Transcript

On transport equations in thin moving domains

Yoshikazu Giga University of Tokyo

March 2017

Contents 1. Problems on moving surfaces 2. Derivations of mass transport equations

2.1 Conservation law 2.2 Zero width limit

3. Derivation of diffusion equations 3.1 Energy law 3.2 Zero width limit

4. Derivation of the Euler and the Navier-Stokes equations

2

3

β€’ Reaction-diffusion on biological cells β€’ Fluid-flow on biological cell

Boussinesq (1913), L. E. Scriven (1960)

β€’ Fluid-flow on rotating surface geophysics

1. Problems on moving surfaces

4

Ξ“ 𝑑 π‘‘βˆˆ[0,𝑇): evolving surface in 𝐑3

(1) How does one derive equations describing phenomena on a moving surface Ξ“ 𝑑 ?

(2) Is it related to zero-width limit of thin moving domain? π·πœ€ 𝑑 = π‘₯ ∈ 𝐑3 dist π‘₯, Ξ“ 𝑑 < πœ€ .

Problems

5

time

𝐑2

Ξ“(𝑑)

𝑑

6

Thin domain

πœ€

𝑛Γ

π·πœ€(𝑑)

Ξ“(𝑑)

7

𝑛Γ : outer unit normal of Ξ“ 𝑑 πœ‚ = πœ‚(𝑦, 𝑑) : density of substance at 𝑦 ∈ Ξ“(𝑑) 𝑣 = 𝑣(𝑦, 𝑑) : velocity of substance at 𝑦 ∈ Ξ“ 𝑑 (vector field on Ξ“(𝑑) not necessarily tangential)

2. Derivations of mass transport equations

2.1 Conservation law

8

Local mass conservation law

𝑉Γ : normal velocity of Ξ“ 𝑑 in the direction of 𝑛Γ. β€’ Ansatz: Normal component of 𝑣 equals 𝑉Γ (There is no flow leaving from or coming to Ξ“(𝑑).)

𝑑𝑑𝑑 ∫ πœ‚π‘ˆ(𝑑) 𝑑ℋ2 = 0 for any portion π‘ˆ(𝑑) of Ξ“(𝑑)

(π‘ˆ(𝑑) : relatively open set)

9

Leibniz formula 𝑑𝑑𝑑� πœ‚π‘ˆ(𝑑)

𝑑ℋ2 = οΏ½ (πœ•β—πœ‚ + divΞ“ 𝑣 πœ‚)π‘ˆ(𝑑)

𝑑ℋ2

πœ•β—πœ‚ = πœ•π‘‘πœ‚ + 𝑣 β‹… 𝛻 πœ‚ (material derivative)

divΓ𝑣 : surface divergence Ansatz implies

𝑣 = 𝑉Γ 𝑛 + 𝑣𝑇 . 𝑣𝑇 : tangential velocity (𝑣𝑇 β‹… 𝑛Γ = 0)

10

Conservation law

The law

0 =𝑑𝑑𝑑� πœ‚π‘ˆ(𝑑)

𝑑ℋ2

for all π‘ˆ(𝑑) yields

πœ•β—πœ‚ + divΞ“ 𝑣 πœ‚ = 0 on Ξ“(𝑑).

11

Calculation of surface divergence

divΓ𝑣 = divΞ“ 𝑉Γ 𝑛 + divΞ“ 𝑣𝑇 = 𝑉Γ divΞ“ 𝑛 + 𝛻Γ 𝑉Γ β‹… 𝑛 + divΞ“ 𝑣𝑇

𝐻 : mean curvature

∴ divΞ“ 𝑣 = βˆ’π» 𝑉Γ + divΞ“ 𝑣𝑇

Note : divΞ“ πœ‚ 𝑣𝑇 = 𝛻Γ πœ‚ β‹… 𝑣𝑇 + πœ‚ divΞ“ 𝑣𝑇

βˆ’π» 0

12

Second expression of conservation law Since πœ•β—πœ‚ = πœ•βˆ˜πœ‚ + 𝑣𝑇 β‹… π›»πœ‚ with πœ•βˆ˜πœ‚ = πœ•π‘‘πœ‚ + 𝑉Γ 𝑛 β‹… π›»πœ‚, πœ•β—πœ‚ + divΞ“ 𝑣 πœ‚ = πœ•βˆ˜πœ‚ βˆ’ 𝐻 π‘‰Ξ“πœ‚ + divΞ“(πœ‚π‘£π‘‡).

