Transcript
Page 1: Nonlinear  superhorizon  perturbations (gradient expansion)  in  Horava-Lifshitz  gravity

Nonlinear superhorizon perturbations(gradient expansion)

in Horava-Lifshitz gravity

Keisuke Izumi (LeCosPA)Collaboration with Shinji Mukohyama(IPMU)

Phys.Rev. D84 (2011) 064025

泉 圭介

Page 2: Nonlinear  superhorizon  perturbations (gradient expansion)  in  Horava-Lifshitz  gravity

OutlineHorava gravity

Gradient expansion and our result

Keisuke Izumi "Nonlinear superhorizon perturbations in

Horava-Lifshitz gravity" 2

Motivation: renormalizable theory of gravitationSymmetry of this theory: foliation-presearving diffeomorphism ActionLinear analysis and importance of non-linearity

Approximation

Intuitive understanding in 0th order

Application to Horava theory and our result

Page 3: Nonlinear  superhorizon  perturbations (gradient expansion)  in  Horava-Lifshitz  gravity

Keisuke Izumi "Nonlinear superhorizon perturbations in

Horava-Lifshitz gravity" 3

Horava gravity

Page 4: Nonlinear  superhorizon  perturbations (gradient expansion)  in  Horava-Lifshitz  gravity

Keisuke Izumi "Nonlinear superhorizon perturbations in

Horava-Lifshitz gravity" 4

Scalar field (for simplicity)

S =Rdtdx3(à þ@2

tþ + þr 2þ + V(þ))

x ! bxt ! bt (E ! bà 1E)

þ ! bà 1þ dtdx3þn ! b4à ndtdx3þn

In UV (b→0), for n>4, this becomes infinity.

Quantum gravity

General relativity is consistent with the observation of universe.Quantum field theory is developed by the experiment.

Combining them (quantum gravity), we have problems.

Non-renormalization

R ø @È È ø gà 1@g

Action of general relativityRdtd3x à gp R

V(þ) û

1+ 3à n

Page 5: Nonlinear  superhorizon  perturbations (gradient expansion)  in  Horava-Lifshitz  gravity

Keisuke Izumi "Nonlinear superhorizon perturbations in

Horava-Lifshitz gravity" 5

S =Rdtdx3(à þ@2

tþ + þ(r 2)zþ + V(þ))

x ! bxt ! bzt (E ! bà zE)

þ ! bà 23àz

þ dtdx3þn ! bz+3à 2(3àz)n

dtdx3þn

If z 3, all terms are renormalizable≧(In UV, b→0, this goes to 0.)

Motivation of Horava gravity (Horava 2009)

Idea of Horava

t ! bzt; x ! bxChange the relation between scalings time coordinate and spatial coordinate.

(Lifshitz scaling)

Able to realize it, introducing following action (scalar field example for simplicity)

In Horava-Lifshitz theory, this technicque is applied to gravity theory

V(þ) ûZ + 3à 2

(3à z)n

S =Rdtdx3(à þ@2

tþ + þr 2þ + þ(r 2)zþ + V(þ))

Page 6: Nonlinear  superhorizon  perturbations (gradient expansion)  in  Horava-Lifshitz  gravity

Keisuke Izumi "Nonlinear superhorizon perturbations in

Horava-Lifshitz gravity" 6

To obtain power-counting renormalizable theory

Order of only spatial derivative must be higher

We must abandon 4-dim diffeomorphism invariance

Horava theory has foliation-preserving diffeomorphism invariance

xi ! xài(xj ; t) t ! tà(t)

In 4-dim manifold, time-constant surfaces are physically embedded. We can reparameterize time and each time constant surface has 3-dim diffeomorphism.

Foliation-preserving diffeomorphism

S = Rdtdx3(à þ@2tþ + þ(r 2)zþ + V(þ))

(This might be minimum change.)

Page 7: Nonlinear  superhorizon  perturbations (gradient expansion)  in  Horava-Lifshitz  gravity

Keisuke Izumi "Nonlinear superhorizon perturbations in

Horava-Lifshitz gravity" 7

Foliation-preserving diffeomorphism

In 4-dim manifold, time-constant surfaces are physically embedded. We can reparameterize time and each time constant surface has 3-dim diffeomorphism invariance.

