Download ppt - NUCLEOTIDE BIOSYNTHESIS

Transcript
Page 1: NUCLEOTIDE BIOSYNTHESIS

1NUCLEOTIDE BIOSYNTHESIS

Functions of Nucleotides Are Diverse

1.

2.

3.

6.

5.

4.

in carbohydrate, lipid, protein, and nucleic acid synthesis

Nucleotide Assembly

O

C

C C

C

OHOH

PPP

N

N

ribose nt biosynthesisNADPH reduction rxns

carbon skeleton

(source of carbons)

H (NADPH)

(nitrogen source)

CH2(N2)

Page 2: NUCLEOTIDE BIOSYNTHESIS

2Nucleotide Synthesis

activated ribose (PRPP) + baseactivated ribose (PRPP) + ATP + amino acids (CO2 + N2)

sugar ring is activated at the

O

C

C C

C

OHOH

P CH2

HH H

H

OH

ribose-5-PO45-phospho-ribosyl-1-pyrophosphate

-configurationO

C

C C

C

OHOH

P CH2

HH H

H

OP

P

Activation of the Ribose Sugar for Nt Biosynthesis

2nd step

1st step

O

C

C C

C

OHOH

P CH2

HH H

H

OP

P

O

C

C C

C

OHOH

P CH2

HH H

H

NH2

N9 of base

Page 3: NUCLEOTIDE BIOSYNTHESIS

3

O

C

C C

C

OHOH

P CH2

HH H

H

NH2N9 of Pu base

amine is now attachedin the configuration

this becomes the-glycosidic bond

PRPP amidotransferase

R5P

PRPP

5-phopho--ribosyl amine

inosine monophosphate

(ring assembly)

AMP

ADP

ATP

GMP

GDP

GTP

inhibitors of PRPPamidotransferse

Page 4: NUCLEOTIDE BIOSYNTHESIS

Source of Purine Ring Constituents

N

N

N

N3

1

2

6

4

5 7

9

8

purine ring

4Purine Nucleotide Biosynthesis

10-formyl-tetrahydrofolate

N

N

N

N2HN

H

O H

H

N

CH2

R

Page 5: NUCLEOTIDE BIOSYNTHESIS

5Purine Biosynthesis Pathway

Page 6: NUCLEOTIDE BIOSYNTHESIS

PURINE PATHWAY

O

C

C C

C

OHOH

P CH2

HH H

H

OP

P

(5-phospho-ribosyl-1-pyrophosphate)

O

C

C C

C

OHOH

P CH2

HH H

H

NH2

amidophosphoribosyltransferase

GLN + H2O GLU + PPi

O

C

C C

C

OHOH

P CH2

HH H

H

NH

CO

CH2

NH2

glycinamide ribotide (GAR)

GAR synthetase

ADP + Pi

R5P

NH

O C

CH2

HN

ribose-5-phosphate(R5P)

CH

O

formylglycinamideribotide (FGAR)

GAR transformylase

N10-formyl-THF

THF

(tetrahydrofolates aremethyl/formyl donors)

NH

C

CH2

HN

R5P

CH

OHN

FGAM synthetase

AIR synthetase

ATP ADP + Pi

ATP + GLN

+ H20

ADP + GLU + Pi

6

Page 7: NUCLEOTIDE BIOSYNTHESIS

5-aminoimidazole ribotide (AIR)

NC

HC

N

R5P

CH

H2N

5 memberimidazole

ring

NC

C

N

R5P

CH

H2N

O C

OAIR carboxylase

carboxyaminoimidazole ribotide

now have 4 membersof the 5 member ringATP

+

HCO3

ADP+Pi

NC

C

N

R5P

CH

H2N

C

O

CH

C O

O

NH

CCH2

O

O

CH

C O

O

NH

CCH2

O

O

5-aminoimidazole-4-(N-succinylocarboxamide)

ribotide (SACAIR)

ADP + Pi

ATP

5 of the 6 ring members

NC

C

N

R5P

CH

H2N

C

O

H2NCH

C O

O

C

CH

O

O

fumarate

SACAIRsynthetase

5-aminoimidazole-4-carboxamide ribotide

(AICAR)

adenylosuccinatelyase

THF

NC

C

N

R5P

CH

C

O

H2N

NH

CHO

N10-formyl-THF(formyl donor)

