπŸ 𝟎

SUSY 𝑬𝒗𝒂𝒄 = 𝟎

SUSY 𝑬𝒗𝒂𝒄 > 𝟎

Page 32: Supersymmetry and mechanisms of breaking it

A prototype model for susy π‘Š 𝛷1, 𝛷2, 𝛷3 = πœ‡π›·2𝛷3 + πœ†1𝛷1 𝛷3

2 βˆ’ 𝑀2

βˆ’πΉ1† =

πœ•π‘Š

πœ•πœ‘1= πœ†1 πœ‘3

2 βˆ’ 𝑀2

βˆ’πΉ2† =

πœ•π‘Š

πœ•πœ‘2= πœ‡πœ‘3

βˆ’πΉ3† =

πœ•π‘Š

πœ•πœ‘3= πœ‡πœ‘2 + 2πœ†1πœ‘1πœ‘3

𝑉 = 𝐹𝑖2

3

𝑖=1

= πœ†12 πœ‘3

2 βˆ’ 𝑀2 2 + πœ‡2 πœ‘32

+ πœ‡πœ‘2 + 2πœ†1πœ‘1πœ‘32

Page 33: Supersymmetry and mechanisms of breaking it

π‘š02 =

π‘Š π‘Žπ‘π‘Šπ‘π‘ π‘Š π‘Žπ‘π‘π‘Šπ‘

π‘Šπ‘Žπ‘π‘π‘Š 𝑐 π‘Šπ‘Žπ‘π‘Š

𝑐𝑏

π‘š12

2 =π‘Š π‘Žπ‘π‘Šπ‘π‘ 0

0 π‘Šπ‘Žπ‘π‘Š 𝑐𝑏

π‘š02 =

0 0 0 0 0 00 πœ‡ 2 0 0 0 0

0 0 πœ‡ 2 0 0 βˆ’2𝑀2 πœ†12

0 0 0 0 0 00 0 0 0 πœ‡ 2 0

0 0 βˆ’2𝑀2 πœ†12 0 0 πœ‡ 2

𝐼1 = 𝐼2 = 0

𝐼3 = 𝐼4 = πœ‡ 2

𝐼5 = πœ‡ 2 βˆ’ 2𝑀2 πœ†12

𝐼6 = πœ‡ 2 + 2𝑀2 πœ†12

Page 34: Supersymmetry and mechanisms of breaking it

π‘š12

2 =

0 0 0 0 0 00 πœ‡ 2 0 0 0 0

0 0 πœ‡ 2 0 0 00 0 0 0 0 00 0 0 0 πœ‡ 2 0

0 0 0 0 0 πœ‡ 2

𝐼1 = 𝐼2 = 0

𝐼3 = 𝐼4 = 𝐼5 = 𝐼6 = πœ‡ 2

πœ“1 is the Goldstino

πœ‘3 =π‘Ž3 + 𝑖𝑏3

2 π‘šπ‘Ž3

2 = πœ‡2 βˆ’ 2πœ†12𝑀2 π‘šπ‘3

2 = πœ‡2 + 2πœ†12𝑀2

Page 35: Supersymmetry and mechanisms of breaking it

SUSY breaking is apparent.

Cambridge Lectures on Supersymmetry and Extra Dimensions, Lectures by: Fernando Quevedo, Notes by: Sven Krippendorf, Oliver Schlotterer

Page 36: Supersymmetry and mechanisms of breaking it

Some details of SUSY breaking

Page 37: Supersymmetry and mechanisms of breaking it

A generic criterion for susy

π‘Š = W(Φ𝑖)

πœ•π‘ŽW Φ𝑖 = 0, π‘Ž = 1, … 𝑛 , 𝑖 = 1, … , 𝑛

Generically there is a solution.

Page 38: Supersymmetry and mechanisms of breaking it

𝑄𝛼 , 𝑅 = 𝑄𝛼

β†’ 𝑄𝛼𝑅 π‘“π‘’π‘Ÿπ‘šπ‘–π‘œπ‘› βˆ’ 𝑅𝑄𝛼 π‘“π‘’π‘Ÿπ‘šπ‘–π‘œπ‘› = 𝑄𝛼 π‘“π‘’π‘Ÿπ‘šπ‘–π‘œπ‘› β†’ 𝑅𝐹 π‘π‘œπ‘ π‘œπ‘› βˆ’ 𝑅𝐡 π‘π‘œπ‘ π‘œπ‘› = π‘π‘œπ‘ π‘œπ‘› β†’ 𝑅𝐹 = 𝑅𝐡 + 1 𝑅 πœƒ = βˆ’1

β†’ 𝑅 π‘Š = 2 β†’ W = Ξ¦1

2r1f π‘‘π‘Ž = Ξ¦π‘ŽΞ¦1

βˆ’rπ‘Žr1

𝑛 + 1 π‘’π‘žπ‘’π‘Žπ‘‘π‘–π‘œπ‘›π‘  , 𝑛 π‘’π‘›π‘˜π‘›π‘œπ‘€π‘›π‘ 

Generically there is no solution.

