Transcript
Page 1: Scalable Algorithms for Optimal Control of Systems ... workshop/UQAW2016-Talks... · Scalable Algorithms for Optimal Control of Systems Governed by PDEs Under Uncertainty Alen Alexanderian1,

Scalable Algorithms for Optimal Control ofSystems Governed by PDEs Under Uncertainty

Alen Alexanderian1, Omar Ghattas2, Noemi Petra3, Georg Stadler4

1Department of MathematicsNorth Carolina State University

2Institute for Computational Engineering and SciencesThe University of Texas at Austin

3School of Natural SciencesUniversity of California, Merced

3Courant Institute of Mathematical SciencesNew York University

Advances in Uncertainty Quantification Methods, Algorithms and ApplicationsAnnual Meeting of KAUST SRI-UQ Center

King Abdullah University of Science and Technology, Saudi ArabiaJanuary 5–10, 2016

Page 2: Scalable Algorithms for Optimal Control of Systems ... workshop/UQAW2016-Talks... · Scalable Algorithms for Optimal Control of Systems Governed by PDEs Under Uncertainty Alen Alexanderian1,

From data to decisions under uncertainty

Uncertain parameter m

Bayesian inversionπpost(m|y)∝ πlike(y|m)π0(m)

Experimental data y

Mathematical Model

A(m,u) = f

Design of experiments

minξ

∫Ψ[πpost(m|y; ξ)

]π(y)dy

ξ : experimental designΨ: design objective/criterion

Quantity of Interest (QoI)q(m)

Optimal control/designunder uncertainty

e.g. minz

∫q(z,m)µ(dm)

Omar Ghattas (ICES, UT Austin) Optimal control under uncertainty UQAW 2016 2 / 23

Page 3: Scalable Algorithms for Optimal Control of Systems ... workshop/UQAW2016-Talks... · Scalable Algorithms for Optimal Control of Systems Governed by PDEs Under Uncertainty Alen Alexanderian1,

From data to decisions under uncertainty

Uncertain parameter m

Bayesian inversionπpost(m|y)∝ πlike(y|m)π0(m)

Experimental data y

Mathematical Model

A(m,u) = f

Design of experiments

minξ

∫Ψ[πpost(m|y; ξ)

]π(y)dy

ξ : experimental designΨ: design objective/criterion

Quantity of Interest (QoI)q(m)

Optimal control/designunder uncertainty

e.g. minz

∫q(z,m)µ(dm)

posterior

prior

πlike(y|m)=πnoise(Bu− y)

Omar Ghattas (ICES, UT Austin) Optimal control under uncertainty UQAW 2016 2 / 23

Page 4: Scalable Algorithms for Optimal Control of Systems ... workshop/UQAW2016-Talks... · Scalable Algorithms for Optimal Control of Systems Governed by PDEs Under Uncertainty Alen Alexanderian1,

From data to decisions under uncertainty

Uncertain parameter m

Bayesian inversionπpost(m|y)∝ πlike(y|m)π0(m)

Experimental data y

Mathematical Model

A(m,u) = f

Design of experiments

minξ

∫Ψ[πpost(m|y; ξ)

]π(y)dy

ξ : experimental designΨ: design objective/criterion

Quantity of Interest (QoI)q(m)

Optimal control/designunder uncertainty

e.g. minz

∫q(z,m)µ(dm)

posterior

prior

experiments

πlike(y|m)=πnoise(Bu− y)

Omar Ghattas (ICES, UT Austin) Optimal control under uncertainty UQAW 2016 2 / 23

Page 5: Scalable Algorithms for Optimal Control of Systems ... workshop/UQAW2016-Talks... · Scalable Algorithms for Optimal Control of Systems Governed by PDEs Under Uncertainty Alen Alexanderian1,

From data to decisions under uncertainty

Uncertain parameter m

Bayesian inversionπpost(m|y)∝ πlike(y|m)π0(m)

Experimental data y

Mathematical Model

A(m,u) = f(·; z)z := control function

Design of experiments

minξ

∫Ψ[πpost(m|y; ξ)

]π(y)dy

ξ : experimental designΨ: design objective/criterion

Quantity of Interest (QoI)q(z,m)

Optimal control/designunder uncertainty

e.g. minz

∫q(z,m)µ(dm)

posterior

prior

experiments

πlike(y|m)=πnoise(Bu− y)

Omar Ghattas (ICES, UT Austin) Optimal control under uncertainty UQAW 2016 2 / 23

Page 6: Scalable Algorithms for Optimal Control of Systems ... workshop/UQAW2016-Talks... · Scalable Algorithms for Optimal Control of Systems Governed by PDEs Under Uncertainty Alen Alexanderian1,