4 dim. spacetime

ds2 = à N2dt2 + gij(dxi + N idt)(dxj + N jdt)

t = 0

t = 1

t0= 0

t0= 2t = 0 Surface (3 dim.)

dl2 = gijdxidxj

dl2 = g0ijdx0idx0j

t = 1 Surface (3 dim.)dl2 = gijdxidxj

dl2 = g00ijdx0idx0j

x ! x0(x; t = 1)

x ! x0(x; t = 0)

Page 8: Nonlinear  superhorizon  perturbations (gradient expansion)  in  Horava-Lifshitz  gravity

Keisuke Izumi "Nonlinear superhorizon perturbations in

Horava-Lifshitz gravity" 8

Gravitational operators invariant under foliation-preserving diffeomorphism

ds2 = à N2dt2 + gij(dxi + N idt)(dxj + N jdt)Basic variables

metric

N i = N i(t;xk) ; gij = gij(t;xk) ; N(t)

Lapse depends only on time projectability condition

Ndt; gp d3x; gij ; R ij ; K ij ; r i

Action must be constructed by operators invariant under foliation preserving diffeomorphism.

In 3-dim space, can be expressed in terms of R ij kl R ij

Dynamical variables

It is natural because time reparametrization is related to transformation of lapse function.

Page 9: Nonlinear  superhorizon  perturbations (gradient expansion)  in  Horava-Lifshitz  gravity

Keisuke Izumi "Nonlinear superhorizon perturbations in

Horava-Lifshitz gravity" 9

Action

Potential terms

z=3 termRdtdx3N gp ( R3 RR ijR j i R i

jRjkR

ki)

r iRr iR R ijr ir jR )

By the Bianchi identity, other terms can be transformed into above expression

z=2 term

z=0 term

Rdtdx3N gp ( R2 R ijR j i )

Rdtdx3N gp R

Kinetic termsRdtdx3N gp (K ijK j i à õK 2) (GR limit: λ→1 )

Three dimensional curvaturez=1 termRdtdx3N gp Ë

Higher order potential term can be added if you wantIn my talk, we do not fix form of potential terms.

K ij = 2N1 (gçij + r iN j + r jN i)

Page 10: Nonlinear  superhorizon  perturbations (gradient expansion)  in  Horava-Lifshitz  gravity

Keisuke Izumi "Nonlinear superhorizon perturbations in

Horava-Lifshitz gravity" 10

Linear analysisNumber of physical degree of freedom

9 local variables and 1 global variableN i(t;xk) ; gij(t;xk) N(t)3 local constraint and 1 global constraint

î Niî I g = 0 î N

î I g = 03 local gauge and 1 global gaugexi ! xài(xj ; t) t ! tà(t)

3 physical degree of freedom: 2 tensor gravitons and 1 scalar gravitonWhole-volume Integration of scalar graviton is constrained.

Scalar gravitonIf it becomes ghost. So must be in range or .3

1 < õ < 1In linear analysis, gravitational force change. But it becomes strongly coupled in GR limit Strong interaction might help recovery to GR like Vainshtein mechanism?

We need non-linear analysis

(Charmousis et al. 2009, Koyama et al. 2010)õ ! 1

õ 31 > õ õ > 1

Page 11: Nonlinear  superhorizon  perturbations (gradient expansion)  in  Horava-Lifshitz  gravity

Keisuke Izumi "Nonlinear superhorizon perturbations in

Horava-Lifshitz gravity" 11

Vainshtein mechanism

DVZ discontinuity (H.v.Dam, M.J.G Veltman ‘70 and V.I.Zakharov ‘70)

In most of modified gravity, extra propagating modes appear.

Massless limit is not reduced to general relativity in linear analysis.

Non-linear effect is important in some theories and theories are reduced to general relativity.

Vainshtain mechanism (Vainshtein 1972)

In case of Horava gravity2 tensor gravitons

Graviton in general relativity

1 scalar graviton

Additional degree of freedom (additional force)

Page 12: Nonlinear  superhorizon  perturbations (gradient expansion)  in  Horava-Lifshitz  gravity

Keisuke Izumi "Nonlinear superhorizon perturbations in

Horava-Lifshitz gravity" 12

Non-linear analysisDifficult to solve non-linear equation

Need simplification or approximationHow?

