Transcript
Page 1: Physics Department, University of Connecticut, Storrsrainbow.phys.uconn.edu/files/AGU_2014_Sanborn_et_al.pdf · Modeling the Combined Effects of Deterministic and Statistical Structure

Modeling the Combined Effects of Deterministic and Statistical Structure for Optimization of Regional Monitoring

Christopher J. Sanborn, Michele Fitzpatrick, Steven Walsh, and Vernon F. Cormier Physics Department, University of Connecticut, Storrs

REFERENCES

o Sanborn,  et  al,  Radiative3D:  http://rainbow.phys.uconn.edu/geophysics/wiki/  

o Menke,  W.,  Raytrace3d,  www.iris.edu/software/downloads/plotting/    

o Shearer,   P.M.,   and   P.S.   Earle,   in  Advances   in  Geophysics,  Volume   50:  Earth   Heterogeneity   and   Scattering   Effects   on   Seismic  Waves,   H.   Sato  and  M.C.  Fehler  (ed.),  2008.  

o N.  D.  Selby,  D.  Bowers,  A.  Douglas,  R.  Heyburn,  and  D.  Porter,    2005:  Seismic  Discrimination  in  Southern  Xinjiang:  The  13  March  2003  Lop  Nor  Earthquake,  BSSA.  

o Sato,  H.,  Fehler,  M.  C.,  and  Maeda,  T.,  2012:  Seismic  wave  propagation  and  scattering  in  the  heterogeneous  earth  (2nd  Ed.),  Springer.  

o Fisk,  M.D.,  2002:  Accurate  Locations  of  Nuclear  Explosions  at  the  Lop  Nor  Test  Site  Using  Alignment  of  Seismograms  and  IKONOS  Satellite  Imagery,  BSSA.  

o Kim,  Won-­‐Young,   Paul  G.   Richards,  Diane   Baker,   Howard   Patton,   and  George   Randall,   Improvements   to   a   Major   Digital   Archive   of   Seismic  Waveforms   from   Nuclear   Explosions,  AFRL-­‐RV-­‐HA-­‐TR-­‐2010-­‐1024,   Final  Report,  23  March  2010.

ABSTRACT RADIATIVE TRANSPORTThe   differences   between   earthquakes   and   explosions   are   largest   in   the   highest  recordable   frequency  band.   In   this  band,   scattering  of  elastic  energy  by   small-­‐scale  heterogeneity   (less   than   a   wavelength)   can   equilibrate   energy   on   components   of  motion  and  stabilize  the  behavior  of  the  Lg  wave  trapped  in  the  Earth's  crust.  Larger-­‐scale   deterministic   structure   (greater   than   a   wavelength)   can   still   assume   major  control   over   the   efficiency   or   blockage   of   the   Lg   and   other   regional/local   seismic  waves.   This   project   proposes   to   model   the   combined   effects   of   the   large-­‐scale  (deterministic)   and   the   small   scale   (statistical)   structure   to   invert   for   improved  structural   models   and   to   evaluate   the   performance   of   yield   estimators   and  discriminants   at   selected   IMS   monitoring   stations   in   Eurasia.     This   will   be  accomplished  by  synthesizing  seismograms  using  a  radiative  transport  technique  to  predict  the  high  frequency  coda  (>5  Hz)  of  regional  seismic  phases  at  stations  having  known   large-­‐scale   three-­‐dimensional   structure,   combined   with   experiments   to  estimate  the  effects  of  multiple-­‐scattering  from  unknown  small-­‐scale  structure. EARTH STRUCTURE

DETERMINISTIC  STRUCTURE  Examples:  • Changes  in  Moho  depth  • Lateral  variation  in  seismic  velocity

STATISTICAL  STRUCTURE  Example:  • fine-­‐scale  deviations  of  seismic  

velocity,  due  to  material  inhomogeneity,  small  cracks  and  fissures,  etc.    Random  heterogeneity  can  be  parameterized  by  scale-­‐length  and  strength  parameters.  