Example: Groundwater contaminant remediation

Source: Reed Maxwell, CSM

Omar Ghattas (ICES, UT Austin) Optimal control under uncertainty UQAW 2016 3 / 23

Page 7: Scalable Algorithms for Optimal Control of Systems ... workshop/UQAW2016-Talks... · Scalable Algorithms for Optimal Control of Systems Governed by PDEs Under Uncertainty Alen Alexanderian1,

Example: Groundwater contaminant remediation

Inverse problem

Infer (uncertain) soil permeability from (uncertain) measurements of pressurehead at wells and from a (uncertain) model of subsurface flow and transport

Prediction (or forward) problem

Predict (uncertain) evolution of contaminant concentration at municipal wellsfrom (uncertain) permeability and (uncertain) subsurface flow/transport model

Optimal experimental design problem

Where should new observation wells be placed so that permeability is inferredwith the least uncertainty?

Optimal design problem

Where should new remediation wells be placed so that (uncertain)contaminant concentrations at municipal wells are minimized?

Optimal control problem

What should the rates of extraction/injection at remediation wells be so that(uncertain) contaminant concentrations at municipal wells are minimized?

Omar Ghattas (ICES, UT Austin) Optimal control under uncertainty UQAW 2016 4 / 23

Page 8: Scalable Algorithms for Optimal Control of Systems ... workshop/UQAW2016-Talks... · Scalable Algorithms for Optimal Control of Systems Governed by PDEs Under Uncertainty Alen Alexanderian1,

Optimal control of systems governed by PDEs withuncertain parameter fields

PDE-constrained control objective

q = q(u(z,m))

where

A(u,m) = f(z)

q: control objective

A: forward operator

m: uncertain parameter field

z: control function

Control of injection wells in porousmedium flow (SPE10 permeability data)

Problem: given the uncertainty model for m, find z that “optimizes” q(u(z,m))

Omar Ghattas (ICES, UT Austin) Optimal control under uncertainty UQAW 2016 5 / 23

Page 9: Scalable Algorithms for Optimal Control of Systems ... workshop/UQAW2016-Talks... · Scalable Algorithms for Optimal Control of Systems Governed by PDEs Under Uncertainty Alen Alexanderian1,

Optimization under uncertainty (OUU)

H : parameter space, infinite-dimensional separable Hilbert space

q(z,m): control objective functional

m ∈H : uncertain model parameter field, z: control function

Optimization under uncertainty (OUU):

minz

Em{

q(z,m)

}+ β varm{q(z,m)}

Em{q(z,m)} =

∫H

q(z,m)µ(dm)

varm{q(z,m)} = Em{q(z,m)2} − Em{q(z,m)}2

Main challenges:

Integration over infinite/high-dimensional parameter spaceEvaluation of q requires PDE solves

Standard Monte Carlo approach (Sample Average Approximation) isprohibitive

Numerous (nmc) samples required, each requires PDE solveResulting PDE-constrained optimization problem has nmc PDE constraints

Omar Ghattas (ICES, UT Austin) Optimal control under uncertainty UQAW 2016 6 / 23

Page 10: Scalable Algorithms for Optimal Control of Systems ... workshop/UQAW2016-Talks... · Scalable Algorithms for Optimal Control of Systems Governed by PDEs Under Uncertainty Alen Alexanderian1,

Optimization under uncertainty (OUU)

H : parameter space, infinite-dimensional separable Hilbert space

q(z,m): control objective functional

m ∈H : uncertain model parameter field, z: control function

Risk-neutral optimization under uncertainty (OUU):

minz

Em{q(z,m)}

+ β varm{q(z,m)}

Em{q(z,m)} =

∫H

q(z,m)µ(dm)

varm{q(z,m)} = Em{q(z,m)2} − Em{q(z,m)}2

Main challenges:

Integration over infinite/high-dimensional parameter spaceEvaluation of q requires PDE solves

Standard Monte Carlo approach (Sample Average Approximation) isprohibitive

Numerous (nmc) samples required, each requires PDE solveResulting PDE-constrained optimization problem has nmc PDE constraints

Omar Ghattas (ICES, UT Austin) Optimal control under uncertainty UQAW 2016 6 / 23

Page 11: Scalable Algorithms for Optimal Control of Systems ... workshop/UQAW2016-Talks... · Scalable Algorithms for Optimal Control of Systems Governed by PDEs Under Uncertainty Alen Alexanderian1,

Optimization under uncertainty (OUU)