5-formaminoimidazole-4-carboxamide ribotide

(FAICAR)

AICAR transformylase

all 6 ringmembers

7

Page 8: NUCLEOTIDE BIOSYNTHESIS

H2O

IMP cyclohydrolase

NC

C

N

CH

C

O

HN

NH

HC

O

C

C C

C

OHOH

P CH2

HH H

H

8

aspartate isthe N donor

glutamine isthe N donor

IMP is the precursorfor purine exocyclic

nt modifications

Pyrimidine Synthesis

Pyrimidine ring assembled attachment to the ribose sugar

O

N

N

43

2 6

5

1O

NH2

CO

O PO3

CH2

NH2

O

OH

C

C

O

OH

C

H

two components joined ring is closed

(precursor of UMP)

Page 9: NUCLEOTIDE BIOSYNTHESIS

9

2 ATP + HCO3 + GLN + H2O carbamyl phosphateGLU

carbamyl phosphate synthetase II

PRPP and IMP (from PU synthesis)

pyrimidine nucleotides

Why not regulate Pu and Pyr synthesis at PRPP synthetase??

R5P PRPP PRPPsynthetase

5-phospho--ribosyl amine

Pu nts

PRPP amido transferase

Pyr ntscarbamyl PO4

synthetase II

The synthesis of carbamyl phosphate and regulation of pyrimidine biosynthesis

Why??

inhibitsinhibits

Page 10: NUCLEOTIDE BIOSYNTHESIS

10Pyrimidine Biosynthesis

Page 11: NUCLEOTIDE BIOSYNTHESIS

OA

OH OH

CH2PPP

OA

OH OH

CH2PP

H C OO

O

H2O

C

H

C O

O

NH3

CCH2 CH2

O

H2N

PYRIMIDINE PATHWAY

+

+

PO

NH2C O

P

C

H

C O

O

NH3

CCH2 CH2

O

HO

(building the Pyr ringstarting with carbonate)

(ATP supplies energy &

phosphate)

start with4 substrates

carbamoyl phosphatesynthetase

1

2

1

2

aspartate transcarbamylase

C

H

C O

O

NH3

CCH2

O

HO

C O

O

H

HO C

O

CH2

CH

NOC

NH2

P

constituents of Pyr are now joined

H2Odihydroorotase

(dehydration)

11

Page 12: NUCLEOTIDE BIOSYNTHESIS

H

C O

O

H

C

O

CH2

CH

NOC

HNquinonereducedquinone

dihydroorotatedehydrogenase

C O

O

H

C

O

CH

C

NOC

HN

double bond formation

O

C

C C

C

OHOH

P CH2

HH H

H

OP

P

(5-phospho-ribosyl-1-pyrophosphate)

O

C

C C

C

OHOH

P CH2

HH H

orotate phosphoribosyl

transferase

C O

O

C

O

CH

C

NOC

HN

configuration

-configuration

in contrast to the purines, the base is synthesized before attachment to ribose

H

O

C

C C

C

OHOH

P CH2

HH H

C

O

CH

CH

NOC

HNOMP

decarboxylase

CO2

12

Page 13: NUCLEOTIDE BIOSYNTHESIS

13two points concerning nucleotide biosynthesis

1.

2.

diphosphate / triphosphate synthesis

XMP XDP XTP

source of ATP

deoxyribonucleotide synthesis

ubiquitous enzyme found in all organisms

substrate

O

C

C C

C

OHOH

CH2

HH H

H

basePPO

C

C C

C

HOH

CH2

HH H

H

basePP

ribonucleotide reductase

ribonucleotide reductase

XDPs

Page 14: NUCLEOTIDE BIOSYNTHESIS

14ribonucleotide reductase “redox” rxn

(like cytochromes inoxidative phosphorylation)

ribonucleotide reductase recycled through a series of oxidation - reduction steps/rxns

ribonucleotide reductase (E. coli)

( XTP / XDP / XMP binding sites )

( inhibitors and activators of Pu and Pyr pathways )

NADPH

NADPoxidized

reducedthioredoxin

reduced

thioredoxin

oxidized

reduced

ribonucleotide reductase

ribonucleotide reductase

oxidized


Recommended