From  a  modeling  standpoint,  we  divide  Earth  structure  into  two  categories,  based  on  the  approach  used  in  simulation:SOFTWARE TOOL: RADIATIVE3D

FUNDED  BY:    AFRL/DOE  Contract  No.  FA9453-­‐12-­‐C-­‐0207,  May  30,  2012  through  May  29,  2015Address  correspondence  to:    [email protected]  or  [email protected]

We  are   developing  Radiative3D   to   be   a   next-­‐generation   tool  for  synthetics  generation  in  models  with  complex  deterministic  and  statistical  structure.    Features  include:  

✦ Simulates   realistic   earthquake   and   explosion   radiation  patterns,  parameterized  via  moment-­‐tensor  elements  

✦ Propagates  rays  in  full  3D  ✦ Radiative  transport  well-­‐suited  to  high-­‐frequency  synthetics  ✦ Complex  3D  model  structure  via  tetrahedral  grid  ✦ Produce   synthetic   envelopes,   travel   time   curves,   or  

videos  of  energy  propagation  through  3D  models  ✦ Realistic  scattering  patterns  in  full  3D  ✦ Realistic  reflection/transmission  handled  at  discontinuous  

interfaces,  including  P-­‐wave  /  S-­‐wave  conversion  ✦ Modeling   of   intrinsic   attenuation;   separately   model  

intrinsic  vs.  scattering  “Q”.  Homepage:    http://rainbow.phys.uconn.edu/geophysics/wiki/

CONCLUSIONS

✦ Radiative   transport   is   a   computationally   efficient   method   of  synthesizing   the   very   high   frequency   (>2.0   Hz)   seismic   wave  field   where   differences   between   explosion   and   earthquake  sources  are  largest.  

✦ By   incorporating  both  known   large-­‐scale  and  unknown  small-­‐scale  3-­‐D  structure,  radiative  transport  can  be  used  to  predict  the  behavior  of  ratios  of  regional  phases  along  specific  paths,  the   homogenization   of   source   radiation   patterns  with   range,  and  uncertainties  in  travel-­‐time  picks.  

Future  Work:  ✦ Completion   of   planned   Radiative3D   features,   including  

incorporation   of   intrinsic   attenuation,   spatial   gradients   in  velocity,  and  anisotropy  of  heterogeneity  scale  lengths.  

✦ Use   of   Radiative3D   to  model   chosen   paths   for   refinement   of  attenuation  and  scattering  models  in  regions  of  interest.

Radiative  transport   is  a  physical  modeling  technique  that  tracks  energy  transport  as  a  particle  flux,  using  ray  tracing  to  solve  for  the  trajectories  of  millions  of  particles  representing  small  quanta  of  elastic  energy.    RT  is  a  suitable  alternative  to  solving  the  full  wave  equation  when  ray  theory  criteria   are   met,   and   is   particularly   advantageous   for   high   frequency  modeling.    Another   advantage   of   radiative   transport   is   that   scattering  from  small-­‐scale  heterogeneity  can  be  handled  statistically,  rather  than  requiring  ultra-­‐fine  model  meshes  which  would  otherwise  be  needed  to  simulate  the  heterogeneity  deterministically.

SOUTHERN XINJIANG: MARCH 13, 2003

DEPTH STUDY MATCH QUALITY

SCATTERING MODEL

Scattering  Amplitudes:  

• Scattering is treated as a stochastic process occurring on a mean-free path basis, with deflection angle and conversions determined by probability distributions:

gPP (⌅, ⇥) =l4

4⇤

��XPPr (⌅, ⇥)

��2 P✓2l

�0sin

2

gPS(⌅, ⇥) =

1

�0

l4

4⇤

��XPS� (⌅, ⇥)

��2 P✓

l

�0

q1 + �2

0 � 2�0 cos⌅

gSP(⌅, ⇥) = �0

l4

4⇤

��XSPr (⌅, ⇥)

��2 P✓

l

�0

q1 + �2

0 � 2�0 cos⌅

gSS(⇤, �) =l4

4⇥

⇣��XSS⇥ (⇤, �)

��2 +��XSS

� (⇤, �)��2⌘P

✓2l sin

2

von  Kármán  Spectrum:  

• Inhomogeneities exist at a range of scale lengths.

• Corner frequency determined by a.

• Rapid fall-off after 1/a, determined by kappa.

• Power spectrum affects scattering deflection angle and P/S conversion.