H : parameter space, infinite-dimensional separable Hilbert space

q(z,m): control objective functional

m ∈H : uncertain model parameter field, z: control function

Risk-averse optimization under uncertainty (OUU):

minz

Em{q(z,m)}+ β varm{q(z,m)}

Em{q(z,m)} =

∫H

q(z,m)µ(dm)

varm{q(z,m)} = Em{q(z,m)2} − Em{q(z,m)}2

Main challenges:

Integration over infinite/high-dimensional parameter spaceEvaluation of q requires PDE solves

Standard Monte Carlo approach (Sample Average Approximation) isprohibitive

Numerous (nmc) samples required, each requires PDE solveResulting PDE-constrained optimization problem has nmc PDE constraints

Omar Ghattas (ICES, UT Austin) Optimal control under uncertainty UQAW 2016 6 / 23

Page 12: Scalable Algorithms for Optimal Control of Systems ... workshop/UQAW2016-Talks... · Scalable Algorithms for Optimal Control of Systems Governed by PDEs Under Uncertainty Alen Alexanderian1,

Optimization under uncertainty (OUU)

H : parameter space, infinite-dimensional separable Hilbert space

q(z,m): control objective functional

m ∈H : uncertain model parameter field, z: control function

Risk-averse optimization under uncertainty (OUU):

minz

Em{q(z,m)}+ β varm{q(z,m)}

Em{q(z,m)} =

∫H

q(z,m)µ(dm)

varm{q(z,m)} = Em{q(z,m)2} − Em{q(z,m)}2

Main challenges:

Integration over infinite/high-dimensional parameter spaceEvaluation of q requires PDE solves

Standard Monte Carlo approach (Sample Average Approximation) isprohibitive

Numerous (nmc) samples required, each requires PDE solveResulting PDE-constrained optimization problem has nmc PDE constraints

Omar Ghattas (ICES, UT Austin) Optimal control under uncertainty UQAW 2016 6 / 23

Page 13: Scalable Algorithms for Optimal Control of Systems ... workshop/UQAW2016-Talks... · Scalable Algorithms for Optimal Control of Systems Governed by PDEs Under Uncertainty Alen Alexanderian1,

Some existing approaches for PDE-constrained OUU

Methods based on stochastic collocation, sparse/adaptive sampling, POD, ...Schulz & Schillings, Problem formulations and treatment of uncertainties in aerodynamic design, AIAAJ, 2009.Borzı & von Winckel, Multigrid methods and sparse-grid collocation techniques for parabolic optimalcontrol problems with random coefficients, SISC, 2009.Borzı, Schillings, & von Winckel, On the treatment of distributed uncertainties in PDE-constrainedoptimization, GAMM-Mitt. 2010.Borzı & von Winckel, A POD framework to determine robust controls in PDE optimization, Computingand Visualization in Science, 2011.Gunzburger & Ming, Optimal control of stochastic flow over a backward-facing step using reduced-ordermodeling, SISC 2011.Gunzburger, Lee, & Lee, Error estimates of stochastic optimal Neumann boundary control problems,SINUM, 2011.Kunoth & Schwab, Analytic Regularity and GPC Approximation for Control Problems Constrained byLinear Parametric Elliptic and Parabolic PDEs, SICON, 2013.Tiesler, Kirby, Xiu, & Preusser, Stochastic collocation for optimal control problems with stochastic PDEconstraints, SICON, 2012.Kouri, Heinkenschloss, Ridzal, & Van Bloemen Waanders, A trust-region algorithm with adaptivestochastic collocation for PDE optimization under uncertainty, SISC, 2013.Chen, Quarteroni, & Rozza, Stochastic optimal Robin boundary control problems ofadvection-dominated elliptic equations, SINUM, 2013.Kouri, A multilevel stochastic collocation algorithm for optimization of PDEs with uncertain coefficients,JUQ, 2014.Chen & Quarteroni, Weighted reduced basis method for stochastic optimal control problems with ellipticPDE constraint, JUQ, 2014.Chen, Quarteroni, & Rozza, Multilevel and weighted reduced basis method for stochastic optimalcontrol problems constrained by Stokes equations, Num. Math. 2015.