Imposing symmetry of solution

Homogenity and isotropy FLRW universe

Static and spherical symmetry

Expansion w.r.t. other small variables than amplitude of perturbation

Gradient expansionConcentrating only on superhorizon scale

Small scale:

L

1=(LH)

Star and Black Hole

Page 13: Nonlinear  superhorizon  perturbations (gradient expansion)  in  Horava-Lifshitz  gravity

Keisuke Izumi "Nonlinear superhorizon perturbations in

Horava-Lifshitz gravity" 13

Motivation of our work

õ ! 1 : Scalar graviton becomes strongly coupled

Vainshtein effect

Is theory reduced to GR?

2 tensor graviton1 scalar graviton Gravitational force become stronger??

GR limit

Usual metric perturbation breaks down. We must do full non-linear analysis, but it is difficult.

Gradient expansion

Linear analysis

Page 14: Nonlinear  superhorizon  perturbations (gradient expansion)  in  Horava-Lifshitz  gravity

Keisuke Izumi "Nonlinear superhorizon perturbations in

Horava-Lifshitz gravity" 14

Gradient expansion and Our result

(Starobinsky (1985), Nambu and Taruya (1996))

Phys.Rev. D84 (2011) 064025

Page 15: Nonlinear  superhorizon  perturbations (gradient expansion)  in  Horava-Lifshitz  gravity

Gradient expansionMethod to analyze the full non-linear dynamics at large scale

Suppose that characteristic scale L of deviation is much larger than Hubble horizon scale 1/H

1=LH ø @x=H ø ï ü 1 (small parameter)

Keisuke Izumi "Nonlinear superhorizon perturbations in

Horava-Lifshitz gravity" 15

î 0

î 1

î 2

ï0 ï1 ï2

Gradient expansion

Perturbative approach

Small parameter

î = î ú=ú

(Starobinsky (1985), Nambu and Taruya (1996))

Page 16: Nonlinear  superhorizon  perturbations (gradient expansion)  in  Horava-Lifshitz  gravity

Keisuke Izumi "Nonlinear superhorizon perturbations in

Horava-Lifshitz gravity" 16

Separate universe approach (δN)0th order of gradient expansion (ï ! 0)Ignoring spatial derivative term

EOM is completely the same as that of homogeneous universe.If local shear can be neglected in this order, EOM is of FLRW.

magnifying glass

Horizon scale

characteristic scale

Looks homogeneous

characteristic scale is much larger thanhorizon scale, so dynamics in each region does not interact with each other.

amplitude

Spatial point

1=LH ø @x=H ø ï ü 1

Page 17: Nonlinear  superhorizon  perturbations (gradient expansion)  in  Horava-Lifshitz  gravity

Keisuke Izumi "Nonlinear superhorizon perturbations in

Horava-Lifshitz gravity" 17

setupADM metric

ds2 = à N2dt2 + gij(dxi + N idt)(dxj + N jdt)Action

I g = RNdt gp dx3(K ijK ij à õK 2 à 2Ë + R + L z>1)

Considering the case where higher order terms are generic form.

Projectability condition

N = N(t)

Gauge fixing

N = 1; N i = 0 (Gaussian normal)

Decomposition of spatial metric and extrinsic curvature

gij = a2(t)e2ð(t;x)í ij(t;x)K i

j = 31K (t;x) + A i

j(t;x)detí = 1 A i

i = 0í ij í ikAk

jand are symmetric tensor

Page 18: Nonlinear  superhorizon  perturbations (gradient expansion)  in  Horava-Lifshitz  gravity

Keisuke Izumi "Nonlinear superhorizon perturbations in

Horava-Lifshitz gravity" 18

(3õ à 1)@tK = à 21(3õ à 1)K 2 à 2

3A ijA

ji à Z

@tð = à a@ta + 3

1K

@tA ij = à K A i

j + Zij à 3

1Zî ij

@tí ij = 2í ikAkj

Basic equationsEOM: and definition of extrinsic curvature

conservation law induced by 3-dimensional spatial diffeomorphism (Bianchi equation)

D iZij = 0 D i : Spatial covariant derivative

compatible with gij

Constraint equation:

î gijî I g = 0

î Niî I g = 0

@jA ji + 3A j

i@jðà 21A j

l í lk@ií j k à 31(3õ à 1)@iK = 0

There are no discontinuity in the limit of õ ! 1

Zij = î gij

î gp Lp

L p = à 2Ë + R + L Z>1

Page 19: Nonlinear  superhorizon  perturbations (gradient expansion)  in  Horava-Lifshitz  gravity

Keisuke Izumi "Nonlinear superhorizon perturbations in

Horava-Lifshitz gravity" 19

Consistency checkdetí = 1 A i

i = 0í ij í ikAk

jand are symmetric tensor

EOM of detí ; A ii; í ij à í j i and í ikAk

j à í j kAki

of

Page 20: Nonlinear  superhorizon  perturbations (gradient expansion)  in  Horava-Lifshitz  gravity

Keisuke Izumi "Nonlinear superhorizon perturbations in

Horava-Lifshitz gravity" 20

Order analysis

Suppose that @tí ij = O(ï) (no gravitational wave)

In most of analyses of GR this condition is imposed.

