Transcript
Page 1: Observations of Microdrop Decan and Oil on Mica Surface by AFM and VSI. Ueda, A. 1, Kunieda, M. 1, Fukunaka, Y. 1, Liang, Y. 1, Matsuoka, T. 1 and Okatsu,

Observations of Microdrop Decan and Oil on Mica Surface by AFM and VSI.

Ueda, A.1, Kunieda, M.1, Fukunaka, Y.1, Liang, Y.1, Matsuoka, T.1 and Okatsu, K.2

1 Kyoto University2 The Technology and Research Center, Oil, Gas and Metals National Corporation (JOGMEC)

Page 2: Observations of Microdrop Decan and Oil on Mica Surface by AFM and VSI. Ueda, A. 1, Kunieda, M. 1, Fukunaka, Y. 1, Liang, Y. 1, Matsuoka, T. 1 and Okatsu,

-Background “EOR⇔NANO”-

High recovery=EOR (Enhanced Oil Recovery)

⇒ Viscosity, Fluidity, Substitution efficiency…

micro-phenomena controls the wettability (contact angle, surface tension)

in oil-mineral-fluid

Page 3: Observations of Microdrop Decan and Oil on Mica Surface by AFM and VSI. Ueda, A. 1, Kunieda, M. 1, Fukunaka, Y. 1, Liang, Y. 1, Matsuoka, T. 1 and Okatsu,

quartzquartz carbonatecarbonate clayclay rockrock

OilOil

quartzquartz carbonatecarbonate clayclay

Sea waterSea water

quartzquartz carbonatecarbonate

Sea waterSea water ++chemicalchemical

brine

Water-oil-rock (Enhanced oil recovery)

lv

slsv

Vapor/fluid

solid

liquid Ylvslsv cos( Young’s equation )

clayclay

Page 4: Observations of Microdrop Decan and Oil on Mica Surface by AFM and VSI. Ueda, A. 1, Kunieda, M. 1, Fukunaka, Y. 1, Liang, Y. 1, Matsuoka, T. 1 and Okatsu,

Oil

Mineral

Brine

Oil

Mineral

Brine

Brine

Oil

Oil

Mineral

MD

Ab initio

Calculations Experiment

+

Contact angle(macro)

Mineral

Oil

Brine

Mica/Quartz

・Light oil・Heavy oil・Crude oil

Analyses of oil-water-mineral interface

Flow test (lab)

Flow test (Field)

Zeta potential

Experiments

Oil

Contact angle(nano)+Force

Comparison of computational and experimental results

Page 5: Observations of Microdrop Decan and Oil on Mica Surface by AFM and VSI. Ueda, A. 1, Kunieda, M. 1, Fukunaka, Y. 1, Liang, Y. 1, Matsuoka, T. 1 and Okatsu,

5

5

Force curve

AFMInterface equilibrium

Contact angle

Force curve

ζ potential

MD

Fluidity

LBMContact angle under low P,T

Contact angle under high P,T

VSI

ζ potential

Experiment Simulation

yes

Wettability

Salinity

electric double layerDLVO

Adhesion, cohesion

Contact angle

Contact angle

Geochemical behavior in pore and fracture

OIL-PAC

Page 6: Observations of Microdrop Decan and Oil on Mica Surface by AFM and VSI. Ueda, A. 1, Kunieda, M. 1, Fukunaka, Y. 1, Liang, Y. 1, Matsuoka, T. 1 and Okatsu,

The previous results presented in 2008 (北京)

Page 7: Observations of Microdrop Decan and Oil on Mica Surface by AFM and VSI. Ueda, A. 1, Kunieda, M. 1, Fukunaka, Y. 1, Liang, Y. 1, Matsuoka, T. 1 and Okatsu,

Contact angle vs Salinity of brine

20

30

40

50

60

70

0 10 20 30

Oil volume μ L( )

Con

tact

ang

le(○

) Distilled water

Sea water

Cruide oil Higashi-Niigata   

Locality Niigata

Density(g/cm3) 0.784

API 49.0

Velosity(30℃) 1.2

Page 8: Observations of Microdrop Decan and Oil on Mica Surface by AFM and VSI. Ueda, A. 1, Kunieda, M. 1, Fukunaka, Y. 1, Liang, Y. 1, Matsuoka, T. 1 and Okatsu,

Observation of oil droplet on mica by AFM

(Oil diameter ;400nm)