κ = 1.0 0.5 0.3

Dependence  on  Parameters:

Above:   affect   of   scattering   parameters   on   two   scattering   characteristics:   mean   free   path,   or   average  distance  between   scattering   events,   and  dipole   projection,  which   is   a  measure   of   scattering  directionality  (positive  values  indicate  dominant  forward  scattering,  negative  indicates  dominant  back-­‐scattering.)  Below  left:  von  Kármán  spectrum  for  various  kappa  values  on  a  log-­‐log  scale.  Below  right:  illustration  of  a  random  walk,   with   scattering   events   deflecting   phonon   paths   from   origination   at   source   to   collection   at   receiver.    Bottom:  simulated  perturbation  fields  for  various  kappa  values  (scale-­‐length  a  held  fixed).  Characterizing  Media:  

• Material heterogeneity treated as perturbation against locally-uniform velocity and density background

• Four parameters describing Scattering Media:

• eps: average fractional velocity perturbation size (dV/V0)

• nu: ratio of density-perturbation to velocity-perturbation

• a: scale length, or auto-correlation “corner”

• kappa: von Kármán parameter

WAVEFRONT EVOLUTION

We   focused   our   attention   on   the   March   13,   2003,   mb   4.8   Southern  Xinjiang  earthquake   that  occurred  near  Chinese  nuclear  test  site  Lop  Nor.  This  earthquake  is  an  interesting  test  case  for  source  discrimination  efforts.    Selby,  et  al,  2005  published  a  strike,  dip,  and  rake  solution  for  this  event  which  we  used  for  source  modeling  in  our  study.

Strike:   125°  ±  10°  Dip:     40°  ±  10°  Rake:     90°  ±  10°  Depth:   33  km

We   sought   to   model   this   event   using  Radiative3D,   and   conducted   simulation   runs   at  2.0  Hz  and  3.0  Hz   (presented  panels  right).    For  comparison,   shown   below   are   band-­‐passed  recordings   of   this   event   from   station   MAK  (below  left),  and  also  (below  right)  are  recordings  in  the  same  frequency  bands  from  an  explosion  signal   recorded  at  MAK   from  the  July  29,  1996  nuclear  test  at  Lop  Nor  (mb  4.9):

Seismic  envelope  synthetics  were  produced  using  Radiative3D  with  a  hypothesized  Earth  model   serving   as   a   simplified   representation  of   the   Lop   Nor   region.     The   model   was   constructed   of   layers   of  uniform   velocity,   with   interface   planes   separating   the   layers.    Current  functionality  in  Radiative3D  allows  these  interface  planes  to  take  on  arbitrary  orientation.    Depth  profiles   from  CRUST2.0   and  elevations   and   Moho   depths   from   ETOPO   and   Cornell   Moho   at  three  locations  (Lop  Nor,  MAK,  and  WUS)  were  used  to  locate  and  orient  the  planes.    Model  cross-­‐sections  with  depth  profiles  between  LOP  and  MAK  and  LOP  and  WUS,  along  with  a   table  of  scattering  parameters  and  quality  factors  (“Q”)  used,  are  shown  below.

nu eps a (km) kappa QSediment Layer: 0.8 0.01 0.25 0.2 50

Crust Layers: 0.8 0.04 0.20 0.3 1000

Mantle Layers: 0.8 0.008 0.20 0.5 150

2.0  Hz

3.0  Hz

4.0  Hz

Earthquake

2.0  Hz

3.0  Hz

4.0  Hz

Explosion

Scattering  parameters  by  depth  region:

FREQUENCY AND STATION COMPARISONThe   travel-­‐time   curves   each   combine   output   from   160   virtual  seismometers  positioned  in  a  linear  array  from  source  location  to  seismic  stations  MAK  and  WUS.    Below  are  envelope  traces  from  the  last  in  each  array,  the  one  at  the  station  location.    These  can  be  compared  with  real  data  collected  from  those  stations  (comparisons  shown  panel  below).

The  envelopes  (above)  and  travel-­‐time  curves  (left)  were  produced  from  synthetic   data   computed   in   parallel   on  mixed   hardware   non-­‐dedicated  workstations,   and   comprise   trajectory   computations   for   4.8   billion  phonons  (2.4B  each  for  2Hz,  3Hz  runs).  The  synthetic  runs  utilized  in  total  138  cpu-­‐hours  (2Hz  run)  and  217  cpu-­‐hours  (3Hz  run).

2.0  Hz

3.0  Hz

MAK WUS

MAK WUS

2.0  Hz

3.0  Hz

Synthetics   were   generated   in   our   Lop   Nor   model   for   a   source   event  patterned   after   the   2003-­‐03-­‐13   earthquake.   Source   depth   was   set   to  32  km,  as  reported  by  the  NEIC.    Shown  here  are  travel-­‐time  curves  (left)  and  envelopes  (right)  for  stations  MAK  and  WUS  at  frequencies  of  2.0  Hz  and  3.0  Hz.    Crustal  body  wave  phases  Pg  and  Lg  are  visible  in  the  travel-­‐time  plots.  Scalloping   is  most   likely  due   to  path  multiples   from   surface  and  Moho  reflections.    Differences  between  MAK  and  WUS  are  primarily  due  to  source  orientation.