Page 39: Supersymmetry and mechanisms of breaking it

Now consider some models! K.Intriligator and N. Seiberg,Lectures on supersymmetry Breaking arXiv:hep-ph/0702069v3

Page 40: Supersymmetry and mechanisms of breaking it

First example

W = fX , R(X) = 2

𝐾 = XX V = π‘”π‘Žπ‘Ž πœ•π‘Žπ‘Šπœ•π‘Ž π‘Š π‘”π‘Žπ‘Ž = πœ•π‘Žπœ•π‘Ž 𝐾 𝑉 = 𝑓𝑓 = 𝑓 2

SUSY IS BROKEN Goldstino

BUT R-SYMMETRY prohibits GAUGINO mass.

Page 41: Supersymmetry and mechanisms of breaking it

Break R-symmetry!

W = fX +1

2πœ–X2 R(X) = 2

𝑉 = 𝑓 + πœ–X 2

X = βˆ’π‘“

πœ– supersymmetric vacuum

π‘š02 =

πœ– 2 0

0 πœ– 2 = π‘š1

2

2

Page 42: Supersymmetry and mechanisms of breaking it

W = fX

K = XX βˆ’π‘

𝛬 2 XX 2 + β‹― about X = 0

𝑉 = 𝐾XX βˆ’1 𝑓 2 =

𝑓 2

1 βˆ’4𝑐𝛬 2 XX 2 + β‹―

= 1 +4𝑐

𝛬 2 XX 2 + β‹― 𝑓 2

A local minimum at 𝑋 = 0

Page 43: Supersymmetry and mechanisms of breaking it

Mass spectrum

π‘šπ‘‹2 =

4 𝑓 2𝑐

𝛬 2

Massless spinor field is the Goldstino.

Page 44: Supersymmetry and mechanisms of breaking it

Breaking R-symmetry

W = fX +1

2πœ–X2, X = βˆ’

𝑓

πœ– : supersymmetric vacuum

β€’ 𝑉 = 𝐾XX βˆ’1 𝑓 + πœ–X 2 = 1 +

4𝑐

𝛬 2 XX 2 + β‹― 𝑓 + πœ–X 2

= 𝑓 2 + πœ–π‘₯𝑓 + πœ– π‘₯ 𝑓 +4𝑐 𝑓 2

𝛬 2XX + β‹―

β†’ X π‘šπ‘’π‘‘π‘Ž = βˆ’πœ– 𝛬 2

4𝑐𝑓

Page 45: Supersymmetry and mechanisms of breaking it

πœ– β‰ͺ 1 β†’ π‘Ž π‘™π‘Žπ‘Ÿπ‘”π‘’ π‘‘π‘–π‘ π‘‘π‘Žπ‘›π‘π‘’ 𝑏𝑒𝑑𝑀𝑒𝑒𝑛 π‘‘π‘€π‘œ π‘šπ‘–π‘›π‘–π‘šπ‘Ž. The possibility of the Long lived metastable state.

Page 46: Supersymmetry and mechanisms of breaking it

Mass terms

β€’ π‘šπ‘‹2 =

4 𝑓 2𝑐

𝛬 2

Massless spinor field is the Goldstino.

Page 47: Supersymmetry and mechanisms of breaking it

Problems of SM SUSY

Superpartners not observed SUSY breaking

F-term SUSY breaking R-symmetry

Explicit R-symmetry breaking Metastable state

SUMMARY

Page 48: Supersymmetry and mechanisms of breaking it

References β€’ [1] P. Argyres, An Introduction to Global Supersymmetry, http://www.physics.uc.edu/

argyres/661/susy2001.pdf

β€’ [2] M.E.Peskin, D.V.Schroeder, An introduction to quantum field theory, Addison-Wesley)1995(

β€’ [3] F.Quevedo, Cambridge Lectures on Supersymmetry and Extra Dimensions , arXiv:1011.1491v1 [hep-th] 5 Nov 2010

β€’ [4] P.B.Pal, Dirac, Majorana and Weyl fermions, arXiv: 1006.1718v2 [hep-ph]

β€’ [5] M. E. Peskin, Duality in Supersymmetric Yang-Mills Theory, arXiv:hep-th/9702094v1

β€’ [6] A.Bilal, Introduction to supersymmetry, arXiv:hep-th/0101055 v1

β€’ [7] J. Lykken, Introduction to supersymmetry, arXiv:hep-th/9612114 v1

β€’ [8] D.Griffiths, Introduction to elementary particles.

β€’ [9] K.Intriligator and N. Seiberg,Lectures on supersymmetry Breaking arXiv:hep-ph/0702069v3

β€’ [10] J. Terning, Modern supersymmetry: Dynamics and duality )Oxford University Press, 2006(.

β€’ [11] A.Stergiou, New ways of supersymmetry breaking, (2007)

β€’ [12] D.Bailin, A.Love, Supersymmetric gauge field theory and string theory , lOP Publishing Ltd )1994(

β€’ [13] K. Intriligator, N. Seiberg and D. Shih, Supersymmetry Breaking, R-Symmetry Breaking and Metastable Vacua, arXiv:hep-th/0703281v1

β€’ [14] T. Morii, C. S. Lim, S. N. Mukherjee, The Physics of the Standard Model and Beyond, World Scientific Publishing Co. Pte. Ltd. )2004(


Recommended