Omar Ghattas (ICES, UT Austin) Optimal control under uncertainty UQAW 2016 7 / 23

Page 14: Scalable Algorithms for Optimal Control of Systems ... workshop/UQAW2016-Talks... · Scalable Algorithms for Optimal Control of Systems Governed by PDEs Under Uncertainty Alen Alexanderian1,

Control of injection wells in a porous medium flow

1

2

3

4

m = mean of log permeability field q = target pressure at production wells

state PDE: single phase flow in a porous medium

−∇ · (em∇u) =

nc∑i=1

zifi(x)

with Dirchlet lateral & Neumann top/bottom BCs

uncertain parameter: log permeability field m:

control variables: zi, mass source at injection wells; fi, mollified Dirac deltas

control objective: q(z,m) := 12‖Qu(z,m)− q‖2, q: target pressure

dimensions: ns = nm = 3242, nc = 20, nq = 12

Omar Ghattas (ICES, UT Austin) Optimal control under uncertainty UQAW 2016 8 / 23

Page 15: Scalable Algorithms for Optimal Control of Systems ... workshop/UQAW2016-Talks... · Scalable Algorithms for Optimal Control of Systems Governed by PDEs Under Uncertainty Alen Alexanderian1,

Porous medium with random permeability field

Distribution law of m:

µ = N (m, C) (Gaussian measure on Hilbert space H )

Take covariance operator as square of inverse of Poisson-like operator:

C = (−κ∆ + αI)−2 κ, α > 0

C is positive, self-adjoint, of trace-class; µ well-defined on H (Stuart ’10)κα ∝ correlation length; the larger α, the smaller the variance

Random draws for κ = 2× 10−2, α = 4

Omar Ghattas (ICES, UT Austin) Optimal control under uncertainty UQAW 2016 9 / 23

Page 16: Scalable Algorithms for Optimal Control of Systems ... workshop/UQAW2016-Talks... · Scalable Algorithms for Optimal Control of Systems Governed by PDEs Under Uncertainty Alen Alexanderian1,

OUU with linearized parameter-to-objective map

Risk-averse optimal control problem (including cost of controls)

minz

Em{q(z,m)}+ β varm{q(z,m)}+ γ ‖z‖2

Linear approximation to parameter-to-objective map

qlin(z,m) = q(z, m) + 〈gm(z, m),m− m〉

gm(z, ·) :=dq(z, ·)dm

is the gradient with respect to m

The moments of the linearized objective:

Em{qlin(z, ·)} = q(z, m),

varm{qlin(z, ·)} = 〈gm(z, m), C[gm(z, m)]〉

qlin(z, ·) ∼ N(q(z, m), 〈gm(z, m), C[gm(z, m)]〉

)Omar Ghattas (ICES, UT Austin) Optimal control under uncertainty UQAW 2016 10 / 23

Page 17: Scalable Algorithms for Optimal Control of Systems ... workshop/UQAW2016-Talks... · Scalable Algorithms for Optimal Control of Systems Governed by PDEs Under Uncertainty Alen Alexanderian1,

Risk-averse optimal control problem with linearizedparameter-to-objective map

State-and-adjoint-PDE constrained optimization problem (quartic in z):

minz∈ZJ (z) :=

1

2‖Qu− q‖2 +

β

2〈gm(m), C[gm(m)]〉+

γ

2‖z‖2

with gm(m) =em∇u · ∇p, where

−∇ · (em∇u) =

nc∑i=1

zifi state equation

−∇ · (em∇p) = −Q∗(Qu− q) adjoint equation

Lagrangian of the risk-averse optimal control problem with qlin:

L (z, u, p, u?, p?) =1

2‖Qu− q‖2 +

β

2

⟨em∇u · ∇p, C[em∇u · ∇p]

⟩+γ

2‖z‖2

+⟨em∇u,∇u?⟩− nc∑

i=1

zi〈fi, u?〉

+⟨em∇p,∇p?

⟩+ 〈Q∗(Qu− q), p?〉

Omar Ghattas (ICES, UT Austin) Optimal control under uncertainty UQAW 2016 11 / 23

Page 18: Scalable Algorithms for Optimal Control of Systems ... workshop/UQAW2016-Talks... · Scalable Algorithms for Optimal Control of Systems Governed by PDEs Under Uncertainty Alen Alexanderian1,

Gradient computation for risk averse optimal control

“State problem” for risk-averse optimal control problem with qlin:

⟨em∇u,∇u

⟩=

nc∑i=1

zi〈fi, u〉⟨em∇p,∇p

⟩= −〈Q∗(Qu− q), p〉

for all test functions p and u

“Adjoint problem” for risk-averse optimal control problem with qlin:

⟨em∇p?,∇p

⟩= −β

⟨em∇u · ∇p, C[em∇u · ∇p]

⟩⟨em∇u?,∇u

⟩= −〈Q∗(Qu− q), u〉 − β

⟨em∇u · ∇p, C[em∇u · ∇p]