Page 9: Observations of Microdrop Decan and Oil on Mica Surface by AFM and VSI. Ueda, A. 1, Kunieda, M. 1, Fukunaka, Y. 1, Liang, Y. 1, Matsuoka, T. 1 and Okatsu,

1

Sapphire disc

Petroleum droplet

VSI measurement

~4.2

Observation of oil droplet by VSI (Vertical Scanning Interferometry) in distilled water at 25℃   and 1 atm

9

CCD cameraPC

Laser/White light

= 532 nm

Piezo actuator

Phase shift interferometry

Thin section sample

Page 10: Observations of Microdrop Decan and Oil on Mica Surface by AFM and VSI. Ueda, A. 1, Kunieda, M. 1, Fukunaka, Y. 1, Liang, Y. 1, Matsuoka, T. 1 and Okatsu,

The results in 2009(A preliminary report)

Page 11: Observations of Microdrop Decan and Oil on Mica Surface by AFM and VSI. Ueda, A. 1, Kunieda, M. 1, Fukunaka, Y. 1, Liang, Y. 1, Matsuoka, T. 1 and Okatsu,

Macro analyses

R

h

2

Decane

H2O droplet

R

h2arctan2

θ/2 method  

R = 159 μmh = 20 μm

Θ= 28.2°

C10H22

0.7g/cm3

Page 12: Observations of Microdrop Decan and Oil on Mica Surface by AFM and VSI. Ueda, A. 1, Kunieda, M. 1, Fukunaka, Y. 1, Liang, Y. 1, Matsuoka, T. 1 and Okatsu,

mica

H2O droplet

Decane

Naturally deposition for 1 hour

Cleanup mica surface with water

Make Mica cleavage

Splash by air compressor

Soak mica in Decane for 1 day

Mica preparation

Contact angle measurement

Small emulsion(~10 micro m)

Large emulsion(10 micro m~)

Decane

H2O

Ultrasonic bath

Magnetic stirrer

Sample preparation for micro droplet

dw

Page 13: Observations of Microdrop Decan and Oil on Mica Surface by AFM and VSI. Ueda, A. 1, Kunieda, M. 1, Fukunaka, Y. 1, Liang, Y. 1, Matsuoka, T. 1 and Okatsu,

Cantilever: k=0.01Pressure: 2.5nNScan rate: 0.5Hz

1μm×1μm

21

hhn

Rrms

Root mean square Roughness

Roughness; 0.75nm

⇒ smooth surface in nanoscale

Mica surface in decan (AFM)

Page 14: Observations of Microdrop Decan and Oil on Mica Surface by AFM and VSI. Ueda, A. 1, Kunieda, M. 1, Fukunaka, Y. 1, Liang, Y. 1, Matsuoka, T. 1 and Okatsu,

5μm×5μm

Rms roughness; 0.32nm

Cantilever: k=0.01Pressure: 2.5nNScan rate: 0.5Hz

H2O droplet

Water droplet in decan (AFM)

Page 15: Observations of Microdrop Decan and Oil on Mica Surface by AFM and VSI. Ueda, A. 1, Kunieda, M. 1, Fukunaka, Y. 1, Liang, Y. 1, Matsuoka, T. 1 and Okatsu,

R=2.109 micro mH=92.25 nano mContact angle

12.7 degree (θ/2 method)

Contact angle of water droplet in decan

5μm×5μm

R

h

2

θ/2 method

R

h2arctan2

Page 16: Observations of Microdrop Decan and Oil on Mica Surface by AFM and VSI. Ueda, A. 1, Kunieda, M. 1, Fukunaka, Y. 1, Liang, Y. 1, Matsuoka, T. 1 and Okatsu,

Contact angle of water droplet in decan on mica surface (f=2.5nN)

Cantilever: k=0.01Pressure: 2.5nNScan rate: 0.5Hz

Page 17: Observations of Microdrop Decan and Oil on Mica Surface by AFM and VSI. Ueda, A. 1, Kunieda, M. 1, Fukunaka, Y. 1, Liang, Y. 1, Matsuoka, T. 1 and Okatsu,

Effect of cantilever pressure on contact angle

Is it a real contact angle?