Mass conservation: πœ•βˆ˜πœ‚ βˆ’ 𝐻 𝑉Γ πœ‚ + divΞ“ πœ‚π‘£π‘‡ = 0

First two terms depend only on motion of Ξ“(𝑑), independent of 𝑣𝑇.

13

Mass conservation

πœ•β—πœ‚ + divΞ“ 𝑣 πœ‚ = 0 or

πœ•βˆ˜πœ‚ βˆ’ 𝐻 𝑉Γ πœ‚ + divΞ“ πœ‚π‘£π‘‡ = 0

divΓ𝑀 : surface divergence

divΓ𝑀 = 𝛻Γ β‹… 𝑀

𝛻Γ = 𝑃Γ 𝛻

𝑃Γ = 𝐼 βˆ’ 𝑛Γ βŠ— 𝑛Γ : projection to tangent space of Ξ“(𝑑).

14

Mass conservation in a thin domain reads (CL) πœŒπ‘‘ + div 𝜌 𝑒 = 0 in π·πœ€(𝑑)

(B) 𝑒 β‹… πœˆπ·πœ€ = π‘‰π·πœ€π‘ on πœ•π·πœ€(𝑑).

The substance in π·πœ€(𝑑) moves along the boundary of π·πœ€(𝑑). It does not go into or out of π·πœ€(𝑑).

π‘‰π·πœ€π‘ : normal velocity of πœ•π·πœ€(𝑑) in the

direction of unit outer normal 𝜈𝐷 of π·πœ€(𝑑)

2.2 Zero width limit

15

Problem 𝜌 π‘₯, 𝑑 = πœ‚ πœ‹ π‘₯, 𝑑 , 𝑑 + 𝑑 π‘₯, 𝑑 πœ‚1 πœ‹ π‘₯, 𝑑 , 𝑑

+𝑂 𝑑2 𝑒 π‘₯, 𝑑 = 𝑣 πœ‹ π‘₯, 𝑑 , 𝑑 + 𝑑 π‘₯, 𝑑 𝑣1 πœ‹ π‘₯, 𝑑 , 𝑑

+𝑂 𝑑2 as 𝑑 β†’ 0

πœ‹ π‘₯, 𝑑 : projection to Ξ“(𝑑) 𝑑 π‘₯, 𝑑 : signed distance (𝑑 > 0 near space infinity)

πœ‹ π‘₯, 𝑑 = π‘₯ βˆ’ 𝑑 π‘₯, 𝑑 𝑛Γ πœ‹, 𝑑

If 𝜌 solves (CL), what equation πœ‚ solves?

16

Equation derived from zero width limit

Theorem 1 (T.-H. Miura, C. Liu, Y. G.). Let (𝜌,𝑒) solve (CL) in π·πœ€ with (B). Let πœ‚, 𝑣 be the first term of the expansion. Then

𝑣 = 𝑉Γ 𝑛Γ + 𝑣𝑇 and πœ‚ solves

(CS) πœ•βˆ˜πœ‚ βˆ’ 𝐻 𝑉Γ πœ‚ + divΞ“ πœ‚π‘£π‘‡ = 0.

A

Differentiate 𝜌 π‘₯, 𝑑

= πœ‚ πœ‹ π‘₯, 𝑑 , 𝑑 + 𝑑 π‘₯, 𝑑 πœ‚1 πœ‹ π‘₯, 𝑑 , 𝑑 + 𝑂(𝑑2) in time.

Note πœ•π‘‘ πœ‚ πœ‹ π‘₯, 𝑑 , 𝑑 = πœ•βˆ˜πœ‚ πœ‹ π‘₯, 𝑑 , 𝑑 ,

𝑑𝑑 = βˆ’π‘‰Ξ“.

We observe πœŒπ‘‘ = πœ•βˆ˜πœ‚ πœ‹, 𝑑 βˆ’ 𝑉Γ πœ‚1 πœ‹, 𝑑 + 𝑂 𝑑 .