⟩− 〈Q∗Qp?, u〉

for all test functions p and u

Gradient:∂J∂zj

= γzj − 〈fj , u?〉, j = 1, . . . , nc

Cost of objective = 2 PDE solves; cost of gradient = 2 PDE solves

Omar Ghattas (ICES, UT Austin) Optimal control under uncertainty UQAW 2016 12 / 23

Page 19: Scalable Algorithms for Optimal Control of Systems ... workshop/UQAW2016-Talks... · Scalable Algorithms for Optimal Control of Systems Governed by PDEs Under Uncertainty Alen Alexanderian1,

Risk-averse optimal control with linearized objective

−20 0 20 40 60 80 100 120 1400

0.01

0.02

0.03

0.04

dis

trib

uti

on

Θ(z0, ·)Θlin(z0, ·)Θquad(z0, ·)

initial (suboptimal) control z0 distrib. of exact & approx objectives at z0

0 2 4 6 8 10 12 14 160

1

2

3

4

5

dis

trib

uti

on

Θ(zoptlin , ·)

Θlin(zoptlin , ·)

Θquad(zoptlin , ·)

optimal control zoptlin based on qlin distrib. of exact & approx objectives at zopt

lin

Omar Ghattas (ICES, UT Austin) Optimal control under uncertainty UQAW 2016 13 / 23

Page 20: Scalable Algorithms for Optimal Control of Systems ... workshop/UQAW2016-Talks... · Scalable Algorithms for Optimal Control of Systems Governed by PDEs Under Uncertainty Alen Alexanderian1,

Risk-averse optimal control with linearized objective

−20 0 20 40 60 80 100 120 1400

0.01

0.02

0.03

0.04

dis

trib

uti

on

Θ(z0, ·)Θlin(z0, ·)Θquad(z0, ·)

initial (suboptimal) control z0 distrib. of exact & approx objectives at z0

0 2 4 6 8 10 12 14 160

1

2

3

4

5

dis

trib

uti

on

Θ(zoptlin , ·)

Θlin(zoptlin , ·)

Θquad(zoptlin , ·)

optimal control zoptlin based on qlin distrib. of exact & approx objectives at zopt

lin

Omar Ghattas (ICES, UT Austin) Optimal control under uncertainty UQAW 2016 13 / 23

Page 21: Scalable Algorithms for Optimal Control of Systems ... workshop/UQAW2016-Talks... · Scalable Algorithms for Optimal Control of Systems Governed by PDEs Under Uncertainty Alen Alexanderian1,

Quadratic approximation to parameter-to-objective map

Quadratic approximation to the parameter-to-control-objective map:

qquad(z,m) = q(z, m) + 〈gm(z, m),m− m〉+1

2〈Hm(z, m)(m− m),m− m〉

gm: gradient of parameter-to-objective map

Hm: Hessian of parameter-to-objective map

Observations:

Quadratic approximation does not lead to a Gaussian control objective

However, can derive analytic formulas for the moments of qquad in theinfinite-dimensional Hilbert space setting

Omar Ghattas (ICES, UT Austin) Optimal control under uncertainty UQAW 2016 14 / 23

Page 22: Scalable Algorithms for Optimal Control of Systems ... workshop/UQAW2016-Talks... · Scalable Algorithms for Optimal Control of Systems Governed by PDEs Under Uncertainty Alen Alexanderian1,

Analytic expressions for mean and variance with qquad

Mean:

Em{qquad(z, ·)} = q(z, m)+1

2tr[Hm(z, m)

]Variance:

varm{qquad(z, ·)} = 〈gm(z, m), C[gm(z, m)]〉+1

2tr[Hm(z, m)2

]where Hm = C1/2HmC1/2 is the covariance-preconditioned Hessian

Risk averse optimal control objective with qquad:

J(z) = q(z, m) +1

2tr[Hm(z, m)

]+β

2

{〈gm(z, m), C[gm(z, m)]〉+

1

2tr[Hm(z, m)2

]}

Omar Ghattas (ICES, UT Austin) Optimal control under uncertainty UQAW 2016 15 / 23

Page 23: Scalable Algorithms for Optimal Control of Systems ... workshop/UQAW2016-Talks... · Scalable Algorithms for Optimal Control of Systems Governed by PDEs Under Uncertainty Alen Alexanderian1,

Randomized trace estimator

Randomized trace estimation:

tr(Hm) ≈ 1

ntr

ntr∑j=1

⟨Hmξj , ξj

⟩=

1

ntr

ntr∑j=1

〈Hmζj , ζj〉

tr(H2m) ≈ 1

ntr

ntr∑j=1

〈Hmζj , C[Hmζj ]〉

where ζj = C1/2ξj

In computations, we use draws ζj ∼ N (0, C) =: ν

Straightforward to show:∫H

〈Hmζ, ζ〉 ν(dζ) = tr(Hm),

∫H

〈Hmζ, C[Hmζ]〉 ν(dζ) = tr(H2m)

