Transcript
Page 1: Principal Component Analysis (PCA)

Principal Component Analysis Principal Component Analysis (PCA)(PCA)

Page 2: Principal Component Analysis (PCA)

Principal Component Analysis Principal Component Analysis (PCA)(PCA)

Page 3: Principal Component Analysis (PCA)

Principal Component Analysis Principal Component Analysis (PCA)(PCA)

Page 4: Principal Component Analysis (PCA)

Principal Component Analysis Principal Component Analysis (PCA)(PCA)

Page 5: Principal Component Analysis (PCA)

Principal Component Analysis Principal Component Analysis (PCA)(PCA)

Page 6: Principal Component Analysis (PCA)

Principal Component Analysis Principal Component Analysis (PCA)(PCA)

Page 7: Principal Component Analysis (PCA)

Principal Component Analysis Principal Component Analysis (PCA)(PCA)

Page 8: Principal Component Analysis (PCA)

Principal Component Analysis Principal Component Analysis (PCA)(PCA)

Page 9: Principal Component Analysis (PCA)

Principal Component Analysis Principal Component Analysis (PCA)(PCA)

Page 10: Principal Component Analysis (PCA)

Principal Component Analysis Principal Component Analysis (PCA)(PCA)

Page 11: Principal Component Analysis (PCA)

Alternative Derivation Alternative Derivation (PCA)(PCA)

Page 12: Principal Component Analysis (PCA)

Alternative Derivation Alternative Derivation (PCA)(PCA)

Page 13: Principal Component Analysis (PCA)

Alternative Derivation Alternative Derivation (PCA)(PCA)

Page 14: Principal Component Analysis (PCA)

Alternative Derivation Alternative Derivation (PCA)(PCA)

Page 15: Principal Component Analysis (PCA)

Singular Value DecompositionSingular Value Decomposition

Page 16: Principal Component Analysis (PCA)

Singular Value DecompositionSingular Value Decomposition

Page 17: Principal Component Analysis (PCA)

Singular Value DecompositionSingular Value Decomposition

Page 18: Principal Component Analysis (PCA)

Example 1Example 1• Use the data set "noisy.mat" available on

your CD. The data set consists of 1965, 20-pixel-by-28-pixel grey-scale images distorted by adding Gaussian noises to each pixel with s=25.

Page 19: Principal Component Analysis (PCA)

Example 1Example 1• Apply PCA to the noisy data. Suppose the

intrinsic dimensionality of the data is 10. Compute reconstructed images using the top d = 10 eigenvectors and plot original and reconstructed images

Page 20: Principal Component Analysis (PCA)

Example 1Example 1• If original images are stored in matrix X (it is 560

by 1965 matrix) and reconstructed images are in matrix X_hat , you can type in

• colormap gray and then• imagesc(reshape(X(:, 10), 20 28)’)• imagesc(reshape(X_hat(:, 10), 20 28)’)to plot the 10th original image and its

reconstruction.

Page 21: Principal Component Analysis (PCA)

Example 2Example 2

Page 22: Principal Component Analysis (PCA)

Example 2Example 2• Load the sample data, which includes digits 2 and 3 of64 measurements on a sample of 400. load 2_3.mat

• Extract appropriate features by PCA

[u s v]=svd(X','econ');

• Create data

Low_dimensional_data=u(:,1:2);• Observe low dimensional dataImagesc(Low_dimensional_data)

Page 23: Principal Component Analysis (PCA)

Recommended