17

Idea of the proof

π‘₯

Ξ“(𝑑)

πœ‹(π‘₯, 𝑑)

18

Idea of the proof (continued) Note that

π›»πœ‹ π‘₯, 𝑑 = 𝑃Γ πœ‹, 𝑑 + 𝑂 𝑑 . One observes that

πœŒπ‘’ π‘₯, 𝑑 = πœ‚π‘£ πœ‹, 𝑑 + π‘Š1𝑑 + 𝑂 𝑑2

with π‘Š1 πœ‹, 𝑑 = πœ‚π‘£1 πœ‹, 𝑑 + πœ‚1𝑣 πœ‹, 𝑑

which yields

𝛻 πœŒπ‘’ π‘₯, 𝑑 = π›»πœ‹ π‘₯, 𝑑 𝛻 πœ‚π‘£ + π›»π‘‘β¨‚π‘Š1 + 𝑂 𝑑 = PΓ𝛻 πœ‚π‘£ π‘₯, 𝑑 + π‘›Ξ“β¨‚π‘Š1 + 𝑂 𝑑 .

Here 𝑒 π‘₯, 𝑑 = 𝑣 πœ‹, 𝑑 + 𝑑 π‘₯, 𝑑 𝑣1 πœ‹, 𝑑 + 𝑂 𝑑2 .

A

19

Idea of the proof (continued) We are now able to conclude

div πœŒπ‘’ π‘₯, 𝑑 = divΞ“ πœ‚π‘£ + 𝑛Γ β‹… π‘Š1 + 𝑂 𝑑 . Here

divΞ“ πœ‚π‘£ = βˆ’πœ‚ 𝑉Γ𝐻 + divΞ“ πœ‚π‘£π‘‡ .

Note 𝑛Γ β‹… π‘Š1 = πœ‚1𝑉Γ because 𝑣 β‹… 𝑛Γ = 𝑉Γ , 𝑣1 β‹… 𝑛Γ = 0. Thus πœ•π‘‘πœŒ + div πœŒπ‘’ = πœ•βˆ˜πœ‚ βˆ’ π»πœ‚π‘‰Ξ“ + 𝑑𝑑𝑣Γ(πœ‚π‘£π‘‡) πœ‹, 𝑑 + 𝑂 𝑑 .

20

𝒦 : Kinetic energy β„±: Free energy

𝛿 οΏ½ 𝒦𝑇

0𝑑𝑑 = οΏ½ οΏ½(𝐹𝑖 β‹… 𝛿π‘₯)

𝑇

0𝑑π‘₯𝑑𝑑

𝛿 οΏ½ ℱ𝑇

0𝑑𝑑 = οΏ½ οΏ½(𝐹𝑐 β‹… 𝛿π‘₯)

𝑇

0𝑑π‘₯𝑑𝑑

𝛿 : variation with respect to flow map

3. Derivation of diffusion equations 3.1 Energy law

21

Least action principle LAP 𝐹𝑖 : inertial force 𝐹𝑐 : conservative force

Stationary point of the action integral

𝐴 π‘₯ = οΏ½ 𝒦(π‘₯)𝑇

0𝑑𝑑 βˆ’ οΏ½ β„± π‘₯

𝑇

0𝑑𝑑

π‘₯ : Flow map 𝑋 ↦ π‘₯ 𝑑,𝑋 𝑑𝑑𝑑𝑑

= 𝑒 π‘₯, 𝑑 π‘₯|𝑑=0 = 𝑋 (𝑒 : velocity field)

LAP 𝛿𝛿𝛿𝑑

= 0 ⇔ 𝐹𝑖 βˆ’ 𝐹𝑐 = 0

22

Maximum dissipation principle MDP

π’Ÿ : dissipation energy depending on 𝑒 = οΏ½Μ‡οΏ½.

π›Ώπ’Ÿ = 𝐹𝑑 β‹… 𝛿𝑒 𝐹𝑑 : dissipation force

LAP + MDP βˆΆβ‡’ 𝐹𝑖 βˆ’ 𝐹𝑐 = 𝐹𝑑

23

Diffusion process

𝒦 = 0,γ€€β„± π‘₯ = οΏ½ πœ”(𝜌 π‘₯ )𝐷(𝑑)

𝑑π‘₯

π’Ÿ =12οΏ½ 𝜌 𝑒 2

𝐷(𝑑)𝑑π‘₯ πœ” : given

𝜌 : satisfies the transport eq (CL) πœŒπ‘‘ + div πœŒπ‘’ = 0 π‘₯ : 𝐷 0 β†’ 𝐷(𝑑) flow map with velocity 𝑒

π‘₯ 𝑋, 0 = 𝑋, 𝑑π‘₯𝑑𝑑

= 𝑒 π‘₯, 𝑑

𝑋 ∈ 𝐷(0)

24

Conservative force

Lemma 1 (T.-H. Miura, C. Liu, Y. G.). Assume that 𝜌 satisfies (CL). Then

𝐹𝑐 =𝛿𝛿π‘₯

β„± = 𝛻𝑝(𝜌)

with 𝑝 𝜌 = πœ”β€² 𝜌 𝜌 βˆ’ πœ” 𝜌 .