Omar Ghattas (ICES, UT Austin) Optimal control under uncertainty UQAW 2016 16 / 23

Page 24: Scalable Algorithms for Optimal Control of Systems ... workshop/UQAW2016-Talks... · Scalable Algorithms for Optimal Control of Systems Governed by PDEs Under Uncertainty Alen Alexanderian1,

Risk-averse optimal control with quadraticized objective

minz∈Z

1

2‖Qu− q‖22+

1

2ntr

ntr∑j=1

〈ζj , ηj〉+β

2

{〈gm(m), C[gm(m)]〉+ 1

2ntr

ntr∑j=1

∥∥C1/2ηj∥∥2}

with

gm(m) =em∇u · ∇pηj = em(ζj∇u · ∇p+∇υj · ∇p+∇u · ∇ρj)︸ ︷︷ ︸

Hmζj

j ∈ {1, . . . , ntr}

where

−∇ · (em∇u) =∑Ni=1 zifi

−∇ · (em∇p) = −Q∗(Qu− q)−∇ · (em∇υj) = ∇ · (ζjem∇u)

−∇ · (em∇ρj) = −Q∗Qυj +∇ · (ζjem∇p)

Omar Ghattas (ICES, UT Austin) Optimal control under uncertainty UQAW 2016 17 / 23

Page 25: Scalable Algorithms for Optimal Control of Systems ... workshop/UQAW2016-Talks... · Scalable Algorithms for Optimal Control of Systems Governed by PDEs Under Uncertainty Alen Alexanderian1,

Risk-averse optimal control with quadraticized objective

minz∈Z

1

2‖Qu− q‖22+

1

2ntr

ntr∑j=1

〈ζj , ηj〉+β

2

{〈gm(m), C[gm(m)]〉+ 1

2ntr

ntr∑j=1

∥∥C1/2ηj∥∥2}

with

gm(m) =em∇u · ∇pηj = em(ζj∇u · ∇p+∇υj · ∇p+∇u · ∇ρj)︸ ︷︷ ︸

Hmζj

j ∈ {1, . . . , ntr}

where

−∇ · (em∇u) =∑Ni=1 zifi

−∇ · (em∇p) = −Q∗(Qu− q)−∇ · (em∇υj) = ∇ · (ζjem∇u)

−∇ · (em∇ρj) = −Q∗Qυj +∇ · (ζjem∇p)

Omar Ghattas (ICES, UT Austin) Optimal control under uncertainty UQAW 2016 17 / 23

Page 26: Scalable Algorithms for Optimal Control of Systems ... workshop/UQAW2016-Talks... · Scalable Algorithms for Optimal Control of Systems Governed by PDEs Under Uncertainty Alen Alexanderian1,

Risk-averse optimal control with quadraticized objective

minz∈Z

1

2‖Qu− q‖22+

1

2ntr

ntr∑j=1

〈ζj , ηj〉+β

2

{〈gm(m), C[gm(m)]〉+ 1

2ntr

ntr∑j=1

∥∥C1/2ηj∥∥2}

with

gm(m) =em∇u · ∇pηj = em(ζj∇u · ∇p+∇υj · ∇p+∇u · ∇ρj)︸ ︷︷ ︸

Hmζj

j ∈ {1, . . . , ntr}

where

−∇ · (em∇u) =∑Ni=1 zifi

−∇ · (em∇p) = −Q∗(Qu− q)−∇ · (em∇υj) = ∇ · (ζjem∇u)

−∇ · (em∇ρj) = −Q∗Qυj +∇ · (ζjem∇p)

Omar Ghattas (ICES, UT Austin) Optimal control under uncertainty UQAW 2016 17 / 23

Page 27: Scalable Algorithms for Optimal Control of Systems ... workshop/UQAW2016-Talks... · Scalable Algorithms for Optimal Control of Systems Governed by PDEs Under Uncertainty Alen Alexanderian1,

Risk-averse optimal control with quadraticized objective

minz∈Z

1

2‖Qu− q‖22+

1

2ntr

ntr∑j=1

〈ζj , ηj〉+β

2

{〈gm(m), C[gm(m)]〉+ 1

2ntr

ntr∑j=1

∥∥C1/2ηj∥∥2}

with

gm(m) =em∇u · ∇pηj = em(ζj∇u · ∇p+∇υj · ∇p+∇u · ∇ρj)︸ ︷︷ ︸

Hmζj

j ∈ {1, . . . , ntr}

where

−∇ · (em∇u) =∑Ni=1 zifi

−∇ · (em∇p) = −Q∗(Qu− q)−∇ · (em∇υj) = ∇ · (ζjem∇u)

