Transcript
Page 1: properties of copper vs temperature.pdf

12/21/11 aries.ucsd.edu/LIB/PROPS/PANOS/cu.html

1/4aries.ucsd.edu/LIB/PROPS/PANOS/cu.html

PURE COPPER

Pure copper and some selected copper alloys are widely used in experimental plasma confinement devices and have also been proposed forvarious fusion power plant applications where a high thermal or electrical conductivity material is required.

Copper based alloys have been considered as possible candidate materials for first wall, limiter and divertor components and as field coils andstabilisers for coils in magnetic confinement fusion devices. Their use as a first wall material has been proposed in designs where high thermalloads are expected on the first wall or where a shell of high electrical-conductivity material is required. Copper alloys have also been consideredfor the electrically-conducting central column of the tight aspect ratio tokamaks.

The main advantage of copper alloys lies in their high thermal conductivities, which allows for higher heat fluxes.

GENERAL PROPERTIES - PURE COPPER [1]

Physical properties

Boiling Point : 2567 C

Density @ 20 C : 8.96 g/cm3

Melting Point : 1083 C

Electrical properties

Electrical Resistivity @ 20 C : 1.69 u [[Omega]] cmCold junction @ 0 C,Hot junction @ 100 C : + 76 mVTemperature Coefficient @ 0 - 100 C : 0.0043/K

Mechanical properties

M a t e r i a l C o n d i t i o n S o f t H a r d P o l y c r y s t a l l i n e B u l k M o d u l u s ( G P a ) 1 3 7 . 8 H a r d n e s s - V i c k e r s 4 9 8 7 I z o d T o u g h n e s s 5 8 6 8 ( J / m ) P o i s s o n ' s R a t i o 0 . 3 4 3 T e n s i l e S t r e n g t h 2 2 4 3 1 4 ( M P a ) [ [ s i g m a ] ] y ( M P a ) 5 4 2 7 0 E ( G P a ) 1 2 9 . 8

Thermal properties

Latent Heat of Evaporation : 4796 J/gLatent Heat of Fusion : 205 J/gLinear Expansion Coefficient

@ 0 - 100 C : 17.0x10-6 m/m-KSpecific Heat @ 25 C : 385 J/kg-KThermal Conductivity, @ 0 - 100 C : 401 W/m-K

DATA AND CORRELATIONS

The thermal and structural properties as a function of temperature are presented in Table 1, refs [2, 3, 4, 5]. Polynomial correlations of thethermal and structural properties as functions of temperature, using the data of Table 1, are as follows:

(1)

(2)

(3)

(4)

Page 2: properties of copper vs temperature.pdf

12/21/11 aries.ucsd.edu/LIB/PROPS/PANOS/cu.html

2/4aries.ucsd.edu/LIB/PROPS/PANOS/cu.html

(5)

with T in degrees Kelvin and Eqs (1), (2) and (4) are valid in the temperature range 293-1300 K, Eq (3) in the range 293-873 K and Eq (5) inthe range 293-1000 K.

Figures 1-3 show the variation of properties with temperature.

