Transcript
Page 1: Standard Form, Indices and Logarithm

1.0 Standard Form

State positive numbers in standard form

1. Standard form is a way of writing a number in the form A×10n, where 1≤ A<10 and the index n is an integer.

2. A number in standard form consists of two parts

A×10n

3. A positive value of n shows a big number (¿1 ) whereas a negative value of n shows a small number (¿1 ).

4. Another term for standard form is scientific notation.

Example 1

State each of the following numbers in standard form.

1. 74002. 23 810 000

Solution:

1. 7400=7.4×1000

¿7.4×103

2. 23 810 000

¿2.381×10 000 000

¿2.381×107

A number between 1 and 10 inclusive 1

A power of 10

Page 2: Standard Form, Indices and Logarithm

Example:

1. State each of the following numbers in standard form.I. 0.036

II. 0.00000452

Solution:

I. Move the decimal point of a given number to the right in order to produce a number A such that 1≤ A<10

II. The number of places that the decimal point has moved is the negative value of n

a. 0.036=3.6×10−2

b. 0.0 0 00 04 52

Note: move to the right , index n is negative

Perform operations of addition, subtraction, multiplication and division, involving any numbers and state the answers in standard form

Example:

Calculate the value of each of the following by stating its answer in standard form.

a. 3.1×105+4×104

b. 7×105−1.8×10−8

c. (2.4×103 )× (9×107 )

d.4.8×1012

6×10−5

Solution:

a. 3.1×105+4×104

¿3.1×105+4×10−1×105

¿3.1×105+0.4×105

¿ (3.1+0.4 )×105

¿3.5×105

104=10−1×105

4×10−4=0.4

Page 3: Standard Form, Indices and Logarithm

b. 7×105−1.8×10−8

¿7×10−6−1.8×10−2×10−6

¿7×10−6−0.018×10−6

¿ (7−0.018 )×10−6

¿6.982×10−6

c. (2.4×103 )× (9×107 )¿(2.4×9)×(103×107)¿21.6×1010

¿2.16×101×1010

¿2.16×1011

d.4.8×1012

6×10−5

¿ 4.86×

1012

10−5

¿0.8×1017

¿8×10−1×1017

¿8×1016

Page 4: Standard Form, Indices and Logarithm

2. Laws of Indices

a. Below are the basic laws of indices

Laws Statement

1. Multiplication am x an = a m + n

2. Division am¿ an = a m - n

3. Power i. ( a m ) n = a mn

ii. (ab)n = an b n

iii. ( ab )

n

=an

bn ; b 0

4. Negative Index

i. a –n =

1

an ; a 0

ii.

a−m

b−n=bn

am ; a 0 dan b 0

5. Nil Index a0 = 1 ; a 0

6. Fraction Indexamn=

n√am

Example 1

Find the values of the following

823×16

(−1 14 )÷32

25

Solution:

¿ (23 )23× (24 )

−54 ÷ ( 25 )

25

¿22×2−5÷22

¿22+(−5 )−2

¿2−5

Change the numbers to the same base

Use the laws of indices to simplify the multiplication and division

a−n= 1

an

Page 5: Standard Form, Indices and Logarithm

¿ 1

25= 1

32

B. Use laws of indices to simplify algebraic expressionsThe laws of indices can be used to simplify algebraic expressions.

Example 2

Simplify each of the following:

a. (b4 c−6d2 )12

b. 4n+1×2n÷1634n

c.75p+2

33−p×152 p+1×52

Solution:

a. (b4 c−6d2 )12=(b4 )

12× (c−6 )

12× (d2)

12

¿b2×c−3×d

¿ b2dc3

b. 4n+1×2n÷1634n

¿ (22 )n+1×2n÷ (24 )

34n

¿22n+2×2n÷ (24 )34n

¿22n+2+n−3n

¿22

¿4

c.75p+2

33−p×152 p+1×52

¿ 75p+2

33−p× (3×5 )2 p+1×52

¿ 3p+2×52 (p+2)

33−p×32 p+1×52 p+1×52

¿3p+2−(3− p )−( 2p+1)×52 (p+2)−(2 p+1)−2

¿3−2×51

¿ 59

Use 2 as the same base throughout

Add and subtract the indices using the laws of indices

Page 6: Standard Form, Indices and Logarithm

3 LOGARITHMS AND LAWS OF LOGARITHMS

A. Change equations in index forms to logarithm forms and vice versa1. In the equation ¿ax , the number x is called an index.2. This equation can be written as

N=ax

log aN=x

Then, x is the logarithm of N to the base a

3. In general ,N=ax log aN=x ,

Where a>0 , a≠1

A. Find logarithms of numbers1. A logarithm to the base 10 is called a common logarithm and is written as

log 10. In calculator, it is normally marked as log.2. A scientific calculator can be used to find the logarithm or antilogarithm of

a number.