Conservative force is the pressure gradient.

25

Diffusion equation

Mass conservation law (CL): πœŒπ‘‘ + div πœŒπ‘’ = 0

Darcy’s law: πœŒπ‘’ = βˆ’π›»π‘ 𝑝

Example: πœ” 𝜌 = 𝜌 log 𝜌 β‡’ 𝑝 𝜌 = 𝜌 πœŒπ‘‘ βˆ’ Ξ”πœŒ = 0 (heat equation)

26

Conservation force on a surface

Lemma 2 (MCG). Let (πœ‚, 𝑣) solves (CS). Then

𝐹𝑐 =𝛿ℱ𝛿𝑦

= 𝛻Γ𝑝 πœ‚ .

Here

β„± 𝑦 = οΏ½ πœ” πœ‚ 𝑦Γ 𝑑

𝑑ℋ2 𝑦 .

27

Diffusion equations on a surface

Conservation law (CS) πœ•βˆ˜πœ‚ βˆ’ 𝐻 𝑉Γ πœ‚ + divΞ“ πœ‚π‘£π‘‡ = 0

Darcy’s law πœ‚π‘£π‘‡ = βˆ’π›»Ξ“π‘ πœ‚

Example: πœ” πœ‚ = πœ‚ log πœ‚ β‡’ 𝑝 πœ‚ = πœ‚ πœ•βˆ˜πœ‚ βˆ’ 𝐻 𝑉Γ πœ‚ βˆ’ Ξ”Ξ“πœ‚ = 0

(different from different equation with convective term Elliot et al.)

28

Consider

(D) οΏ½ πœŒπ‘‘ + div πœŒπ‘’ = 0 πœŒπ‘’ = βˆ’π›»π‘ 𝑝 in π·πœ€(𝑑)𝑝 𝜌 = πœ”β€² 𝜌 𝜌 βˆ’ πœ” 𝜌

with (B) 𝑒 β‹… 𝜈Ω = 𝑉Ω𝑁 on πœ•π·πœ€ 𝑑 .

Expanded pressure 𝑝 𝜌(π‘₯, 𝑑) = 𝑝0 πœ‹, 𝑑 +𝑑 π‘₯, 𝑑 𝑝1 π‘₯, 𝑑 + 𝑂(𝑑2)

3.2 Zero width limit

29

Equation derived from zero width limit

Theorem 2 (MLG). Let (𝑝,𝑒) solves (D) in π·πœ€(𝑑) with (B). Let πœ‚, 𝑣 be the first term of the expansion. Then

πœ•βˆ˜πœ‚ βˆ’ 𝐻 𝑉Γ πœ‚ + divΞ“ πœ‚π‘£π‘‡ = 0 πœ‚π‘£π‘‡ = βˆ’π›»Ξ“π‘0 on Ξ“(t).

30

Energy identity For diffusion equations (D) on 𝐷(t) with (B), we have 𝑑𝑑𝑑� πœ”(𝜌)𝐷 𝑑

𝑑π‘₯

= βˆ’οΏ½ 𝜌 𝑒 2

𝐷 𝑑𝑑π‘₯ βˆ’ οΏ½ 𝑝 𝜌 𝑉Ω𝑁

πœ•π· 𝑑𝑑ℋ2

i.e. 𝑑ℱ𝑑𝑑

= βˆ’2π’Ÿ + οΏ½Μ‡οΏ½,

οΏ½Μ‡οΏ½ = βˆ’οΏ½ 𝑝 𝜌 π‘‰π·π‘πœ•π· 𝑑

𝑑ℋ2.

οΏ½Μ‡οΏ½: rate of change of work by the eternal environment

31

Energy identity on a surface

𝑑𝑑𝑑� πœ”(πœ‚)Ξ“ 𝑑

𝑑ℋ2

= βˆ’οΏ½ πœ‚ 𝑣𝑇 2

Ξ“ 𝑑𝑑ℋ2 + οΏ½ 𝑝 πœ‚ 𝑉Γ𝐻

Ξ“ 𝑑𝑑ℋ2,

οΏ½Μ‡οΏ½ = βˆ’οΏ½ 𝑝 πœ‚ 𝑉Γ𝐻Γ 𝑑

𝑑ℋ2.