(3õ à 1)@tK = à 21(3õ à 1)K 2 à 2

3A ijA

ji à Z

@tð = à a@ta + 3

1K

@tA ij = à K A i

j + Zij à 3

1Zî ij

@tí ij = 2í ikAkj

Constraint and EOMs@jA j

i + 3A ji@jðà 2

1A jl í lk@ií j k à 3

1(3õ à 1)@iK = 0 ①

A ij = O(ï)

@iK = O(ï2)K (0) depends only on time

a(t)Defining as 3 a(t)@ta(t) = K (0)(ñ 3H(t))

@tð = O(ï)

ð = ð(0)(x) + ïð(1)(t;x) + áááí ij = f ij (x) + ïí (1)

ij (t;x) + áááK = 3H(t) + ïK (1)(t;x) + áááA ij = ïA (1)

ij (t;x) + ááá

In sum

Page 21: Nonlinear  superhorizon  perturbations (gradient expansion)  in  Horava-Lifshitz  gravity

Keisuke Izumi "Nonlinear superhorizon perturbations in

Horava-Lifshitz gravity" 21

Equations in 0th order

0th order equation

② (3õ à 1)à@tH + 2

3H2á = Ë

integrating

3H2 = 3õà 12Ë + a3

C

C : Integration constant

Cosmological constantEffective Dark matter (Shinji Mukohyama 2009)

(3õ à 1)@tK = à 21(3õ à 1)K 2 à 2

3A ijA

ji à Z

@tð= à a@ta + 3

1K

@tA ij = à K A i

j + Zij à 3

1Zî ij

@tí ij = 2í ikAkj

Constraint and EOMs@jA j

i + 3A ji@jðà 2

1A jl í lk@ií j k à 3

1(3õ à 1)@iK = 0 ①

⑤Friedmann eq.

Due to projectability condition, we don’t have (00) component of Einstein eq..However, we have Bianchi identity. (In 0th order, correction terms such as R^2 can be negligible.)Integrating Bianchi identity, we can obtain Friedmann eq. with dark matter as Integration constant. (Shinji Mukohyama 2009)

Page 22: Nonlinear  superhorizon  perturbations (gradient expansion)  in  Horava-Lifshitz  gravity

Keisuke Izumi "Nonlinear superhorizon perturbations in

Horava-Lifshitz gravity" 22

Equations in each order

(3õ à 1)@tK = à 21(3õ à 1)K 2 à 2

3A ijA

ji à Z

@tð = à a@ta + 3

1K

@tA ij = à K A i

j + Zij à 3

1Zî ij

@tí ij = 2í ikAkj

Constraint and EOMs@jA j

i + 3A ji@jðà 2

1A jl í lk@ií j k à 3

1(3õ à 1)@iK = 0 ①

⑤nth order equation

aà3@t(a3K ) = à 21P

p=1nà 1K (p)K (nà p)à 2(3õà 1)

3 Pp=1nà1A (p)i

jA(nàp)j

i à 3õà 1Z(n)

@tð(n) = 31K (n)

aà3@tàa3A (n)i

= à Pp=1nà1K (p)A (nàp)i

j + Z(n)ij à 3

1Z(n)î ij

@tí (n)ij = 2P

p=1nàp í (p)

ik A (nà1)kj

aà3@tàa3K (n)á

④ ⑤

Evolution equation

constraint@jA (n)j

i + 3Pp=1nà 1A (p)j

i@jð(nà p) à 21P

p=1n P

q=0nàpA (p)j

lí (q)lk@ií (nà pàq)j k à 3

1(3õ à 1)@iK (n) = 0Bianchi equation

@jZ(n)ji + 3P

p=1nà 1àZ(p)j

i à 31Z(p)î j

iá@jð(nà p) à 2

1Pp=1n P

q=0nàpZ(p)j

lí(q)lk@ií (nàpà q)

j k = 0

Page 23: Nonlinear  superhorizon  perturbations (gradient expansion)  in  Horava-Lifshitz  gravity