B. Laws of logarithm

Let M and N is the real positive numbers

1. log a MN = log a M + log a N2. log a M/ N = log a M – log a N

3. log a (M) c = c log a M4. log aa = 15. log a a0 = 0 log aa = 0

6. log N M =

log aM

log aN ( Penukaran daripada asas N kepada asas a)

Page 7: Standard Form, Indices and Logarithm

Example 2

Express the following expressions using the laws of logarithms.

a. log a x 2 y 3 b. log a 3 b 3/2

c. lg

1

100b2c.

lg √( ab3

c)

Solution:

Using the laws of logarithms,a. log a x 2 y 3 = log a x2 + log a y 3

= 2 log a x + 3 log a y b. log a 3 b 3/2 = log a 3 + log b 3/2

= 3 log a + 3/2 log b

c. log

1

100b2 = log 1 – ( log 100 + log b2 )

= 0 – log 100 – 2 log b = - ( log 100 + 2 log b )

d. log √( ab

3

c)=

log( ab3c )1/2

= ½ ( log ab3 – log c )= ½ log ab3 – ½ log c )= ½ log a + ½ log b3 – ½ log c= ½ log a + 3/2 log b – ½ log c

Example 4:

Given that log 10 2 = 0.3010 dan log 10 3 = 0.4771 , find the value of

a. log 10 8 b. log 10 18 c. log 10 0.6

Solution:

a. log 10 8 = log 10 2 3 = 3 log 10 2 = 3 ( 0.3010 )

= 0. 9010b. log 10 18 = log 10 (2 x 9 ) = log 10 2 + log 10 9

Let M and N is the real positive numbers

1. log a MN = log a M + log a N2. log a M/ N = log a M – log a N

3. log a (M) c = c log a M4. log aa = 15. log a a0 = 0 log aa = 0

6. log N M =

log aM

log aN ( Penukaran daripada asas N kepada asas a)

Laws of addition

Page 8: Standard Form, Indices and Logarithm

= log 10 2 + log103 2

= log 10 2 + 2 log 103 = 0.3010 + 2 ( 0.4771)

= 1.2552

c. log 10 0.6 = log 10 (

610 ) = log 10 6 – log 10 10

= log 10 ( 2 x 3 ) – 1 = log 10 2 + log 10 3 – 1 = 0.3010 + 0.4771 – 1 = - 0 . 2219

C. Equations involving indices and logarithms

Let x and y are the real positive numbers.

If ax = ay then x = y If log a x = log a y , then x = y

Example 5

Solve the following equations: a. 7x = 12 b. 3 5x – 8 = 9 x + 2

Solution:

a. 7x = 12Take the log for the both side of equation:

x log 7 = log 12

x=log12log7

=1. 0790 .845

=1 .277

b. 3 5x – 8 = 9 x + 2

3 5x – 8 = (3 2 ) x + 2

3 5x – 8 = 3 2x + 4

5x – 8 = 2x + 45x – 2x = 4 + 83x = 12 x = 4

Same base

( am )n = amn

If ax = ay then x = y

Page 9: Standard Form, Indices and Logarithm

Example 6:

Solve the following equations for the x: a. log 2 ( 7 + x ) = 3 b. log 50 + log x = 2 + log ( x – 1 ) c. log 2 x = log x 16 = 0

Solution:

a. log 2 (7 + x ) = 3( 7 + x ) = 2 3

7 + x = 8 x = 1

b. log 50 + log x = 2 + log ( x – 1 )log 50x = log 100 + log (x – 1 )log 50x = log 100(x – 1 ) 50x = 100x – 100 100 = 50 x x = 2

Tukar bentuk log kepada bentuk indeks

log = log asas 10

log a + log b = log ab


Recommended