Transcript
  • 7/28/2019 Proof of Monotone Convergence Theorem

    1/2

    planetmath.org

    Math for the people, by the people.

    proof of monotone convergence theorem

    proof of monotone convergence

    theorem

    It is enough to prove the following

    Theorem 1.

    Let(X,) be a measurable space and let fk:X {+} be a monotone increasing

    sequence of positive measurable functions (i.e. 0 f1 f2 ). Then

    f(x) = limk fk(x) is measurable and

    lim

    n

    X

    fkd =X

    f(x)d .

    First of all by the monotonicity (http://planetmath.org/node/40195) of the sequence

    (http://planetmath.org/node/30397) we have

    f(x) = supk

    fk(x)

    hence we know that f is measurable (http://planetmath.org/node/36778) . Moreover being

    fk ffor all k, by the monotonicity of the integral (http://planetmath.org/node/31920) , we

    immediately get

    supk

    Xfkd

    Xf(x)d .

    So take any simple (http://planetmath.org/node/32189) measurable function

    (http://planetmath.org/node/33176) s such that 0 s f. Given also < 1 define

    Ek= {xX: fk(x) s(x)} .

    The sequence Ekis an increasing (http://planetmath.org/node/34228) sequence of

    measurable sets (http://planetmath.org/node/30755) . Moreover the union (http://planetmath.org

    /node/34394)of all Ekis the whole spaceXsince limk fk(x) = f(x) s(x) > s(x).

    Moreover it holds

    X

    fkd Ek

    fkd Ek

    sd .

    Since s is a simple measurable function it is easy to check that E Esd is a

    measure (http://planetmath.org/node/40498) and hence

    supk

    Xfkd

    Xsd .

    But this last inequality (http://planetmath.org/node/30000) holds for every < 1 and for all

    simple measurable functions s with s f. Hence by the definition (http://planetmath.org

    /node/39936)ofLebesgue integral (http://planetmath.org/node/31920)

    supk

    Xfkd

    Xf d

    which completes (http://planetmath.org/node/33445) the proof.

    Major Section:

    Reference

    Type of Math Object:

    Proof

    Parent:

    monotone convergence theorem (/monotoneconvergencetheorem)

    Mathematics Subject Classification

    28A20 Measurable and nonmeasurable functions, sequences of measurable functions,

    modes of convergence (/msc_browser/28A20)

    Username * Password *

    Create new account Request new password

    f of monotone convergence theorem | planetmath.org http://planetmath.org/proofofmonotoneconvergencetheorem

    2 2013-07-17 00:02

    http://planetmath.org/node/40195http://planetmath.org/node/30397http://planetmath.org/node/36778http://planetmath.org/node/31920http://planetmath.org/node/32189http://planetmath.org/node/33176http://planetmath.org/node/34228http://planetmath.org/node/30755http://planetmath.org/http://planetmath.org/node/40498http://planetmath.org/node/30000http://planetmath.org/http://planetmath.org/node/31920http://planetmath.org/node/33445http://planetmath.org/proofofmonotoneconvergencetheoremhttp://planetmath.org/proofofmonotoneconvergencetheoremhttp://planetmath.org/node/33445http://planetmath.org/node/31920http://planetmath.org/http://planetmath.org/node/30000http://planetmath.org/node/40498http://planetmath.org/http://planetmath.org/node/30755http://planetmath.org/node/34228http://planetmath.org/node/33176http://planetmath.org/node/32189http://planetmath.org/node/31920http://planetmath.org/node/36778http://planetmath.org/node/30397http://planetmath.org/node/40195
  • 7/28/2019 Proof of Monotone Convergence Theorem

    2/2

    loading

    (http://planetmath.org/crss/node/34075)

    26A42 Integrals of Riemann, Stieltjes and Lebesgue type (/msc_browser/26A42)

    Add a correction (/node/add/correction/34075)

    Attach a problem (/problems/34075/attach)

    Ask a question (/node/ask/question/34075)

    Comments

    The last inequality (/comment/2103#comment-2103)

    Permalink (/comment/2103#comment-2103)Submitted by bchui (/users/bchui) on Tue,11/14/2006 - 12:14

    Should the last inequality be

    $\displaystyle{ \int_X fd\mu \leq \sup_{k}\int_X f_k d\mu }$

    instead of $\int_k$ on the RHS ?

    Re: The last inequality (/comment/2106#comment-2106)

    Permalink (/comment/2106#comment-2106)Submitted by paolini (/users/paolini) on Wed,

    11/15/2006 - 13:02

    Yes, thanks. I corrected it.

    E.

    of of monotone convergence theorem | planetmath.org http://planetmath.org/proofofmonotoneconvergencetheorem

    2 2013-07-17 00:02

    http://planetmath.org/crss/node/34075http://planetmath.org/proofofmonotoneconvergencetheoremhttp://planetmath.org/proofofmonotoneconvergencetheoremhttp://planetmath.org/crss/node/34075

Recommended