−∇ · (em∇ρj) = −Q∗Qυj +∇ · (ζjem∇p)

Omar Ghattas (ICES, UT Austin) Optimal control under uncertainty UQAW 2016 17 / 23

Page 28: Scalable Algorithms for Optimal Control of Systems ... workshop/UQAW2016-Talks... · Scalable Algorithms for Optimal Control of Systems Governed by PDEs Under Uncertainty Alen Alexanderian1,

Risk-averse optimal control with quadraticized objective

minz∈Z

1

2‖Qu− q‖22+

1

2ntr

ntr∑j=1

〈ζj , ηj〉+β

2

{〈gm(m), C[gm(m)]〉+ 1

2ntr

ntr∑j=1

∥∥C1/2ηj∥∥2}

with

gm(m) =em∇u · ∇pηj = em(ζj∇u · ∇p+∇υj · ∇p+∇u · ∇ρj)︸ ︷︷ ︸

Hmζj

j ∈ {1, . . . , ntr}

where

−∇ · (em∇u) =∑Ni=1 zifi

−∇ · (em∇p) = −Q∗(Qu− q)−∇ · (em∇υj) = ∇ · (ζjem∇u)

−∇ · (em∇ρj) = −Q∗Qυj +∇ · (ζjem∇p)

Omar Ghattas (ICES, UT Austin) Optimal control under uncertainty UQAW 2016 17 / 23

Page 29: Scalable Algorithms for Optimal Control of Systems ... workshop/UQAW2016-Talks... · Scalable Algorithms for Optimal Control of Systems Governed by PDEs Under Uncertainty Alen Alexanderian1,

Lagrangian for risk-averse optimal control with qquad

L (z, u, p,{υj}ntrj=1, {ρj}ntr

j=1, u?, p?, {υ?

j}ntrj=1, {ρ

?j}ntr

j=1)

=1

2‖Qu− q‖22

+1

2ntr

ntr∑j=1

⟨ζj ,[em(ζj∇u · ∇p+∇υj · ∇p+∇u · ∇ρj)

]⟩+β

2

⟨em∇u · ∇p, C[em∇u · ∇p]

⟩+

β

4ntr

ntr∑j=1

∥∥∥C1/2 [em(ζj∇u · ∇p+∇υj · ∇p+∇u · ∇ρj)]∥∥∥2

+⟨em∇u,∇u?⟩−∑N

i=1 zi〈fi, u?〉

+⟨em∇p,∇p?

⟩+ 〈Q∗(Qu− q), p?〉

+

ntr∑j=1

[⟨em∇υj ,∇υ?

j

⟩+⟨ζje

m∇u,∇υ?j

⟩]+

ntr∑j=1

[⟨em∇ρj ,∇ρ?

j

⟩+⟨Q∗Qυj , ρ

?j

⟩+⟨ζje

m∇p,∇ρ?j

⟩]Omar Ghattas (ICES, UT Austin) Optimal control under uncertainty UQAW 2016 18 / 23

Page 30: Scalable Algorithms for Optimal Control of Systems ... workshop/UQAW2016-Talks... · Scalable Algorithms for Optimal Control of Systems Governed by PDEs Under Uncertainty Alen Alexanderian1,

Adjoint & gradient for risk-averse optimal control w/qquad

Adjoint problem for qquad approximation

−∇ · (em∇ρ?j ) = b(j)1 j ∈ {1, . . . , ntr}

− ∇ · (em∇υ?j ) +Q∗Qρ?j = b(j)2 j ∈ {1, . . . , ntr}

− ∇ · (em∇p?)−ntr∑j=1

∇ · (ζjem∇ρ?j ) = b3

−∇ · (em∇u?) +Q∗Qp? −ntr∑j=1

∇ · (ζjem∇υ?j ) = b4

Gradient for qquad approximation

∂L

∂zj= γzj − 〈fj , u?〉, j = 1, . . . , nc

Cost of objective = 2 + 2ntr PDE solves; cost of gradient = 2 + 2ntr PDE solves

Omar Ghattas (ICES, UT Austin) Optimal control under uncertainty UQAW 2016 19 / 23

Page 31: Scalable Algorithms for Optimal Control of Systems ... workshop/UQAW2016-Talks... · Scalable Algorithms for Optimal Control of Systems Governed by PDEs Under Uncertainty Alen Alexanderian1,