R~10 micro mh=456.6 nano mContact angle= 10.7°

F=2.5nN

Cantilever: k=0. 1Pressure: 25nNScan rate: 0.5Hz

F=25nN

×

Page 18: Observations of Microdrop Decan and Oil on Mica Surface by AFM and VSI. Ueda, A. 1, Kunieda, M. 1, Fukunaka, Y. 1, Liang, Y. 1, Matsuoka, T. 1 and Okatsu,

Contact angle of water droplet in decan on mica surface

C.Pressure(low)

C.Pressure(high)

Page 19: Observations of Microdrop Decan and Oil on Mica Surface by AFM and VSI. Ueda, A. 1, Kunieda, M. 1, Fukunaka, Y. 1, Liang, Y. 1, Matsuoka, T. 1 and Okatsu,

Error signalTopography

Effects of scanning pressure

Real surfaceApparent surface

cantilever

F=25nN

AA=15.4 micro m

(Differential calculus)

Page 20: Observations of Microdrop Decan and Oil on Mica Surface by AFM and VSI. Ueda, A. 1, Kunieda, M. 1, Fukunaka, Y. 1, Liang, Y. 1, Matsuoka, T. 1 and Okatsu,

Effects of scanning pressure

cantilever

Force curve near water droplet

ApproachRetract

Decan on mica surface In H2O droplet

Approach

Retract

Page 21: Observations of Microdrop Decan and Oil on Mica Surface by AFM and VSI. Ueda, A. 1, Kunieda, M. 1, Fukunaka, Y. 1, Liang, Y. 1, Matsuoka, T. 1 and Okatsu,

Correction of contact angle

Error signal⇒ contact angle correctionForce curve⇒ height correction

Page 22: Observations of Microdrop Decan and Oil on Mica Surface by AFM and VSI. Ueda, A. 1, Kunieda, M. 1, Fukunaka, Y. 1, Liang, Y. 1, Matsuoka, T. 1 and Okatsu,

RlvY

coscos

degree1.26

N1097.2 9

Y

N/m053.0lv

Contact angle vs. oil size (AFM)

Modified Young’s equation

Similar value to the observed one in macro scale

Page 23: Observations of Microdrop Decan and Oil on Mica Surface by AFM and VSI. Ueda, A. 1, Kunieda, M. 1, Fukunaka, Y. 1, Liang, Y. 1, Matsuoka, T. 1 and Okatsu,

Waterchiller

Optical bench

Peltiercooler

HEPA filter

VSI optics(RSI, MM5500)

Wind shield(metal frame)

Active stage

Air-conditionerAmbient: 22± 0.5 ℃<40 % humidity

Air

Vertical Scan Interferometry (VSI)

Page 24: Observations of Microdrop Decan and Oil on Mica Surface by AFM and VSI. Ueda, A. 1, Kunieda, M. 1, Fukunaka, Y. 1, Liang, Y. 1, Matsuoka, T. 1 and Okatsu,

= 520 nm

fluid

20x

20xreferencemirror

compensator

PZT scanning

interferogram

beam-splitter

mica substrate

lens

lens

stage unit for reference mirror

lens

Vertical Scanning Interferometer HT-HP cell and In-situ optics

x’x

0

500

1000

1500

2000

2500

3000

0 50 100 150 200

Distance (µm)

x-x’ profile

p1 p2

He

igh

t (n

m)

20µm

(22℃、40µl/min)

Page 25: Observations of Microdrop Decan and Oil on Mica Surface by AFM and VSI. Ueda, A. 1, Kunieda, M. 1, Fukunaka, Y. 1, Liang, Y. 1, Matsuoka, T. 1 and Okatsu,

CVD diamondsubstrate

Cell body(titanium)w/ heater

Sample holder(titanium)

Calcite substrateSapphire substrate(cell window)

VSI

PTFE + metal coilseal

Gold wire(spacer)

Reaction cell for high T and P (~200℃, ~20MPa)

Page 26: Observations of Microdrop Decan and Oil on Mica Surface by AFM and VSI. Ueda, A. 1, Kunieda, M. 1, Fukunaka, Y. 1, Liang, Y. 1, Matsuoka, T. 1 and Okatsu,

Width : 9.9μmHeight : 0.52μm

Contact angle  =  12.0°

Water droplet in decan (VSI)

Page 27: Observations of Microdrop Decan and Oil on Mica Surface by AFM and VSI. Ueda, A. 1, Kunieda, M. 1, Fukunaka, Y. 1, Liang, Y. 1, Matsuoka, T. 1 and Okatsu,

27

hydrophilic no hydrophilic

5nm

α-Quartz

HexaneCH3(CH2)4CH3

H2O

Page 28: Observations of Microdrop Decan and Oil on Mica Surface by AFM and VSI. Ueda, A. 1, Kunieda, M. 1, Fukunaka, Y. 1, Liang, Y. 1, Matsuoka, T. 1 and Okatsu,

Thank for your attention.


Recommended