32

Commutativity integration

by parts

energetic variation

integration by parts

energetic variation

Diffusion equation in π·πœ€(𝑑)

Diffusion equation in Ξ“(𝑑)

πœ€ β†’ 0

Energy identity in π·πœ€(𝑑)

Energy identity in Ξ“(𝑑)

πœ€ β†’ 0 (MLG)

33

Rigorous results β€’ If Ξ“(𝑑) does not move, a solution of reaction

diffusion equation in π·πœ€ tends to a solution of equation on Ξ“ in some rigorous sense in various settings. (J. Hale, G. Raugel, 1992)……

β€’ However, for moving Ξ“(𝑑) , the first convergence result is given by T.-H. Miura (2016, IFB to appear). (heat eq)

β€’ For existence of a solution for the heat equation on moving surface with convective term (A. Reusken et al.)

34

H. Koba, C. Liu, Y. G. (2016) Incompressible Euler and Navier-Stokes on moving hypersurface: Energetic derivation

H. Koba, Compressible flow

4. Derivation of the Euler and the Navier-Stokes equations

35

Energetic formulation (Euler)

𝒦 π‘₯ = οΏ½πœ‚ 𝑣 2

2Ξ“ 𝑑𝑑π‘₯

πœ‚ : density divΓ𝑣 = 0 (incompressibility)

LAPβ‡’ 𝛿 οΏ½ 𝒦 π‘₯𝑇

0𝑑𝑑 = 0 under divΓ𝑣 = 0

36

Euler equation on πšͺ(𝒕)

πœ•β—πœ‚ = 0

(I) πœ‚πœ•β—π‘£ + gradΞ“ 𝜎 + πœŽπ»π‘› = 0 divΓ𝑣 = 0

(This is overdetermined.)

(II) πœ•β—πœ‚ = 0 𝑃Γ πœ‚πœ•β—π‘£ + gradΞ“ 𝜎 = 0

divΓ𝑣 = 0

(Variation is taken only in tangential direction.)

37

Dissipative energy

π’Ÿ = πœ‡οΏ½ 𝐷Γ 𝑣 2

Ξ“(t)𝑑ℋ2,γ€€πœ‡ > 0

𝐷Γ 𝑣 = 𝑃Γ𝐷 𝑣 𝑃Γ

𝐷 𝑣 =12

πœ•π‘£π‘–

πœ•π‘₯𝑗+πœ•π‘£π‘–

πœ•π‘₯1

(projected strain rate)

38

Navier-Stokes equations

πœ•β—πœ‚ = 0 (III) πœ‚πœ•β—π‘£ + gradΞ“ 𝜎 + πœŽπ»π‘› = 2πœ‡ divΓ𝐷Γ 𝑣

divΓ𝑣 = 0 (overdetermined)

πœ•β—πœŒ = 0 (IV) πœ‚π‘ƒΞ“πœ•β—π‘£ + gradΞ“ 𝜎 = 2πœ‡π‘ƒΞ“divΓ𝐷Γ(𝑣)

divΓ𝑣 = 0

39

Relation to other derivation

Incompressible perfect flow

V. I. Arnold (1966) πœ‚ = const πœ‚π‘ƒΞ“ πœ•β—π‘£ + gradΞ“ 𝜎 = 0

for a fixed surface (variational principle on the space of volume preserving diffeormorphism) (Least action principle)

40

M. E. Taylor (1992) Balance of momentum on manifold

D. Bothe, J. PrΓΌss (2010) Boussinesq-Scriven model

T. Jankuhn, M. A. Olshanskii, A. Reusken Preprint (2017)

Incompressible viscous flow on a fixed surface

41

Zero width limit

πœ•π‘‘π‘’ + 𝑒,𝛻 𝑒 + 𝛻𝑝 = πœ‡0Δ𝑒 div 𝑒 = 0 in π·πœ€(𝑑)

Boundary condition (perfect slip)

𝑒 β‹… 𝜈𝐷 = 𝑉𝐷𝑁

𝐷 𝑒 𝜈 tan = 0

42

Limit equation

Result (T.-H. Miura)

𝑃Γ πœ•π‘‘π‘£ + 𝑣,𝛻 𝑣 + π›»Ξ“π‘ž

= 2πœ‡0𝑃Γdiv(𝑃Γ𝐷 𝑣 𝑃Γ)

This agrees with what KCG derived.

43

Summary We derive equations based on transport

of mass on a moving surface by several methods β€’ energetic variational principle β€’ zero width limit of equations on a moving

thin domain


Recommended