Risk-averse optimal control with quadraticized objective

−20 0 20 40 60 80 100 120 1400

0.01

0.02

0.03

0.04

dis

trib

uti

on

Θ(z0, ·)Θlin(z0, ·)Θquad(z0, ·)

initial (suboptimal) control z0 distrib. of exact & approx objectives at z0

0 2 4 6 8 10 12 14 160

0.2

0.4

0.6

dis

trib

uti

on

Θ(zoptquad, ·)

Θquad(zoptquad, ·)

optimal control zoptquad based on qquad distrib. of exact & approx objectives at zopt

quad

Omar Ghattas (ICES, UT Austin) Optimal control under uncertainty UQAW 2016 20 / 23

Page 32: Scalable Algorithms for Optimal Control of Systems ... workshop/UQAW2016-Talks... · Scalable Algorithms for Optimal Control of Systems Governed by PDEs Under Uncertainty Alen Alexanderian1,

Risk-averse optimal control with quadraticized objective

−20 0 20 40 60 80 100 120 1400

0.01

0.02

0.03

0.04

dis

trib

uti

on

Θ(z0, ·)Θlin(z0, ·)Θquad(z0, ·)

initial (suboptimal) control z0 distrib. of exact & approx objectives at z0

0 2 4 6 8 10 12 14 160

0.2

0.4

0.6

dis

trib

uti

on

Θ(zoptquad, ·)

Θquad(zoptquad, ·)

optimal control zoptquad based on qquad distrib. of exact & approx objectives at zopt

quad

Omar Ghattas (ICES, UT Austin) Optimal control under uncertainty UQAW 2016 20 / 23

Page 33: Scalable Algorithms for Optimal Control of Systems ... workshop/UQAW2016-Talks... · Scalable Algorithms for Optimal Control of Systems Governed by PDEs Under Uncertainty Alen Alexanderian1,

Effect of number of trace estimator vectors on distributionof control objective evaluated at optimal controls

0 1 2 3 4 5 6 7 80

0.2

0.4

value of control objective

distribution

ntr = 5ntr = 20ntr = 40ntr = 60

Optimal controls zoptquad computed for each value of trace estimator using quadratic

approximation of control objective, qquad

Each curve based on 10,000 samples of distribution of q(zoptquad,m)

(control objective evaluated at optimal control)

Omar Ghattas (ICES, UT Austin) Optimal control under uncertainty UQAW 2016 21 / 23

Page 34: Scalable Algorithms for Optimal Control of Systems ... workshop/UQAW2016-Talks... · Scalable Algorithms for Optimal Control of Systems Governed by PDEs Under Uncertainty Alen Alexanderian1,

Comparison of distribution of control objective for optimalcontrols based on linearized and quadraticized objective

0 1 2 3 4 5 6 7 80

0.2

0.4

0.6

value of control objective

dis

trib

uti

on

Θ(zoptquad, ·)

Θ(zoptlin , ·)

1000 5000 100001

2

3

4

5

sample size

sample

mean

1000 5000 10000

5

10

15

sample size

sample

variance

Comparison of the distributions of q(zoptlin ,m) with q(zopt

quad,m)

β = 1, γ = 10−5 and ntr = 40 trace estimation vectors

KDE results are based on 10,000 samples

Inserts show Monte Carlo sample convergence for mean and variance

Omar Ghattas (ICES, UT Austin) Optimal control under uncertainty UQAW 2016 22 / 23

Page 35: Scalable Algorithms for Optimal Control of Systems ... workshop/UQAW2016-Talks... · Scalable Algorithms for Optimal Control of Systems Governed by PDEs Under Uncertainty Alen Alexanderian1,

Summary

Some concluding remarks:

Optimal control of PDEs with infinite-dimensional parameters

Use of local approximations to parameter-to-objective map

Quadratic approximation is effective in capturing the distribution of thecontrol objective for the target problem

Computational complexity of objective & gradient evaluation is independentof problem dimension (nm = 3242)

objective + gradient cost = ∼125 PDE solvesobjective/gradient cost for Monte Carlo/SAA: ∼10,000 PDE solvesdifferences even more striking for nonlinear PDE state problems

Possible extensions:

Higher moments (e.g., for forward UQ)

Alternative risk measures

Higher order approximations, e.g., third order Taylor expansion with propertensor contraction of third order derivative tensor

Omar Ghattas (ICES, UT Austin) Optimal control under uncertainty UQAW 2016 23 / 23

A. Alexanderian, N. Petra, G. Stadler, and O. Ghattas, Mean-variance risk-averse optimal control of systemsgoverned by PDEs with random coefficient fields using second order approximations, in submission.


Recommended