T A B L E 1 T h e r m a l a n d s t r u c t u r a l p r o p e r t i e s o f p u r e c o p p e r T K [ [ r h o ] E G P a [ [ n u ] ] k W / m - K c J / k g - K [ [ s i g m a ] ] [ [ a l p h a ] ] [ [ s i g m a ] ] ] y M P a ( 1 0 - 6 ) u M P a k g / m 3 m / m - K 2 9 3 8 9 3 3 1 2 9 . 8 0 0 . 3 4 4 0 0 . 6 8 3 8 3 . 4 8 2 1 0 . 7 4 1 5 . 4 0 2 5 0 . 4 2 3 0 0 4 0 1 . 0 0 3 8 5 . 0 0 2 1 0 . 0 0 1 5 . 4 0 2 5 0 . 0 0 3 5 0 3 9 6 . 7 8 3 9 2 . 0 0 2 0 . 6 5 2 1 5 . 7 7 2 3 8 . 0 7 3 7 3 3 9 5 . 2 0 3 9 4 . 7 3 2 0 5 . 0 0 1 5 . 9 4 2 3 0 . 0 0 4 0 0 3 9 3 . 0 0 3 9 8 . 4 4 2 0 5 . 0 0 1 6 . 1 5 2 2 3 . 0 3 4 5 0 3 8 9 . 9 3 4 0 3 . 0 0 1 9 7 . 8 1 1 6 . 5 3 2 0 4 . 8 5 4 7 3 3 8 8 . 3 5 4 0 5 . 9 0 1 9 5 . 0 0 1 6 . 6 0 2 0 0 . 0 0 5 0 0 3 8 6 . 5 0 4 0 8 . 0 0 1 8 1 . 5 0 1 6 . 9 2 1 8 4 . 2 9 5 5 0 3 8 3 . 0 8 4 1 2 . 0 0 1 5 6 . 7 4 1 7 . 3 1 1 6 2 . 1 2 5 7 3 3 8 1 . 5 0 4 1 4 . 8 0 1 4 0 . 0 0 1 7 . 4 9 1 5 0 . 0 0 6 0 0 3 7 9 . 0 0 4 1 7 . 0 0 1 2 6 . 4 8 1 7 . 7 0 1 3 9 . 1 1 6 5 0 3 7 6 . 2 3 4 2 1 . 0 0 9 4 . 8 3 1 8 . 1 0 1 1 6 . 0 0 6 7 3 3 7 4 . 6 5 4 2 2 . 4 2 8 5 . 0 0 1 8 . 3 0 1 0 0 . 0 0 7 0 0 3 7 2 . 8 0 4 2 5 . 0 0 6 5 . 9 3 1 8 . 5 0 9 3 . 5 9 7 7 3 3 6 7 . 8 0 4 2 9 . 7 6 3 5 . 0 0 1 9 . 1 0 7 0 . 0 0 8 0 0 3 6 6 . 0 0 4 3 2 . 0 0 2 6 . 3 2 1 9 . 3 2 5 3 . 8 5 8 7 3 3 6 0 . 9 6 4 3 7 . 8 2 1 0 . 0 0 2 0 . 0 0 3 0 . 0 0 9 0 0 3 5 9 . 1 1 4 4 1 . 0 0 2 0 . 1 5 2 6 . 0 0 1 0 0 0 3 5 2 . 0 0 4 5 1 . 0 0 2 1 . 0 0 1 6 . 1 5 1 0 7 3 3 4 7 . 2 6 4 6 0 . 0 7 2 1 . 6 0 1 1 0 0 3 4 5 . 4 1 4 6 4 . 0 0 2 1 . 8 8 1 2 0 0 3 3 9 . 0 0 4 8 0 . 0 0 2 2 . 7 6 1 2 5 0 3 3 5 . 1 3 4 9 0 . 0 0 2 3 . 2 1 1 3 0 0 3 3 1 . 7 1 5 0 6 . 0 0 2 3 . 6 7

k ( W / m - K ) c ( J / k g - K )

Temperature (K)

Figure 1 : Thermal conductivity and specific heat of pure copper.

[ [ s i g m a ] ] y ( M P a ) [ [ s i g m a ] ] u ( M P a )

Page 3: properties of copper vs temperature.pdf

12/21/11 aries.ucsd.edu/LIB/PROPS/PANOS/cu.html

3/4aries.ucsd.edu/LIB/PROPS/PANOS/cu.html

Temperature (K)

Figure 2 : Yield stress and ultimate tensile strength of pure copper.

[[alpha]] (10-6 m/m-K)

Temperature (K)

Figure 3 : The thermal expansion coefficient of pure copper.

References

1. Goodfellow. Metals, Alloys, Compounds, Ceramics, Polymers, Composites. Catalogue 1993/94.

2. J. Phys. Chem. Ref. Data, Vol. 13, No. 4, (1984) pg 1252

3. Frank P. Incropera, David P Dewitt. Fundamentals of Heat and Mass Transfer. Second Edition

4. T J. Miller, S J. Zinkle and B A. Chin. Strength and Fatigue of Dispersion-Strengthened Copper. Journal of Nuclear Materials, 179 - 181,pg 263 - 266, North-Holland.

5. Handbook of Chemistry and Physics, First Edition, CRC Press, pg 12 - 108.

Page 4: properties of copper vs temperature.pdf

12/21/11 aries.ucsd.edu/LIB/PROPS/PANOS/cu.html

4/4aries.ucsd.edu/LIB/PROPS/PANOS/cu.html


Recommended