MAK WUS

2.0  Hz

3.0  Hz

3.0  Hz

WUS

2.0  Hz

MAK

Pg

Lg

Selby,   et   al,   2005   note   that   regional   surface  wave   analysis   suggests   a  source  depth  of  6±1  km,   in  contrast  to  the  33  km  depth  published  by  the   USGS’s   National   Earthquake   Information   Center   (NEIC).     This  motivated   us   to   investigate   the   effects   of   source   depth   on   our  synthetics.     Below   are   travel-­‐time   curves   at   2.0   Hz   produced   using  Radiative3D   along   the   azimuth   to   station   MAK   for   earthquake   and  explosion  sources  at  a  variety  of  depths.    In  particular,  we  modeled  the  2003-­‐03-­‐13  earthquake  at  depths  of  6  km  and  32  km,  and  we  modeled  a  pure  isotropic  explosion  source  at  2  km  and  6  km  depth.    Comparisons  to  real  data  appear  in  the  panel  at  right.

Earthquake

Explosion

dept

h  =  2.0  km

dept

h  =  32

.0  km

dept

h  =  6.0  km

Explosion

dept

h  =  6.0  km

Earthquake

Explosion,  2.0  km

Explosion,  6.0  km

2.0  Hz

Depth:  6  km

3.0  Hz

Depth:  6  km

2.0  Hz

Depth:  32  km

3.0  Hz

Depth:  32  km

Above:  2.0  Hz  and  3.0  Hz  comparisons  modeling  earthquake  source  depth  at  6.0   km.    Below:   source   depth  modeled   at  32.0   km.    The   2.0  Hz   synthetics  compare  much  more  favorably  than  the  3.0  Hz.    At  2.0  Hz,  numerous  qualitative  features  are  well  matched  at  both  depths.    The  6.0  km  comparison  matches  particularly  well,  exclusive  of  a  time  shift.      Note  that  certain  phases,  including  Pn   and   Sn,   would   not   appear   in   our   synthetics   due   to   Moho/upper-­‐mantle  velocity   gradients   not   represented   in   our   current   Lop   Nor   model,   but   are  expected  to  appear  with  future  model  refinements.

Shown  below  are  comparisons  between  our  synthetic  envelopes  (blue)  and  data  recorded  at  station  MAK  (tan).    The  MAK  data  was  band-­‐pass  filtered  and  enveloped  to  facilitate  comparison  to  our  single-­‐frequency  synthetics.  Note   that   each   plot   is  mirrored   across   the   x-­‐axis,   but   that  the   z-­‐order   of   the   plots   are   reversed,   to   facilitate   visual   comparison  between  the  synthetic  and  the  recorded  data  series.

Synthetic  envelope  and  travel-­‐time  curves  are  computationally  intensive  due  to  the  large  number  of  phonons  that  must  be  cast  in  order  to  catch  a  sufficient  number  at  the  virtual  seismometer  locations.    Wavefront  plots,  however,  such  as  those  shown  below,  can  be  produced  in  substantially  less  time,  since  every  phonon  is  useable.    The  plots  below  show  phonon  propagation  through  Earth  models  and  show  how  the  wave  fronts  evolve  with  time.    Left:  elevation  view  of  earthquake  and  explosion  sources  in  a  simplified  prototype  model.    Right:  plan  view  of  earthquake  source  in  Lop  Nor  model.    Red  markers  represent  P  phonons  and  blue  markers  represent  S  phonons.    Interface  reflections,  ray-­‐bending,   and   coda  development   through   scattering   are   all   visible.    Transitions  between  P   and  S  polarization   can  happen   via   scattering  or  reflection/transmission.    Movies  of  energy  propagation  can  be  produced  in  about  20  minutes  of  computation  time.Earthquake Time-Series:

Explosion Time-Series:

T=10.8

T=15.1T=7.0T=3.7T=0.8

T=10.8

T=15.1T=7.0T=3.7T=0.8

Earthquake Time-Series:

Explosion Time-Series:

T=10.8

T=15.1T=7.0T=3.7T=0.8

T=10.8

T=15.1T=7.0T=3.7T=0.8

Recommended