Keisuke Izumi "Nonlinear superhorizon perturbations in

Horava-Lifshitz gravity" 23

O(ï)EOMs

@tða3A (1)i

j

ñ= 0

@tða3K (1)

ñ= 0

@tð(1) = 31K (1)

@tí (1)ij = 2f ikA (1)k

j

solutions

K (1) = a(t)3C(1)(x) A (1)i

j = a(t)3C(1)i

j (x)

ð(1) = 3C(1)(x) R

tint

a(tà)3dtà + ð(1)

in (x)

í (1)ij = 2f ikC(1)k

jR

tint

a(tà)3tà + í (1)

in;ij(x)

C(1);C(1)ij ;ð

(1)in ; í (1)

in;ij : Integration constant

ð(1) and í (1)in;ij can be absorbed into 0th order counterparts

Constraint equation

@jC(1)ji + 3C(1)j

i@jð(0) à 21C(1)j

lf lk@if j k à 31(3õ à 1)@iC(1) = 0

Page 24: Nonlinear  superhorizon  perturbations (gradient expansion)  in  Horava-Lifshitz  gravity

Keisuke Izumi "Nonlinear superhorizon perturbations in

Horava-Lifshitz gravity" 24

O(ïn) (n õ 2)nth order equation

aà 3@t(a3K ) = à 21P

p=1nà 1K (p)K (nà p)à 2(3õà 1)

3 Pp=1nà 1A (p)i

jA(nà p)j

i à 3õà 1Z(n)

@tð(n) = 31K (n)

aà 3@tàa3A (n)i

= à Pp=1nà 1K (p)A (nà p)i

j + Z(n)ij à 3

1Z(n)î ij

@tí (n)ij = 2P

p=1nàp í (p)

ik A (nà1)kj

aà 3@tàa3K (n)á

K (n) = a(t)31 R

tint dtàa(tà)3

ðà 2

1Pp=1nà 1K (p)K (nàp)à 2(3õà1)

3 Pp=1nà1A (p)i

jA(nà p)j

i à 3õà 1Z(n)

ñ

A (n)ij = a(t)3

1 Rtint dtàa(tà)3

ðà P

p=1nà1K (p)A(nàp)i

j + Z(n)ij à 3

1Z(n)î ij

ñ

nth order solutions

ð(n) = 31R

tint dtàK (n)

í (n)ij = 2R

tint dtàP p=1

nàp í (p)ik A (nà1)k

jIntegration constants can be absorbed into

C(1);C(1)ij ;ð(0); f ij

nth order constraint is automatically satisfied inductive method

No pathology in GR limit õ ! 1

Page 25: Nonlinear  superhorizon  perturbations (gradient expansion)  in  Horava-Lifshitz  gravity

Keisuke Izumi "Nonlinear superhorizon perturbations in

Horava-Lifshitz gravity" 25

Curvature perturbationdefinition

R(t;x) ñ ð(tà;x) + lnð

a(t)a(tà)

ñ

ú(0)dm(tà) + î údm(tà;x) = ú(0)

dm(t)

ú(0)dm(t) ñ 3M 2

plH2 à 3õà12M2

pl Ë

î údm(t;x) ñ 2M2

plðR + 3

2(K 2 à 9H2) à A ijA

ji

ñ

0th order

R (0) = ð(0)(x) (constant in time)1st order

R (1) =ð(1) + Htà= C(1)ð R

a3dt à a3@tH

@tR (1) =3a3(@tH)2C(1)H (@2

tH + 3H@tH) = 0

Curvature perturbation is conserved up to first order in gradient expansion

Page 26: Nonlinear  superhorizon  perturbations (gradient expansion)  in  Horava-Lifshitz  gravity

Keisuke Izumi "Nonlinear superhorizon perturbations in

Horava-Lifshitz gravity" 26

Summaryõ ! 1In GR limit

Scalar graviton becomes strongly coupled.

We need fully non-linear analysis. gradient expansion: fully non-linear analysis of superhorizon cosmological perturbation

We can not see any pathological behavior in GR limit and theory is reduced to GR+DM.

Analogue of Vainshtein effect

Page 27: Nonlinear  superhorizon  perturbations (gradient expansion)  in  Horava-Lifshitz  gravity

Keisuke Izumi "Nonlinear superhorizon perturbations in

Horava-Lifshitz gravity" 27

Thank you for your attention


Recommended